|
Record |
Links |
|
Author |
Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. |
|
|
Title |
Tuning a circular p-n junction in graphene from quantum confinement to optical guiding |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Nature nanotechnology |
Abbreviated Journal |
Nat Nanotechnol |
|
|
Volume |
12 |
Issue |
11 |
Pages |
1045-+ |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT) |
|
|
Abstract |
<script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.')); |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000414531800011 |
Publication Date |
2017-09-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-3387; 1748-3395 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
38.986 |
Times cited |
65 |
Open Access |
|
|
|
Notes |
; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; |
Approved |
Most recent IF: 38.986 |
|
|
Call Number |
UA @ lucian @ c:irua:147406 |
Serial |
4902 |
|
Permanent link to this record |