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Abstract

The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive

waveguides have been investigated by a combination of analytical and numerical calculations. The

presence of both magnetostriction and inverse magnetostriction leads to the coupling between

confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have

been used to extract the dispersion relations of the magnetoelastic waves as well as their mode

profiles.
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I. INTRODUCTION

In recent years, the coupling between elastic and magnetic degrees of freedom in mag-

netostrictive materials has gained renewed interest due to emerging nanoscale spintronic

applications, such as magnetic memory cells [1–4], logic devices [5–8], sensors [9, 10], or

compact microwave antennas [11, 12]. In magnetostrictive ferromagnets, the magnetoelastic

coupling leads to an elastic response to a magnetic excitation and vice versa. At microwave

frequencies, this mutual interaction manifests itself in a coupling between spin waves—the

fundamental magnetic excitations in this frequency range—and (hypersonic) elastic waves,

forming magnetoelastic waves. While this behavior has been studied for plane waves in bulk

materials decades ago [13–20], magnetoelastic waves in nm-thin films have been studied only

much more recently. Most of these studies have focused on the interaction between surface

acoustic waves propagating at the interface between a (piezoelectric) substrate and a thin

magnetostrictive film with macroscopic dimensions [5, 21–35]. In addition, also numerical

and theoretical studies on magnetoelastic plane waves in bulk media have been reported

[36–40].

By contrast, many recent spin-wave-based information processing applications employ

nanoscale ferromagnetic waveguides for information transfer and computation [41–44]. The

small dimensions of such waveguides, which are required to enable high device densities,

lead to wave confinement effects when the wavelengths become comparable to the waveg-

uide width. In the presence of (inverse) magnetostriction, this leads to the coupling between

confined spin waves and confined elastic waves, forming confined magnetoelastic waves.

To date, studies have addressed the effect of confinement on spin waves [45–50] as well

as elastic waves [51–59]. Yet, besides recent investigations of the magnetoelastic coupling

in nanoscale resonators [60–64], a detailed study of propagating magnetoelastic waves in

nanoscale waveguides is still lacking. It is clear that a detailed understanding of confined

propagating magnetoelastic waves is crucial for emerging magnonic device applications, es-

pecially where spin waves are excited by magnetoelectric means and used for information

transfer and processing [41, 42, 65, 66].

In this work, we report on a combined analytical and numerical description of the char-

acteristics of confined magnetoelastic waves in thin and narrow waveguides. The numerical

calculations employ a new mumax3 extension to solve the magnetoelastodynamics and al-
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low for the assessment of confined magnetoelastic wave dynamics. The analytical model

complements the numerical results and is utilized to gain insight in the coupling between

the different confined elastic and magnetic modes. Thus, this work provides a key step

towards the comprehensive understanding of confined magnetoelastic waves in nanoscale

ferromagnetic waveguides.

II. THEORETICAL DESCRIPTION OF MAGNETOELASTIC WAVES

A. Spin waves, Lamb waves, and magnetoelasticity

Our description of the magnetoelastic dynamics starts from the total energy density, given

by

Etot = EZ + Ed + Eex + Emel + Eel + Ekin. (1)

Here, EZ represents the Zeeman energy density, Ed the demagnetization energy density, Eex

the exchange energy density, Emel the magnetoelastic energy density, Eel the elastic energy

density, and Ekin the kinetic energy density. The magnetic energy densities can be expressed

by [13–15]

EZ = −µ0Ms (m ·Hext) , (2)

Ed = −µ0Ms

2
(m ·Hd) , (3)

Eex = Aex

[
(∇mx)

2 + (∇my)
2 + (∇mz)

2] , (4)

with m = M/Ms the magnetization M normalized to the the saturation magnetization Ms,

µ0 the vacuum permeability, Hext the external magnetic field strength, Hd the demagneti-

zation field strength, and Aex the exchange stiffness constant.

The magnetoelastic energy density for a material with cubic (or higher) crystal symmetry

is given by [19, 20]

Emel = B1

∑
i

m2
i εii +B2

∑
i 6=j

mimjεij . (5)

Here, ε̄ is the strain tensor with components εij and B1,2 are the magnetoelastic coupling

constants.

In the linear elastic regime, Hooke’s law is valid and the elastic energy density is given
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by [67, 68]

Eel =
1

2
σ̄ : ε̄ =

1

2

∑
i,j,k,l

Cijklεklεij, (6)

with σ̄ the mechanical stress tensor and Cijkl the stiffness constants. Finally, the kinetic

energy density can be expressed as [69, 70]

Ekin =
ρ||u̇||2

2
, (7)

with ρ the mass density and u the mechanical displacement.

The minimization of the total energy Etot, i.e. the minimization of the volume integral

of the energy density Etot, then allows to find the equilibrium state. Beyond equilibrium,

the magnetization dynamics and magnetic excitations in the system are described by the

Landau-Lifshitz-Gilbert (LLG) equation [71, 72]

ṁ = −γ0m×Heff + αm× ṁ, (8)

with γ0 = µ0γ, γ the absolute value of the gyromagnetic ratio, α the phenomenological

Gilbert damping constant, and Heff the effective magnetic field strength, which is given by

Heff = − 1

µ0

δEtot

δM
with Etot =

∫
V

EtotdV . (9)

The boundary conditions for the magnetization are

∇n ·m = 0, (10)

with n the normal to the surface.

The elastodynamic equation of motion is given by [68, 69]

ρü + ηu̇ = ftot, (11)

with η a phenomenological damping parameter and ftot the total body force acting on the

material. This body force is given by [68, 69]

ftot = ∇ · dEtot

dεij
or ftot,i =

∂

∂xj

δEtot

δεij
(12)

and has both elastic and magnetoelastic contributions. For small values, the displacement

is related to the strain by

ε̄ =
1

2

(
∇u + (∇u)T

)
, (13)
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which can be used to express the total body force as a function of the displacement u. The

mechanical boundary conditions at the surface are

fs = σ̄ · n, (14)

with fs the traction force per unit surface.

B. Linear magnetoelastic waves in thin waveguides

In this section, we discuss an analytical approach to the above equations of motion

following previous work on magnetoelastic waves in thin films [73]. Although the system is

not generally solvable for confined waves in a narrow waveguide, the results provide useful

insight in the underlying physics and the dependence of the coupling on the symmetry of

the waves. They are therefore complementary to the numerical results presented in the next

section below.

In the analytical description, the waveguide is considered to be infinitely long in the

propagation direction x̂ with free boundaries in the other two directions. The magnetic

Neumann boundary conditions in Eq. (10) are strictly satisfied if the surrounding materi-

als are nonmagnetic. By contrast, the mechanical free boundary conditions σ̄ · n = 0 are

satisfied if the waveguide is surrounded by vacuum. In practice, a good approximation is

already obtained when the waveguide is surrounded by materials with much lower acoustic

impedances. Hence, the results obtained in this work are e.g. relevant for supported waveg-

uides if the underlying substrate has a much lower acoustic impedance than the waveguide,

which causes total reflection of elastic waves at the interface.

The waveguide thickness d is considered to be much smaller than the wavelength λ of the

magnetoelastic wave, i.e. kd� 1, with k = 2π/λ the wavenumber. As a result, the dynamic

magnetization and the displacement can be assumed to be uniform over the thickness and

all partial derivatives with respect to the direction normal to the waveguide, ẑ, vanish

(i.e. ∂/∂z = 0). For scaled waveguides, their width is however of the same order as the

magnetoelastic wavelength. Therefore, mode formation occurs due to confinement in the

lateral direction along ŷ.

A schematic of the waveguide geometry is shown in Fig. 1 with the propagation direction

and static external field along x̂. The state variable describing a propagating magnetoelastic
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FIG. 1: Schematic of the studied studied CoFeB waveguide (10 µm long, 200 nm wide, 20 nm

thick). The yellow area designates the excitation region in the waveguide center. A static external

magnetic field with an amplitude of µ0H0 = 5 mT is applied along the waveguide in the x-direction.

wave can be written as

wn(x, y, t) = w̃n(y)ei(kxx+ωt), (15)

with w̃n = [ũx,n, ũy,n, ũz,n, m̃y,n, m̃z,n]T and n the mode number. Note that weak dynamic

displacement and magnetization components are assumed. Hence, higher order terms are

neglected and mx = 1.

The amplitude and the profile w̃n as well as the dispersion relation of magnetoelastic

waves in the waveguide can be obtained by solving the coupled differential equations of mo-

tion (8) and (11). A major complication is however the analytical self-consistent calculation

of the demagnetization field. The problem can be considerably simplified by assuming that

the confined spin-wave modes are not altered by the magnetoelastic interaction. As shown

below, the exact numerical solutions of the coupled system indicate that this approximation

is well justified. Then, the magnetization components in w̃n can be written as [46, 47]

m̃i,n(y) = Ai,n

cos(κny) if n is odd

sin(κny) if n is even
, (16)

with complex amplitudes Ai,n, i ∈ {y, z}, and κn the wavenumber along ŷ. In a waveguide,

κn has discrete values of κn = nπ/weff , with weff the effective waveguide width [47–50]

and n the mode number. Note that no corresponding assumptions for the displacement

components in w̃n need to be made.

Using this approximation, neglecting damping, and further assuming small dynamic dis-

placement and magnetization components, the coupled differential equations (8) and (11)

can be linearized. Detailed calculations can be found in Appendix A, which lead to a set of

homogeneous partial differential equations
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v2
‖k

2
x − v2

⊥∂
2
y − ω2 −iv2

�kx∂y 0 iκnB2

ρMs
0

−iv2
�kx∂y v2

⊥k
2
x − v2

‖∂
2
y − ω2 0 ikxB2

ρMs
0

0 0 v2
⊥
(
k2
x − ∂2

y

)
− ω2 0 ikxB2

ρMs

γB2∂y γiB2kx 0 ωmy −iω

0 0 γB2ikx iω ωmz


w̃n(y) ≡ κ̄mel·w̃n(y) =



0

0

0

0

0


,

(17)

with the velocities v2
‖ = C11/ρ, v2

⊥ = C44/ρ, and v2
� = (C12 + C44)/ρ, Cij the stiffness

constants in Voigt notation and ∂y = ∂/∂y. Moreover,

ωmy = ω0 + ωM

(
λexk

2
tot + P

κ2
n

k2
tot

)
, (18)

ωmz = ω0 + ωM(λexk
2
tot + 1− P ) , (19)

P = 1− 1− e−ktotd

ktotd
, (20)

k2
tot = k2

x + κ2
n, ω0 = γ0Hext, ωM = γ0Ms, λex = 2Aex

µ0M2
s
, and d the waveguide thickness.

Without magnetoelastic interactions, i.e. for B1 = B2 = 0, Eq. (17) leads to an eigen-

system of purely elastic and magnetic (spin) waves in an isotropic waveguide, which are

both well known [46, 47, 69]. For the geometry considered here, the dynamic in-plane

displacement components represent laterally confined Lamb waves (LCLWs) whereas the

out-of-plane displacement component corresponds to out-of-plane-polarized laterally con-

fined shear waves, further called P waves. For both wave types, an infinite amount of modes

exists with either symmetric or antisymmetric mode profiles. For LCLWs, the symmetric

(S) mode has symmetric ux and antisymmetric uy displacement profiles over the waveguide

width, and vice versa for antisymmetric (A) modes. In the magnetic system, the dynamic

magnetization components represent confined backward volume spin waves (CBVSWs) as

the static magnetic field is applied along the propagation direction. The lateral confinement

of these spin waves also leads to modes with symmetric and antisymmetric profiles. For these

modes, both my and mz share the same symmetry with odd and even modes corresponding

to symmetric and antisymmetric profiles, respectively. Note that this is in stark contrast to

isotropic bulk systems, which only have a single spin wave mode in a given geometry (see

Fig. 2a) [67–70].

When magnetoelastic coupling is present, the confined elastic and spin waves mutually

interact with each other. As discussed in more detail below, the magnetoelastic interaction,
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FIG. 2: (a) Dispersion relations of magnetoelastic waves (red solid lines) in bulk CoFeB. The

longitudinal elastic wave (blue) is uncoupled from the spin wave (green). The static external field

has amplitude of µ0H0 = 25 mT and is parallel to the static magnetization. (b) Schematic of

interactions between the different dynamic components of a magnetoelastic wave. Solid arrows

represent off-diagonal interaction terms in κmel that are also present in bulk media or thin films.

Dotted lines represent additional interactions that arise due to lateral confinement, as discussed in

the text.

which is described by the off-diagonal terms in κ̄mel, results in an anticrossing of the disper-

sion relations of the elastic and magnetic waves [19, 20]. Near the anticrossing, the mutual

interaction between the elastic and magnetic domain is strongest and can be quantified by

the amplitude of the anticrossing gap, further called the magnetoelastic gap ∆f . A larger

magnetoelastic gap results in higher coupling rates and thus faster magnetoelastic energy

oscillation between the magnetic and elastic domain during propagation [63]. Hence, ∆f is

an important parameter for the description of magnetoelastic waves.

For plane waves in an infinitely extended thin film, κn as well as the partial derivatives

∂y are zero, and Eq. (17) reduces to a set of homogeneous linear equations. The system

is solvable and allows for the derivation of an approximate analytical expression for the
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magnetoelastic gap based on the off-diagonal components of κmel [19, 20], which is given by

2π∆f =

√
2γB2

2ωmz
C44Ms

(21)

More details about magnetoelastic waves in extended thin films can be found in Refs. [5, 73].

By contrast, the mode formation in a waveguide results in a spatial variation of w̃n

across the waveguide width (along ŷ). This leads to two additional coupling terms between

mechanical and magnetic components in κmel: (i) κ1,4 represents an additional mechanical

body force originating from the mode profile of the magnetization components; and (ii) κ4,1

represents an action from the elastic on the magnetic system and stems from the mode

profile of the longitudinal displacement component. Hence, the confinement also influences

the magnetoelastic coupling itself, since both terms are absent for plane waves in bulk

systems of thin films. Furthermore, the two additional terms depend on the shape of the

mode profiles and thus every elastic or spin wave mode is expected to show a different

magnetoelastic coupling behavior.

The modification of the magnetoelastic coupling by lateral confinement has several con-

sequences. First, in a waveguide, an infinite set of confined elastic and magnetic modes exist

and interact with each other. As a result, numerous crossings of the dispersion relations

exist, which may lead to the formation of magnetoelastic gaps at various frequencies and

wavenumbers. By contrast, only a single magnetoelastic gap is formed in a bulk system, as

shown in Fig. 2a. Moreover, the dispersion relation of the magnetoelastic waves as well as

the magnetoelastic gap for the different modes is hard or even impossible to calculate ana-

lytically. Finally, the two additional components κ4,1 and κ1,4 result in interactions between

the dynamic magnetization and the longitudinal displacement component. This is a specific

effect of the confinement as the longitudinal displacement component is uncoupled from the

magnetic system in bulk media (see Fig. 2a) or thin films [19, 73].

The magnetoelastic interactions between the different mechanical and magnetic compo-

nents expressed by Eq. (17) are illustrated in Fig. 2b. Solid lines represent interaction terms,

which are present both in bulk and laterally confined systems, whereas dotted lines represent

additional interaction terms, which arise due to confinement and lateral mode formation.

The coupling between magnetization and displacement is indicated by red and green lines:

red lines correspond to the Villari effect that describes the change in magnetization due

to strain (displacement gradient), whereas the green lines correspond to magnetostriction,
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which describes the change in displacement due to a change of the magnetization.

Finally, we note that the κmel tensor in Eq. (17) depends only on the B2 coupling constant.

Terms depending on B1 are of second order in magnetization and displacement and can thus

be neglected in the linear regime considered here. This means that shear strains couple

much more strongly to the magnetization than normal strains. This conclusion is analogous

to the results of spin wave excitation by local magnetoelastic transducers [74].

III. NUMERICAL SIMULATIONS OF MAGNETOELASTIC WAVES IN THIN

WAVEGUIDES

A. Numerical approach

As discussed above, it is possible to find analytical solutions of the two coupled dif-

ferential equations of motion (8) and (11) for bulk media and thin films, as they can be

reduced to a homogeneous set of linear equations and therefore to an eigenvalue problem.

However, for thin waveguides, this is not possible, and a set of coupled partial differen-

tial equations remains. Even for simple geometries, such as a linear thin waveguide, it is

therefore more practicable to solve the equations numerically. This is even more the case

for complex geometries (and more complex boundary conditions), which render analytical

solutions impossible.

For this purpose, we have extended the micromagnetic software package mumax3 [75] by

complementing the already implemented LLG equation (8) and magnetic boundary condi-

tions Eq. (10) with Eqs. (5) to (7) and (11) to (14), which allows for the simulation of mag-

netoelastic waves in arbitrary geometries [76]. The extension is based on a finite difference

approach to simultaneously solve the magneto- and elastodynamic differential equations.

Several different solver algorithms have been implemented such as the Euler, Heun, fourth-

order Runge-Kutta (RK4), and leapfrog methods. All methods gave essentially identical

results. However, the RK4 method provided the best performance in most cases and was

therefore used for the simulations below. Furthermore, all mathematical operations have

been implemented on GPUs, which strongly reduces the computation time [77].
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B. Simulation details

The simulated system is schematically represented in Fig. 1 and consists of a thin

nanoscale CoFeB waveguide with a thickness of d = 20 nm, a width of w = 200 nm,

and a length of ` = 10 µm. The mesh cell size was set to 5 × 5 × 20 nm3, which is much

smaller than the wavelength of the studied magnetoelastic waves and of the same order as

the magnetic exchange length of CoFeB (∼ 4.5 nm). Along ẑ, the waveguide was modeled by

a single cell as the dynamic displacement and magnetization components are approximately

uniform over the thickness.

The material parameters of CoFeB were extracted from the literature: a saturation mag-

netization of Ms = 1.2 MA/m [78], an exchange constant of Aex = 18 pJ/m [79], a Gilbert

damping constant of α = 0.004, a mass density of ρ = 8 kg/m3 [80], magnetoelastic coupling

constants of B1 = B2 = −8.8 MJ/m3 [81], as well as the stiffness constants C11 = 283 GPa,

C12 = 166 GPa, and C44 = 58 GPa [81]. The elastic damping was neglected in the simula-

tions and therefore η = 0. We remark that nonzero elastic damping mainly leads to a line

broadening with weak expected effects on the dispersion relations and mode profiles. At

both ends of the waveguide, the elastic and magnetic damping increased exponentially to

α = 0.5 and η = 5× 1013 Ns/m4 over a 1 µm long region to avoid reflection of the waves. A

static external magnetic field of µ0Hext = 5 mT was applied along x̂, i.e. along the waveg-

uide. Together with the demagnetization field due to the shape anisotropy, this was enough

to saturate the magnetization along the waveguide without magnetization nonuniformities

at the ends of the waveguide.

The magnetoelastic waves were magnetically excited by applying an rectangular 20 ps

long magnetic field pulse in the center of the waveguide, as shown in Fig. 1. The excitation

region spanned the full waveguide width and had a length of 100 nm. The amplitude of

the excitation field pulse was µ0hex = 1 mT and the total duration of the simulations was

10 ns. Note that the calculated magnetoelastic gaps were proportional to B2, in keeping

with Eq. (21), indicating that the simulations were carried out in the linear magnetoelastic

coupling regime.
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FIG. 3: Dispersion relations of magnetoelastic waves in a 200 nm wide and 20 nm thick CoFeB

waveguide. (a) Numerically calculated dispersion relations. The inset shows a magnification of

a region near a magnetoelastic gap. (b) Analytically calculated dispersion relations of uncoupled

elastic and spin waves superimposed to the numerically obtained results.

C. Dispersion relations and mode profiles of confined magnetoelastic waves

The dispersion relations of confined magnetoelastic waves in the CoFeB waveguide were

obtained by two-dimensional temporal and spatial (along x̂) Fourier transforms of the dif-

ferent magnetization and displacement components after pulsed excitation and are depicted

in Fig. 3a. To identify the different branches, the dispersion relations of the confined elastic

and magnetic waves without magnetoelastic interaction were also analytically calculated and

are plotted over the numerically obtained magnetoelastic dispersion relations in Fig. 3b.

Here, the green solid lines correspond to the first two CBVSW width modes, given by

ωn =
√
ωmyωmz [82]. By contrast, blue and red solid lines correspond to A- and S-type
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LCLWs, respectively, which are described by the solutions of [69]

tan (bd)

tan (ad)
= −

[
4k2

xab

(k2
x − b2)2

]±1

, (22)

with a2 =
(
ω
v‖

)2

+ k2
x and b2 =

(
ω
v⊥

)2

+ k2
x. Here, the plus sign in the exponent describes S

modes, whereas the minus sign describes A modes. Finally, orange solid lines correspond to

P waves, whose dispersion relations are described by [69]

ω2
m = v⊥

[
k2
x +

(
(m− 1)π

w

)2
]
, (23)

with w the waveguide width and m the mode number.

In Fig. 3, three different regimes can be identified. Far from crossover points, the numer-

ically calculated dispersion relations of confined magnetoelastic waves coincide closely with

the analytical dispersion relations of uncoupled confined elastic and magnetic modes. Small

differences between analytical CBVSW and numerical magnetoelastic dispersion relations

stem rather from the finite waveguide size, in which the wavelength can become comparable

to the waveguide length and the analytical treatment becomes less accurate [46]. In addi-

tion, the data show that a multitude of magnetoelastic gap regions exist when elastic and

magnetic wave dispersions cross. Note that the number of crossings is much larger than

e.g. for bulk systems (see Fig. 2a) or thin films [19, 73] due to the large number of distinct

confined elastic and magnetic modes.

We first discuss regions far from the interaction points, where the dispersion relation

can be considered as quasi-elastic or quasi-magnetic. They occur when the intrinsic elastic

and magnetic resonance frequencies are strongly mismatched for a given wavenumber. As

discussed in more detail below, the energy of quasi-elastic or quasi-magnetic waves is then

almost completely transported in the elastic or magnetic domains, respectively [19, 20].

The mode profiles of confined quasi-magnetic and quasi-elastic waves are shown in Fig. 4

for selected points in the dispersion relations (Fig. 4a). Figures 4b and 4c depict snapshot

images of the magnetization and displacement components of two quasi-magnetic waves

at frequencies of 10.5 GHz and 14.0 GHz, respectively. The magnetization dynamics are

characterized by wave-like my and mz components with a relative phase shift of π. The

mz component is weaker than my due to the ellipticity of the magnetization precession

[19]. At 10.5 GHz, a single amplitude maximum is found across the waveguide, as expected

13
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FIG. 4: Profiles of magnetoelastic wave components in the “quasi” regimes. (a) Dispersion relation

of magnetoelastic waves indicating the frequencies and wavenumbers of the different modes depicted

in (b)–(f). Snapshots of displacement and magnetic component profiles of n1 and n2 quasi-magnetic

waves are shown in (b) and (c) for frequencies of 10.5 and 14.0 GHz (wavenumbers of 17 rad/µm

and 46 rad/µm), respectively. (d), (e), and (f) show snapshots of displacement and magnetic

component profile of A0, S0, and P1 quasi-elastic waves at 7.0 GHz and wavenumbers of 9 rad/µm,

15 rad/µm, and 19 rad/µm, respectively.

for a symmetric first-order width mode (n1). By contrast, the mode at 14.0 GHz shows

two amplitude maxima and is therefore an antisymmetric second-order width mode (n2).

These mode profiles are essentially identical to those of uncoupled CBVSWs obtained for

B1 = B2 = 0, which shows that the presence of the magnetoelastic coupling does not affect

CBVSWs in the quasi-magnetic regime.

Nonetheless, quasi-magnetic waves also possess accompanying elastic waves, as shown in

Figs. 4b and 4c. Note that a symmetric (antisymmetric) spin wave mode leads to symmetric

(antisymmetric) uy and uz components, as well as to an antisymmetric (symmetric) ux

component. By contrast, the uz component is typically very weak. The impact of the

symmetry on the coupling of the different components will be discussed further below.

Figures 4d to 4f represent snapshot images of the magnetization and displacement com-

ponents of three quasi-elastic waves at 7.0 GHz and wavenumbers as shown in Fig. 4a.

The displacement components of the first mode (Fig. 4d) correspond to those of an A-type
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LCLW, whereas the second mode (Fig. 4e) corresponds to an S-type LCLW. Finally, the

third mode (Fig. 4f) can be linked to an elastic P wave. In all cases, the mode displacement

patterns are not significantly affected by the magnetoelastic interaction. The accompanying

CBVSW modes are symmetric (n1) in all types of quasi-elastic waves. Again, this will be

discussed in further detail below.

We now turn to regions in reciprocal space where the dispersion relations of confined

spin waves and elastic waves intersect. In these regions, strong magnetoelastic interactions

lead to an anticrossing behavior and the formation of a gap in the dispersion relation. The

resulting waves are confined magnetoelastic waves and the transported energy oscillates

between the elastic and magnetic domains during propagation [19, 20]. The magnetoelastic

gap ∆f quantifies the interaction strength between the different constituting modes. A

detailed look a Fig. 3a reveals that the magnitude of ∆f strongly varies for the different

anticrossing points, which means that the coupling dependents on elastic and spin wave

modes. This can be related to the symmetry and the spatial profiles of the magnetic and

elastic waves as well as the resulting interaction terms and will be discussed in more detail

in the next section.

The transition between magnetoelastic and quasi-static or quasi-magnetic waves is il-

lustrated in Fig. 5, which shows the ratio of the magnetic (mx, my) and elastic (ux,uy)

components of magnetoelastic waves along an acoustic-like (pink dashed line in Fig. 5a) and

spin-wave-like (red dashed line in Fig. 5a) branch of the dispersion relation. The data in

Fig. 5b show that the relative amplitude of magnetic (elastic) components along the acoustic

(spin-wave) branch of the dispersion relation decreases rapidly away from the magnetoelastic

gap. A strong decrease is already seen a few 100 MHz away from the gap. Further away, the

relative intensity becomes low and the energy is mainly transported in the elastic (magnetic)

domain. In this case, the waves can be considered as quasi-elastic (quasi-magnetic).

Near the anticrossing points, the dispersion relation of magnetoelastic wave differs

strongly from those of uncoupled elastic or magnetic waves, which also affects the group

velocity vg = ∂ω/∂k. As an illustrative example, Fig. 6 represents the calculated group

velocity near the n1–A0 intersection (see Fig. 3a), where the n1 CBVSW and A0 LCLW

modes cross. The blue and green solid lines correspond to uncoupled A-type LCLWs and

CBVSWs, respectively. The CBVSW is characterized by a small negative group velocity, as

typical for spin waves in this geometry with the magnetization parallel to the wavevector
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FIG. 5: Amplitude ratio of the displacement and magnetization components of magnetoelastic

waves along acoustic-like quasi-elastic A0 (red dashed line) and spin-wave-like quasi-magnetic n1

(pink dashed line) branches of the dispersion relation. (a) shows the trajectories in frequency-

wavenumber space. (b) my/uy ratio along the A0 dispersion branch (solid red line), as well as

ux/my ratio along the quasi-magnetic n1 (solid pink line) dispersion branches. Near the magne-

toelastic gap, the ratios peak and decay rapidly further away.

k in the dipolar regime. By contrast, the group velocity of the magnetoelastic wave (red

solid line) is strongly modified near the gap (grey region). At small wavenumbers, the group

velocity approximates the group velocity of the elastic A0 LCLW mode, whereas at higher

wavenumbers, the group velocity converges to the CBVSW group velocity. This shows that

magnetoelastic coupling can strongly increase the group velocity of the waves in a specific

frequency or wavenumber range. Moreover, the data shows that even the sign of the group

velocity can be changed by magnetoelastic interactions far from the magnetoelastic gap,

which indicates that magnetoelastic interactions can be crucial for tuning the properties of

CBVSWs in scaled waveguides.
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FIG. 6: Group velocities as a function of wavenumber for the A0 LCLW (blue solid line), the n1

CBVSW (green solid line) and the coupled n1–A0 magnetoelastic wave mode (red solid line). The

grey area represents the anticrossing region.

We finally discuss the mode profiles of magnetoelastic waves in the magnetoelastic gap

region. Figure 7 shows snapshot images of the magnetization and displacement components

of two magnetolastic waves near the n1–A1 and n1–A0 intersections. For comparison, mode

profiles are also shown for uncoupled LCLWs (left side) and CBVSWs (right side). While

the mode profiles themselves change with frequency and mode number, the data indicate

that they are not qualitatively modified by the magnetoelastic interactions and the overall

displacement and magnetization modes remain similar. However, two profile modifications

can be observed: (i) the magnetoelastic coupling leads to a large amplitude of the uz com-

ponent, which is not present in uncoupled LCLWs; (ii) the ellipticity of the magnetization

precession is reduced, since the relative intensity of the mz component with respect to the

my component is increased, especially for the n1–A0 mode at 10.9 GHz.

D. Symmetry of magnetic and elastic mode profiles and the impact on the mag-

netoelastic coupling

In the previous section, we have discussed dispersion relations and mode profiles of con-

fined magnetoelastic waves in narrow CoFeB waveguides. A closer look at the dispersion

relations in Fig. 3 reveals that the magnitude of the magnetoelastic gap strongly depends
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FIG. 7: Profiles of magnetoelastic wave components in the strongly coupled magnetoelastic regime.

(a) Dispersion relation of magnetoelastic waves indicating the frequencies and wavenumbers of cou-

pled n1 −A0 and n1 −A1 modes. (c) and (f) show snapshots of displacement and magnetization

profiles of n1−A0 and n1−A1 magnetoelastic waves at frequencies of 9.8 and 10.9 GHz (wavenum-

bers of 15 rad/µm and 12 rad/µm), respectively. For comparison, the mode profiles of uncoupled

elastic [(b) and (c)] and magnetic [(d) and (g)] waves are also shown.

on the interacting elastic and magnetic waves. To shed light on the influence of the mode

profiles of uncoupled waves on the magnetoelastic interaction, the system can be decom-

posed into magnetic and elastic subsystems, which interact via the magnetoelastic field hmel

and the magnetoelastic force fmel. The magnetoelastic force fmel originates from the spatial

variation of the magnetization as described by Eq. (A13) in App. A. In the linear regime
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and for a waveguide geometry, it is given by

fmel = B2


∂my

∂y

ikxmy

ikxmz

 . (24)

Hence, fx ∝ ∂my/∂y and fy,z ∝ my,z with my,z of the form in Eq. (16). The mode profiles

are characterized by trigonometric functions and thus derivatives of even mode profiles lead

to odd mode profiles and vice versa. Moreover, a symmetric (antisymmetric) fx component

is complemented by antisymmetric (symmetric) fy and fz components, which share the

symmetry of the dynamic magnetization.

The magnitude of the elastodynamics generated by a mechanical force is proportional to

the overlap integral between the resonant displacement mode profile and the applied force.

Hence, the generation efficiency of the jth elastic mode by the ith spin wave mode is given

by

ξmag→el
i,j ∝

∣∣∣∣∫
V

u∗j · fmel,idV

∣∣∣∣ , (25)

where the asterisk denotes the complex conjugate and V the volume of the system. As

discussed in Sec. II A, A-type LCLWs possess antisymmetric ux and symmetric uy com-

ponents, whereas S-type LCLWs possess symmetric ux and antisymmetric uy components.

Hence, odd magnetic modes with symmetric magnetization profiles entail magnetoelastic

forces that strongly overlap with A-type LCLWs. This is illustrated in Fig. 8, which shows

profiles of the displacement components of an A-type LCLW as well as the magnetoelastic

force fmel generated by an n1 CBVSW. The corresponding profiles for S-type LCLWs are

shown in Fig. 9.

Conversely, the elastodynamics generate a magnetoelastic field that interacts with the

magnetization. According to Eq. (A12), the magnetoelastic field for a waveguide geometry

in the linear regime is given by

hmel = − 1

µ0Ms


2B1ikxux

B2

(
∂ux
∂y

+ ikxuy

)
B2ikxuz

 . (26)

For a waveguide magnetized along x̂, hx has no influence on the magnetization dynamics

as it generates no magnetic torque. By contrast, the hy and hz components exert a torque
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FIG. 8: Graphical explanation of the coupling between the magnetic n1 and elastic A0 modes. The

profiles of the magnetization and magnetoelastic force corresponding to the magnetic n1 mode are

plotted as well as the profiles of the displacement and magnetoelastic field corresponding to the

elastic A0 mode.

on the magnetization and depend on the displacement profiles (see Figs. 8 and 9 for A-type

and S-type LCLWs, respectively). More specifically, the hy component depends on both the

ux and uy components, whereas the hz component only depends on uz. This indicates that

LCLWs and P waves couple differently to the magnetization. Whereas LCLWs generate

a hy component, P waves couple through the hz component. The coupling to LCLWs is

complicated by the two terms in hy, which are proportional to ∂ux/∂y and uy, respectively.

For a symmetric (antisymmetric) ux displacement profile, the derivative is antisymmetric

(symmetric) and therefore shares the symmetry of the uy component (see Sec. II B). Hence,

hy possesses the same symmetry as uy for a LCLW.

The same above symmetry considerations hold thus for the magnetoelastic force excita-

tion of elastodynamics. The excitation efficiency of the ith spin wave mode by the jth elastic

mode is proportional to

ξel→mag
j,i ∝

∣∣∣∣∫
V

m∗
i · hmel,jdV

∣∣∣∣ . (27)

Again, hx does not contribute to the dynamics as the dynamic magnetization along x̂ is

zero. Hence, Eqs. (26) and (27) indicate that A-type LCLWs couple to antisymmetric

(even) CBVSW modes, whereas S-type LCLWs couple to symmetric (odd) CBVSW modes.

By contrast, elastic P waves interact with CBVSW modes with the same symmetry and

mode number as the P waves themselves.

Combining both elastic and magnetic subsystems demonstrates that there are strong
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FIG. 9: Graphical explanation of the coupling between the magnetic n1 and elastic S0 modes. The

profiles of the magnetization and magnetoelastic force corresponding to the magnetic n1 mode are

plotted as well as the profiles of the displacement and magnetoelastic field corresponding to the

elastic S0 mode.

mutual interactions between pairs of elastic and magnetic waves of a given symmetry: (i) S-

type LCLWs and odd CBVSW modes; (ii) A-type LCLWs and even CBVSW modes; as well

as (iii) elastic P wave modes and CBVSW modes with the same symmetry. The symmetry

considerations explain well the numerical results in Fig. 3, where a high magnetoelastic gap

indicates strong interaction.

It is interesting to compare the calculated magnitudes of the magnetoelastic gaps for

waveguides to bulk systems or thin films. The strongest coupling (largest gap) for the

studied CoFeB waveguide is observed for the interaction of the A0 LCLW and n1 CBVSW

modes with a gap of ∆f = 0.9 GHz. By contrast, the magnetoelastic gap for a bulk system

with identical CoFeB material parameters is ∆f = 1.0 GHz (cf. Fig. 2a). Furthermore, the

magnetoelastic gap for higher order modes (both elastic and spin wave) consistently decreases

with increasing mode numbers. These results suggest that the magnetoelastic interaction is

reduced by confinement in waveguide structures and that the bulk gap represents an upper

limit for magnetoelastic gaps in confined systems.

IV. CONCLUSIONS

In conclusion, we have presented a combined analytical and numerical study of confined

magnetoelastic waves in a nanoscale CoFeB waveguide with the static magnetization paral-
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lel to the propagation direction. The equations of motion for magnetoelastic waves in this

waveguide geometry differ from those for bulk or thin film systems due to the lateral nonuni-

formity of the mode profiles of uncoupled elastic and spin waves. As a result, additional

coupling terms appear, and the magnetic system also couples to longitudinal displacement

components, unlike for bulk systems. In addition, the linearized differential equations indi-

cate that only the B2 coupling constant is of importance in the linear regime. This means

that only shear strains affect the coupling whereas the influence of normal strains is much

weaker.

The equations of motions for confined magnetoelastic waves consist of a system of partial

differential equations, which cannot be solved analytically, especially for complex geome-

tries. To gain more insight in the behavior of confined magnetoelastic waves in waveguides,

the micromagnetic solver mumax3 was extended to include elastodynamics as well as the

magnetoelastic coupling. This approach allowed for the calculation of the dispersion rela-

tions of magnetoelastic waves in the CoFeB waveguide. The numerical results demonstrate

that the mode-dependent magnetoelastic coupling can be understood by the mode profile

symmetry of uncoupled confined elastic and magnetic waves in the waveguide. In addition,

it was found that the mode profiles of the elastic and magnetic components are only weakly

affected by the magnetoelastic coupling.

The results further show that the group velocities of confined magnetoelastic waves can be

much larger than those of uncoupled CBVSWs and even be of the opposite sign. Moreover,

the numerical procedure also allowed for the analysis of the eigenstates of the system. The

results indicate a very strong decay of the dynamic magnetization from the magnetoelastic

gap regime towards the quasi-elastic regime. An analogous behavior was found for the

elastic displacement, which decreases rapidly from the magnetoelastic gap towards the quasi-

magnetic regime.

This work opens new perspectives for the usage of magnetoelastic waves for spintronic

applications, in which information is transported via waves in waveguides [41–44]. Consid-

ering an isolated waveguide, approaches to couple mechanical degrees of freedom to spin

waves based on (inverse) magnetostriction are expected to generate magnetoelastic waves

rather than pure spin waves in magnetostrictive waveguides. The above results demonstrate

differences as well as similarities of the magnetoelastic and noninteraction systems that can

provide a better understanding of the underlying wave properties in future magnonic exper-
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iments. Moreover, the numerical approach by extending the mumax3 micromagnetic solver

paves the way for the more detailed studies of confined magnetoelastic waves, including of

their nonlinear dynamics.

Appendix A: Linearized equations of motion for a waveguide geometry

In this appendix, linearized equations of motion are derived for magnetoelastic waves

propagating in thin magnetostrictive waveguides with the static magnetization along their

long axis x̂. Starting with general expressions of effective magnetic fields and mechanical

body forces for a waveguide geometry, the equations of motion are subsequently derived. An

ansatz of a propagating wave along the waveguide leads to the coupled homogeneous system

of partial differential equations in Eq. (A15), which describes the eigenmodes of the system.

The constitutive equations to describe magnetoelasticity have been presented in Sec. II A

in a general form. The magnetization dynamics are described by Eq. (8), which includes the

effective magnetic field in Eq. (9). In this paper, we consider an effective field that consists

of one static and three dynamic contributions: a uniform static Zeeman field H0 along x̂ as

well as dynamic dipolar, exchange, and magnetoelastic fields contributions, which can vary

both in space and time.

The dipolar field is found by solving Maxwell’s equations. At microwave frequencies, the

magnetostatic approximation can be applied since the wavelength of spin waves is typically

much smaller than that of an electromagnetic wave at the same frequency. As a result, the

generation of a magnetic field via the time-varying electric field can be neglected and the

magnetic and electric fields become decoupled [19]. Within the magnetostatic approximation

and in absence of electrical currents, the dipolar field is the solution of

∇ ·Hd = −∇ ·M (A1)

∇×Hd = 0 . (A2)

The solution can be written as [19]

Hd =
1

4π

∫
V ′
D̄(r− r′)M(r′)dV ′ , (A3)

with V ′ the volume of the magnetic material and D̄(r − r′) the tensorial magnetostatic

Green’s function given by

D̄(r− r′) = −∇r∇r′
1

|r− r′|
. (A4)
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The general form of the exchange field can be deduced from Eqs. (4) and (9). It can be

written as

Hex =
2Aex

µ0M2
s

∆M = l2ex∆M ≡ λex∆M , (A5)

with ∆ the Laplace operator and lex the exchange length. For the magnetoelastic field,

Eqs. (5) and (9) result in

Hmel = − 1

µ0

δEmel

δM
= − 2

µ0Ms


B1εxxmx +B2(εxymy + εzxmz)

B1εyymy +B2(εxymx + εyzmz)

B1εzzmz +B2(εzxmx + εyzmy)

 , (A6)

with mi the normalized magnetization components.

The elastodynamics are determined by the mechanical body forces, which are given by

Eq. (12). Here, the total body force is the sum of the magnetoelastic and elastic forces. For

materials with cubic (or higher, including isotropic) symmetry, these forces are given by

Fmel = 2B1


mx

∂mx

∂x

my
∂my

∂y

mz
∂mz

∂z

+B2


mx

(
∂my

∂y
+ ∂mz

∂z

)
+my

∂mx

∂y
+mz

∂mx

∂z

my

(
∂mx

∂x
+ ∂mz

∂z

)
+mx

∂my

∂x
+mz

∂my

∂z

mz

(
∂mx

∂x
+ ∂my

∂y

)
+mx

∂mz

∂x
+my

∂mz

∂y

 (A7)

and

Fel =


C11

∂2ux
∂x2 + C44

(
∂2ux
∂y2 + ∂2ux

∂z2

)
+ (C12 + C44)

(
∂2uy
∂x∂y

+ ∂2uz
∂x∂z

)
C11

∂2uy
∂y2 + C44

(
∂2uy
∂x2 + ∂2uy

∂z2

)
+ (C12 + C44)

(
∂2ux
∂x∂y

+ ∂2uz
∂z∂y

)
C11

∂2uz
∂z2 + C44

(
∂2uz
∂x2 + ∂2uz

∂y2

)
+ (C12 + C44)

(
∂2ux
∂x∂z

+ ∂2uy
∂z∂y

)
 , (A8)

where Cij are the components of the stiffness tensor.

For a waveguide with the static magnetization along the wave propagation direction,

these fields and forces can be further simplified. The geometry is represented in Fig. 1, with

the propagation direction along x̂ and the out-of-plane direction along the ẑ. The ansatz

for a propagating magnetoelastic wave is described in Eq. (15) for a known magnetization

profile and an unknown displacement profile. In this geometry and with this ansatz, the

dynamic dipolar field can then approximated by [83, 84]

hd = −


0

P κ2
n

k2
tot

1− P

M , (A9)
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with

P = 1− 1− e−ktotd

ktotd
, (A10)

k2
tot = k2

x + κ2
n, d the waveguide thickness, and κn = nπ

weff
, with weff the effective waveguide

width. The dynamic exchange field is given by

hex = −λexk
2
totM (A11)

and the dynamic magnetoelastic field becomes

hmel = − 1

µ0Ms


2B1ikxuxmx +B2

((
∂ux
∂y

+ ikxuy

)
my + ikxuzmz

)
2B1

∂uy
∂y
my +B2

((
∂ux
∂y

+ ikxuy

)
mx + ∂uz

∂y
mz

)
B2

(
ikxuzmx + ∂uz

∂y
my

)
 . (A12)

Analogously, the magnetoelastic and elastic body forces respectively can be written as

fmel = 2B1


mx

∂mx

∂x

my
∂my

∂y

0

+B2


mx

∂my

∂y
+my

∂mx

∂y

my
∂mx

∂x
+ ikxmxmy

mz

(
∂mx

∂x
+ ∂my

∂y

)
+ ikxmxmz +my

∂mz

∂y

 (A13)

and

fel =


−C11k

2
xux + C44

∂2ux
∂y2 + (C12 + C44)ikx

∂uy
∂y

C11
∂2uy
∂y2 +−C44k

2
xuy + (C12 + C44)ikx

∂ux
∂y

C44

(
−ikxuz + ∂2uz

∂y2

)
 . (A14)

Substituting these terms in the equations of motion (8) and (11) and neglecting damping

as well as second order terms results in linearized equations of motion for the displacement

and magnetization, which can be written as

−ρω2ux = −C11k
2
xux + C44∂

2
yux + (C12 + C44)ikx∂yuy +

B2

Ms

iκnmy

−ρω2uy = C11∂
2
yuy − C44k

2
xuy + (C12 + C44)ikx∂yux +

B2

Ms

ikxmy

−ρω2uz = −C44

(
k2
xuz − ∂2

yuz
)

+
B2

Ms

ikxmz

iωmy = −ωmzmz − γB2ikxuz

iωmz = ωmymy + γB2 (ikxuy + ∂yux) .

(A15)
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Reordering the terms leads to

v2
‖k

2
x − v2

⊥∂
2
y − ω2 −iv2

�kx∂y 0 iκnB2

ρMs
0

−iv2
�kx∂y v2

⊥k
2
x − v2

‖∂
2
y − ω2 0 ikxB2

ρMs
0

0 0 v2
⊥
(
k2
x − ∂2

y

)
− ω2 0 ikxB2

ρMs

γB2∂y γiB2kx 0 ωmy −iω

0 0 γB2ikx iω ωmz


wn(x, y, t) =



0

0

0

0

0


,

(A16)

with v2
‖ = C11/ρ, v2

⊥ = C44/ρ, v2
� = (C12 + C44)/ρ, Cij the stiffness constants, ∂y = ∂/∂y,

ωmy = ω0 + ωM

(
λexk

2
tot + P

κ2
n

k2
tot

)
, (A17)

ωmz = ω0 + ωM(λexk
2
tot + 1− P ) . (A18)
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