toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A. url  doi
openurl 
  Title Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips Type A1 Journal article
  Year 2018 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume Issue Pages acs.cgd.8b00198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High purity porous ZnO nanopyramids with controllable properties are grown on their tips on

Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen

reaction environment. The system degree of preferential [001] orientation, as well as

nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the

growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact

systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO

nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain

the evolution of nanostructure morphologies as a function of the adopted process conditions. The

results obtained by a thorough chemico-physical characterization enable to get an improved

control over the properties of ZnO nanopyramids grown by this technique. Taken together, they

are of noticeable importance not only for fundamental research on ZnO nanomaterials with

controlled nano-organization, but also to tailor ZnO functionalities in view of various potential

applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429508200073 Publication Date 2018-03-06  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 6 Open Access OpenAccess  
  Notes This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. Approved Most recent IF: 4.055  
  Call Number EMAT @ emat @c:irua:149514 Serial 4904  
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 13 Pages 7287-7300  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425508900064 Publication Date 2018-02-13  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @c:irua:149513 Serial 4905  
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
  Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume 3 Issue 4 Pages 1013-1027  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369600035 Publication Date 2018-04-13  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 56 Open Access OpenAccess  
  Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919  
Permanent link to this record
 

 
Author Sathiya, M.; Jacquet, Q; Doublet, M.L; Karakulina, O.M.; Hadermann, J.; Tarascon, J.-M. pdf  url
doi  openurl
  Title A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal Adv. Energy Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium ion batteries (NIBs) are one of the versatile technologies for lowcost rechargeable batteries. O3-type layered sodium transition metal oxides (NaMO2, M = transition metal ions) are one of the most promising positive electrode materials considering their capacity. However, the use of O3 phases is limited due to their low redox voltage and associated multiple phase transitions which are detrimental for long cycling. Herein, a simple strategy is proposed to successfully combat these issues. It consists of the introduction of a larger, nontransition metal ion Sn4+ in NaMO2 to prepare a series of NaNi0.5Mn0.5−y SnyO2 (y = 0–0.5) compositions with attractive electrochemical performances, namely for y = 0.5, which shows a single-phase transition from O3 ⇔ P3 at the very end of the oxidation process. Na-ion NaNi0.5Sn0.5O2/C coin cells are shown to deliver an average cell voltage of 3.1 V with an excellent capacity retention as compared to an average stepwise voltage of ≈2.8 V and limited capacity retention for the pure NaNi0.5Mn0.5O2 phase. This study potentially shows the way to manipulate the O3 NaMO2 for facilitating their practical use in NIBs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430163100013 Publication Date 2018-01-11  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 21.875 Times cited 28 Open Access OpenAccess  
  Notes M.S. and Q.J. contributed equally to this work. The authors thank Dr. Daniel Alves Dalla Corte and Sujoy Saha for electronic conductivity measurements and Prof. Dominique Larcher for fruitful discussions. Q.J. thanks the ANR “Deli-Redox” for Ph.D. funding. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. TGA analysis by Matthieu Courty, LRCS, Amiens, is greatly acknowledged. J.H. and O.M.K. acknowledge funding from FWO Vlaanderen project G040116N. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:149515 Serial 4907  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 10 Pages 6845-6859  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000429286100009 Publication Date 2018-02-06  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 35 Open Access OpenAccess  
  Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908  
Permanent link to this record
 

 
Author Kumar, N.; Shaw, P.; Razzokov, J.; Yusupov, M.; Attri, P.; Uhm, H.S.; Choi, E.H.; Bogaerts, A. url  doi
openurl 
  Title Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 18 Pages 9887-9894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430451800036 Publication Date 2018-03-08  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 1 Open Access OpenAccess  
  Notes We gratefully acknowledge nancial support from the Research Foundation – Flanders (FWO), grant numbers 12J5617N, 1200216N and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). We are also thankful to the Plasma Bioscience Research Center at Kwangwoon University for providing the core facilities for the experimental work as well as nancial support by the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Founda Approved Most recent IF: 3.108  
  Call Number PLASMANT @ plasmant @c:irua:149564 Serial 4909  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 10 Pages 1700013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413045800010 Publication Date 2017-04-05  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Claes, N.; Solís, D.M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M.; Grzelczak, M. pdf  url
doi  openurl
  Title Reversible Clustering of Gold Nanoparticles under Confinement Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 57 Pages 3183-3186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A limiting factor of solvent-induced nanoparticle self-assembly is the need for constant sample dilution in assembly/disassembly cycles. Changes in the nanoparticle concentration alter the kinetics of the subsequent assembly process, limiting optical signal recovery. Herein, we show that upon confining hydrophobic nanoparticles in permeable silica nanocapsules, the number of nanoparticles participating in cyclic aggregation remains constant despite bulk changes in solution, leading to highly reproducible plasmon band shifts at different solvent compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426759900031 Publication Date 2018-02-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 53 Open Access OpenAccess  
  Notes L.M.L.-M. and M.G. acknowledge funding from the Spanish MINECO (Grant #MAT2013-46101R). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). D.M.S., and J.M.T, acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), and from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:149558UA @ admin @ c:irua:149558 Serial 4911  
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Pinpointing energy losses in CO 2 plasmas – Effect on CO 2 conversion Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 479-499  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for CO2 conversion, but to maximize the energy efficiency, it is important to track the different energy transfers taking place in the plasma. In this paper, we study these mechanisms by a 0D chemical kinetics model, including the vibrational kinetics, for different conditions of reduced electric field, gas temperature and ionization degree, at a pressure of 100 mbar. Our model predicts a maximum conversion and energy efficiency of 32% and 47%, respectively, at conditions that are particularly beneficial for energy efficient CO2 conversion, i.e. a low reduced electric field (10 Td) and a low gas temperature (300 K). We study the effect of the efficiency by which the vibrational energy is used to dissociate CO2, as well as of the activation energy of the reaction CO2+O→CO+O2, to elucidate the theoretical limitations to the energy

efficiency. Our model reveals that these parameters are mainly responsible for the limitations in the energy efficiency. By varying these parameters, we can reach a maximum conversion and energy efficiency of 86%. Finally, we derive an empirical formula to estimate the maximum possible energy efficiency that can be reached under the assumptions of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500054 Publication Date 2018-03-15  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 6 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes We acknowledge financial support from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We would also like to thank Prof. Richard van de Sanden (DIFFER) for the interesting talks. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:149645 Serial 4912  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 13 Pages 8456-8459  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428779700007 Publication Date 2018-03-12  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access OpenAccess  
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916  
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 176 Issue Pages 194-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403992200026 Publication Date 2017-01-09  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149654 Serial 4914  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 10 Pages 104422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428238600006 Publication Date 2018-03-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915  
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C. url  doi
openurl 
  Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
  Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 140 Issue 140 Pages 5755-5763  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431600000016 Publication Date 2018-03-29  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 43 Open Access OpenAccess  
  Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917  
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 115 Pages 3225-3230  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428382400032 Publication Date 2018-03-12  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 187 Open Access OpenAccess  
  Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918  
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M. pdf  url
doi  openurl
  Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 190 Issue Pages 58-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432868800007 Publication Date 2018-04-18  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020  
  Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S. pdf  url
doi  openurl
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 15 Pages 4122-4130  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430538000036 Publication Date 2018-03-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess  
  Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256  
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921  
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 16 Pages 8704-8723  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431151200002 Publication Date 2018-04-26  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 28 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO 2 -Au-CdS photonic crystals Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 47 Issue Pages 266-274  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The slow photon effect, a structural effect of photonic crystal photocatalyst, is very efficient in the enhancement of photocatalytic reactions. However, slow photons in powdered photonic crystal photocatalyst have rarely been discussed because they are usually randomly oriented when the photocatalytic reaction happens in solution under constant stirring. In this work, for the first time we design a gradient ternary TiO2-Au-CdS photonic crystal based on three-dimensionally ordered macroporous (3DOM) TiO2 as skeleton, Au as electron transfer medium and CdS as active material for photocatalytic H2 production under visible-light. As a result, this gradient ternary photocatalyst is favorable to simultaneously enhance light absorption, extend the light responsive region and reduce the recombination rate of the charge carriers. In particular, we found that slow photons at blue-edge exhibit much higher photocatalytic activity than that at red-edge. The photonic crystal photocatalyst with a macropore size of 250 nm exhibits the highest visible-light H2 production rate of 3.50 mmolh⁻¹g⁻¹ due to the slow photon energy at the blue-edge to significantly enhance the incident photons utilization. This work verifies that slow photons at the blue-edge can largely enhance light harvesting and sheds a light on designing the powdered photonic crystal photocatalyst to promote the photocatalytic H2 production via slow photon effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430057000027 Publication Date 2018-02-27  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 33 Open Access OpenAccess  
  Notes B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is financially supported the National KeyR&D Program of China (2016YFA0202602), National Natural Science Foundation of China (U1663225, 51502225), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), Hubei Provincial Natural Science Foundation (2015CFB516), International Science &Technology Cooperation Program of China (2015DFE52870) and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Approved Most recent IF: 12.343  
  Call Number EMAT @ lucian @c:irua:150721 Serial 4924  
Permanent link to this record
 

 
Author Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 47 Issue Pages 8-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430057000002 Publication Date 2018-02-14  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access  
  Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343  
  Call Number EMAT @ lucian @c:irua:150720 Serial 4925  
Permanent link to this record
 

 
Author Şentosun, K. url  openurl
  Title 2D and 3D characterization of plasmonic and porous nanoparticles using transmission electron microscopy Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerp Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149802 Serial 4926  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
  Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 12 Issue 1 Pages 145-154  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425156500017 Publication Date 2017-09-30  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.712  
  Call Number UA @ lucian @ c:irua:149233 Serial 4927  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J. pdf  doi
openurl 
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 825-834  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400107 Publication Date 2017-12-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access  
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149284 Serial 4928  
Permanent link to this record
 

 
Author Geenen, F.A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C. pdf  url
doi  openurl
  Title Controlling the formation and stability of ultra-thin nickel silicides : an alloying strategy for preventing agglomeration Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 123 Pages 075303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t(c) = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 degrees C, thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of “thickness gradients,” which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness t(c). The results are discussed in the framework of classical nucleation theory. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000425807400018 Publication Date 2018-02-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 23 Open Access OpenAccess  
  Notes ; The authors acknowledge the FWO Vlaanderen, the Hercules Foundation, and BOF-UGent (GOA 01G01513) for providing financial support for this work. This research used resources of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:149912UA @ admin @ c:irua:149912 Serial 4929  
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Milošević, M.V. url  doi
openurl 
  Title Diversified vortex phase diagram for a rotating trapped two-band Fermi gas in the BCS-BEC crossover Type A1 Journal article
  Year 2018 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 20 Issue 20 Pages 025010  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature T-c. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000426002900001 Publication Date 2018-02-05  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 6 Open Access  
  Notes ; We thank C A R Sa de Melo and N Verhelst for valuable discussions. This work has been supported by the Research Foundation-Flanders (FWO-Vl), project nrs. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, G.0666.16N, by the Scientific Research Network of the Flemish Research Foundation, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.786  
  Call Number UA @ lucian @ c:irua:149909UA @ admin @ c:irua:149909 Serial 4930  
Permanent link to this record
 

 
Author Wu, J.; Zhang, L.; Xin, X.; Zhang, Y.; Wang, H.; Sun, A.; Cheng, Y.; Chen, X.; Xu, G. url  doi
openurl 
  Title Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate Type A1 Journal article
  Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 10 Issue 7 Pages 6785-6792  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426143900081 Publication Date 2018-02-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 7 Open Access OpenAccess  
  Notes ; The work was supported by the National Natural Science Foundation of China (Grant 21573267, 11674335), the Youth Innovation Promotion Association CAS (2013196), and the Program for Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005). ; Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:149911 Serial 4931  
Permanent link to this record
 

 
Author Jelić, Ž. url  openurl
  Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Liège Editor  
  Language Wos Publication Date  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149394 Serial 4932  
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N. url  doi
openurl 
  Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 2 Pages P66-P72  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000425215200010 Publication Date 2018-01-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 5 Open Access OpenAccess  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:149326 Serial 4933  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: