toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Sethu, K.K.V.; Ghosh, S.; Couet, S.; Swerts, J.; Sorée, B.; De Boeck, J.; Kar, G.S.; Garello, K. doi  openurl
  Title Optimization of tungsten beta-phase window for spin-orbit-torque magnetic random-access memory Type A1 Journal article
  Year (down) 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 16 Issue 6 Pages 064009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Switching induced by spin-orbit torque (SOT) is being vigorously explored, as it allows the control of magnetization using an in-plane current, which enables a three-terminal magnetic-tunnel-junction geometry with isolated read and write paths. This significantly improves the device endurance and the read stability, and allows reliable subnanosecond switching. Tungsten in the beta phase, beta-W, has the largest reported antidamping SOT charge-to-spin conversion ratio (theta(AD) approximate to -60%) for heavy metals. However, beta-W has a limitation when one is aiming for reliable technology integration: the beta phase is limited to a thickness of a few nanometers and enters the alpha phase above 4 nm in our samples when industry-relevant deposition tools are used. Here, we report our approach to extending the range of beta-W, while simultaneously improving the SOT efficiency by introducing N and O doping of W. Resistivity and XRD measurements confirm the extension of the beta phase from 4 nm to more than 10 nm, and transport characterization shows an effective SOT efficiency larger than -44.4% (reaching approximately -60% for the bulk contribution). In addition, we demonstrate the possibility of controlling and enhancing the perpendicular magnetic anisotropy of a storage layer (Co-Fe-B). Further, we integrate the optimized W(O, N) into SOT magnetic random-access memory (SOT-MRAM) devices and project that, for the same thickness of SOT material, the switching current decreases by 25% in optimized W(O, N) compared with our standard W. Our results open the path to using and further optimizing W for integration of SOT-MRAM technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729005800002 Publication Date 2021-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:184832 Serial 7007  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: