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Abstract
We report the equilibrium vortex phase diagramof a rotating two-band Fermi gas confined to a
cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature
effective field theory (Klimin et al 2016Phys. Rev. A 94 023620). A non-monotonic resonant
dependence of the free energy as a function of the temperature and the rotation frequency is revealed
for a two-band superfluid.We particularly focus on novel features that appear as a result of interband
interactions and can be experimentally resolved. The resonant dependence of the free energy is directly
manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex
states are found. The study embraces the BCS–BEC crossover regime and the entire temperature range
below the critical temperatureTc. Significantly different behavior of vortexmatter as a function of the
interband coupling is revealed in the BCS andBEC regimes.

1. Introduction

Quantumgases constitute a remarkable testing ground for the theory of the superfluid state and its various
macroscopic excitations, such as vortices and solitons. Vortices are stabilized in an atomic gas by rotating the gas,
just as vortices in superconductors can be stabilized by amagnetic field: the Coriolis force acts on a particle in a
rotating frame of reference in the sameway as the Lorentz force acts on a charged particle in amagnetic field [1].
Consequently, vortices andmany-vortex states in rotating trapped superfluid Fermi gases have become a subject
of an intense experimental [2–5] and theoretical [6–15] research during last two decades.

Since recently, this line of research has become of particular interest inmulticomponent quantum systems.
For example,multiband superconductors, such asMgB2, were intensely studied both experimentally and
theoretically over the last decade.However, interaction parameters can hardly be tuned in solid-state systems.
Contrary to superconductors, interactions in ultracold Fermi gases can be controlled, and a broad range of
regimes fromBCS to BEC can be realized. This stimulated a theoretical interest tomultiband quantum gases in
anticipation of future experiments [16–18]. Recently, a two-band Fermi superfluid has been successfully created
in an ultracold gas of 173Yb atoms [19, 20] using the orbital Feshbach resonance predicted in [21] (see also [22]).
Thismakes a theoretical investigation of different phenomena inmultiband Fermi gases (vortices, solitons, etc)
timely and important. Vortices inmultiband superconducting and superfluid systems are particularly
interesting due to a rich variety of observable phenomena, such as fractional vortex states that occurwhen
winding numbers in different band-components of the condensate are not equal. Fractional vortices in
multiband superconductors have been investigated fairly thoroughly [23–25]. Concerning the BCS–BEC
crossover, therewas awidely spread opinion during a long time that superconductors cannot be realized away
from the BCS regime.However recently the BCS–BEC crossover has been successfully reached in
superconducting FeSe [26].Moreover, vortexmatter inmultiband superconductors in the BCS-BEC crossover

OPEN ACCESS

RECEIVED

6 July 2017

REVISED

25 January 2018

ACCEPTED FOR PUBLICATION

5 February 2018

PUBLISHED

22 February 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aaaceb
https://orcid.org/0000-0002-7918-3772
https://orcid.org/0000-0002-7918-3772
mailto:milorad.milosevic@uantwerpen.be
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaaceb&domain=pdf&date_stamp=2018-02-22
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aaaceb&domain=pdf&date_stamp=2018-02-22
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


regime has also attractedmuch attention [27]. Vortex states inmultiband quantum atomic gases have been
studied to a far lesser extent.

Therefore, in this work, the subject of our interest are fractional vortices in two-band Fermi gases of
ultracold atoms in the BCS–BEC crossover. Although there is some similarity between superconductors and
condensed atomic Fermi gases, the analogy is not complete. For one difference, cold gases certainly require an
independent treatment by specificmethods suitable in the entire BCS–BEC crossover range.

Recently, the stability of different vortex states in a rotating trapped one-band Fermi gas has been
theoretically studied in [14, 15] using, respectively, the coarse-grained Bogoliubov–deGennes (BdG) theory [28]
(first applied to atomic Fermi gases in [29]) and the recently developedfinite-temperature effective field theory
(EFT) [30, 31]. Thefinite-temperature EFT results agree with the results of the BdG theory and experiment for
differentmanifestations: collective excitations and vortices [15, 31], and solitons [32, 33]. Thefinite-
temperature EFT is aimed tofind analytic results whenever possible. For example, for dark solitons in condensed
Fermi gases, the finite-temperature EFT provides exact analytic solutions of the soliton equation ofmotion [32],
while the BdG equations for the same problemhave been solved only numerically.

Besides our studies, there are severalmodifications of the EFT of condensed Fermi gases described in
different publications and related to different ranges of external parameters (e.g., temperature and scattering
length). They are developed either for the close vicinity to the critical temperature [34] or for the caseT=0 (e.g.,
[35–37]). As analyzed in [31], the present finite-temperature EFT agrees with precedingworks in all these
limiting cases.

At present, experimental data on vortices in two-band superfluid atomic Fermi gases are still lacking, in spite
of the expected new physics stemming from the interband interactions in such a system.We report the first such
theoretical study, to pave theway for future experiments with two- andmultiband atomic Fermi superfluids.
This work builds on the research performed in [15], with an extension to two-band fermionic systems. Themain
goal of the present investigation is to reveal novel vortex phenomenawhich can appear in a two-band Fermi gas,
that are arguably easy to verify experimentally.More specifically, we study the evolution of equilibrium vortex
states when varying the temperature and the interband coupling strength, as well as the frequency of rotation, to
identify regions of stability for fractional vortices, clusters of non-composite vortices, andmultivortex states.
Two variants are considered: (1) the ‘canonical ensemble’ case when numbers of particles in each band arefixed
separately, and (2) the ‘grand canonical ensemble’ case, when the numbers of particles are determined from the
common chemical potential.

The paper is organized as follows. In section 2, the usedmethod and approximations are described. In
section 3, the parameters of state and the vortex phase diagrams are analyzed in detail. Our results are
summarized in section 4.

2.Method

Weapply the finite-temperature EFT developed in [31] to vortices andmany-vortex states in a two-band Fermi
gaswith s-wave pairing. The fermion system is confined to a cylindrically symmetric parabolic trapping
potential with confinement frequencyω0. This setup can be relevant for ultracold fermionic atoms in elongated
traps, as, e.g., in [2–5]. The stabilization of vortices is achieved by rotating the fermionic systemwith an angular
frequencyω. The rotation is incorporated in the EFT in the samemanner as in [15].

The details of the finite-temperature EFTwith a discussion of the approximations used and the range of
applicability of themethod are readily available in [31]. The incorporation of rotation in the EFT and the
extension of the formalism to a two-band rotating Fermi gas have been already described in [15]. Consequently,
in this sectionwe reproduce the formalismonly briefly, because detailed derivations, discussions and proofs can
be found in [15, 31].

The treatment of rotating trapped Fermi gases is performedwithin the path-integral formalism in the space
of anticommuting fermion fields, see, e.g., [34, 35]. Throughout the treatment, we use units such that ÿ=1, the
fermionmass for a ‘strong’ bandm1=1/2, and the Fermi energy for a non-interacting fermion system EF=1.
Note that there is a difference between the Fermi energy for a Fermi gas in bulk and in a trapping potential. In the
present systemof units, EF is the global rather than a local parameter, i.e., EF is not coordinate-dependent. For
example, the Fermi energy for a gas trapped to a 3Dparabolic confinement potential with confinement
frequenciesωx,ωy,ωz is E N3F x y z

1 3 w w w» ( ) whenN is sufficiently large. The parameter having the

dimensionality of the Fermiwave vector is formally determined as k mE2F F º .
The thermodynamic quantities are calculated on the basis of the partition function,

, e . 1S ò y yµ -[ ¯ ] ( )
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Here, S is the action functional for a two-band fermionic system [31]:
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where k T T1 ,Bb = ( ) is the temperature, kB is the Boltzmann constant, and S0, j is the free-fermion action for
the jth band,
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with the one-particleHamiltonian in the rotating frame of reference, which allows for independent populations
in different bands and different spinsσ, given by
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where A rj( ) is the rotationalvector potential mA r rj j w= ´( ) [ ], and ezw wº is the rotation vector. The
fermion–fermion interactionU r, t( ) for a two-band system assumes both intraband and interband contact
interactions,
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with intraband coupling constants gjj( j= 1, 2) and interband coupling constants g a
12
( ) and g p

12
( ) which describe

interband contact interactions of density fluctuationswith antiparallel and parallel spins, respectively.
Thefinite-temperature EFT action for a one- and two-band systemof interacting fermionswith s-wave

pairing has been formulated in [31]. Here, details of the derivation of the effective field action are given in the
appendix. After theHubbard–Stratonovich transformation using bosonic pairfieldsΨ1,Ψ2, the integration over
fermion fields and the gradient expansion (assuming slow variation of the pairfield in time and space), the
resulting action functional for a two-band system S b

EFT
2( ) takes the form:
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where γ is the strength of the interband coupling expressed through the interband scattering lengths,
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The one-band effective field action S j
EFT
( ) for the jth band is determined by:
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The coordinate-dependent thermodynamic potential s j j,
2W Y(∣ ∣ ) and the coefficients of the gradient expansion

given in [15, 31] and explained in detail in the appendix. The rotation is incorporated in the effective action as
described in [15]. It leads to the appearance of the linear gradient term D Ai j j j j j jr rYY - YY· ( ¯ ¯ ) in the effective
bosonic action, which vanishes in the absence of rotation. As shown in [15], the obtained extension of the
effective bosonic action to a rotating fermion system is in agreementwith results of the functional
renormalization group theory [38, 39].

3. Confined vortex states in a two-band Fermi gas

3.1. Conditions for vortex stability
One of themost interesting consequences of rotation in a two-band Fermi system is the formation of fractional
vortices. The fractional vortices can be energetically favorable only at rather small interband coupling strength,
because the Josephson coupling energy (the last term in (6)) penalizes phase differences between the condensates
in different bands.However, two-band Fermi gases with vanishingly small (and even zero) interband coupling
can be prepared in practice—for example, when the two condensates are spatially separated. Therefore in the

3
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present workwe study vortices in two-band Fermi gases with a particular attention to the range of small
Josephson coupling strengths.

The stability of different vortex states is analyzed using the free energy F b2( ) , which is obtained from the
effective action (8) assuming pair fields to be stationary (time-independent),

F F
m m

rd
4

, 9b
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1 2
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where F j( ) is the contribution to the free energy from the jth band-component of the condensate:
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The pair field rjY ( ) for a particular vortex state with n vortices in the jth band-component of the condensate
is described here by the variational function, which is a product of the background pair field rjD ( ) and the vortex
factor:

a r ar r r, , e , 11j j j j j
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where a rj,n ( ) and rj,qn ( ) are, respectively, the relative amplitude and the phase for the νth vortex in the jth band
component of the condensate. The phase for a vortex rj,qn ( ) coincideswith the polar angle calculated in the
frame of reference related to the vortex center. The vortex amplitudes in the present work, as well as in [15], are
modeled by variational functions,
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The parameter ξj has the sense of the vortex healing length. The healing lengths and the positions of vortex
centers rν,j are variational parameters for vortex states. Their optimal values are found by theminimization of
the free energy (9) after substituting the variational function (11) there. The conditions of stability for vortex
states are determined here, as in [15], by considering the difference between the free energies with andwithout
vortices:

F F F rr . 13j jd º Y - D[{ ( )}] [{ ( )}] ( )

The parametric ranges of existence for vortex configurations are determined by comparison of free energies
corresponding to different vortex states, including also the statewithout vortices, where rrj jY = D( ) ( ), and
choosing a vortex state with the lowest free energy.

The background distribution of the pair field rjD ( )without vortices is determined using normalization
conditions for the fermion density.We consider here two possible constraints of the numbers of fermions in two
bands. Under thefirst condition, total numbers of particles in each band are fixed. The alternative condition is
the ‘grand canonical’ setting, when the populations in the two bands have been relaxed to values determined
through equal chemical potentials in the two band-components of the condensate. At present, the ensemble
withfixed numbers of particles seems to bemore easily achieved in experiments with atomic Fermi gases than
the grand canonical ensemblewith equal chemical potentials. However, it is interesting to consider themboth,
in order to understand the influence of these constraints on vortex states.

In order tomake clear the difference between the two aforesaid ensembles, we describe the normalization
conditions for trapped two-band Fermi condensates in detail. Sincewe consider systemswhere the scale of the
confinement potential is sufficiently largewith respect to the vortex size, the normalization conditions are
appliedwithin the local density approximation through coordinate-dependent thermodynamic parameters. For
a one-band Fermi gas trapped in a cylindrically symmetric confinement potential, the normalization condition
in the local density approximation reads,

n r r r r N2 , , d , 14
0
òp b m D =

¥
( ( ) ( )) ( )

where n r r, ,b m D( ( ) ( )) is the fermion density depending on the radial variable r x y2 2= + through the
background pair field rD( ) (we neglect here the feedback of vortices to the density normalization) and the
chemical potential, according to (4),

r
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The coordinate-dependent gap parameter is determined through the local gap equation [31],
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consistently with the normalization condition (14). Here, E r rk
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m= - + D( )( ) ( ) is the Bogoliubov

excitation energy, r 2m m m= + ( ) ( ) and 2z m m= - ( ) are, respectively, the averaged chemical potential
and the difference of chemical potentials for the ‘spin up’ and ‘spin down’ species.

The fermion density n entering normalization condition (14) can be calculated in different approximations,
e.g., themean-field orGaussian pair fluctuation approximation, as in [40]. In the present work, we restrict the
normalization of the density by themean-field approximation, because account offluctuations in the
background parameters can lead only to a rescaling of phase diagrams, without changing their shape and
sequences of areas of stability for vortex states. It should be noted that the gap equation has the same form (15)
with andwithout account offluctuations [35, 40].

For a two-band system, coordinate-dependent parameters of state are determined from twonormalization
conditions,
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togetherwith the coupled set of two gap equations for the two-band Fermi gas given by equation (28) of [31],
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The difference between two aforesaid ensembles consists in the following. Under the first condition,
numbers of particlesNj in (16) arefixed. The chemical potentials rjm ( ) are determined from these two equations,
taking into account (17)which in fact depends on bothμ1 andμ2. In the ‘grand canonical’ setting,N1 andN2 are
notfixed separately. Instead, we apply (17)with the normalization condition for the total number of particles
N≡N1+N2,

n r r r r N2 , , d , 18
j

j j
1,2 0
òåp b m D =

=

¥
( ( ) ( )) ( )

where rm ( ) is the same for both band-components of the condensate. Consequences of this difference, in
particular the depletion of the ‘weak’ band at low temperatures for the ‘grand canonical’ setting, were considered
in [31].

The free energy and the normalization integrals are calculated including both the superfluid core and the
normal phase which are spatially separated. It is assumed here that they both rotate with the frequency imposed
by a stirring field. A treatment beyond this approximationmay lead only to amarginal correction to the obtained
results without changing the picture, becausewe consider vortices near the trap center, i.e., far from the
boundary between the superfluid and normal phases. The same assumption has been substantiated and applied
in [14, 15].

The term ‘fractional vortex’means thatwinding numbers for vortex states in two bands are not the same. In
order to classify different vortex configurations, we label the ‘strong’ band (with a larger inverse scattering length
1/as) by index 1, and the ‘weak’ band by index 2. Following [23]we use the notation n n n, , c1 2( ) for the
classification of vortex states, where n1 and n2 are, respectively, thewinding numbers in the first and second
band-components of the condensate, and ncis the number of composite vortices, i.e., integer vortices pinned to
each other in two bands. Correspondingly, the clouds in two band-components of the condensate classified by
the set of indices n n n, , c1 2( ) look as ormultivortex configurations corresponding to a cluster of n1 vortices in the
first band and n2 vortices in the second band, out of which nc vortices coincide.

In the present treatment, we do not consider superfluids corresponding to two bands rotating relatively to
each other, because the rotation frequency is determined by a common stirring field. Therefore the vortex
clusters in different bands are in rest with respect to each other, forming a stable configuration. The relative
positions between vortices in two bands (both radial and angular) are determinedminimizing the free energy
with respect to positions of all vortices.

Several resulting vortex clouds are exemplified infigure 1. Analogous clouds for a two-band superconductor
can be found, e.g., in [23]. Thefigure shows the spatial distribution of the amplitude of the pair field rjY∣ ( )∣ in the
‘strong’ and ‘weak’ band-components of the condensate for several stable vortex states, both integer and
fractional ones. The third column offigure 1 shows the spatial behavior of the total particle density n=n1+n2.
The particle density is necessarilymodulated in vortices due to the variation of the gap parameters. The
modulation of the particle density is experimentally observable. As can be seen from figure 1, fractional vortex

5

New J. Phys. 20 (2018) 025010 SNKlimin et al



configurations can be experimentally resolved from integer vortex states due to a difference between vortex
patterns in the two bands. In the present work, we assume that the size of the trap ismuch larger than the healing
lengths of vortices in both band-components. This favors non-composite vortices, except for the case when they
are positioned in the center of the trap. Therefore, for the vortex states shown infigure 1, only the integer
1, 1, 1( ) state is composite, and the other states are non-composite. It is worth noting however that the
distinction between composite and non-composite vortices depends on convention. The interband coupling
results in an attraction between vortices in different band-components of the condensate. This attraction tends
tominimize a non-compensated phase shift between the pairfields of the two band-components. It leads to the

Figure 1.Absolute value of the pairfield for several vortex states in thefirst and second band-components of the condensate in a
rotating Fermi gaswith the parameters k a k a T T1 0, 1 0.5, 0.01F s F s F1, 2,= = - =( ) ( ) . The third column shows the total particle
density n=n1+n2. The values of the rotation frequency and the interband coupling strength are explicitly given in thefigure. The
coordinates aremeasured in units of the inverse to the Fermiwave number, 1/kF.
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binding of vortices in two bands.When the distance between vortex cores in the two band-components of the
condensate is of the same order as the healing lengths (or less), itmay become difficult to resolve experimentally.
In experiments, such bound vortices can be observed as elongated. In this case, they are non-composite formally,
but close to composite vortices from the experimental point of view.

3.2. Vortex phase diagrams
3.2.1. Phase diagrams in variables ,g w( )
Analyzing the areas of stability for vortex configurations, we consider first the evolution of the vortex states as a
function of the interband coupling strength γ.When the interband coupling is sufficiently strong, only integer
vortex states can survive, because the Josephson coupling contribution to the free energy is positive and
proportional to the relative phase difference for the two band-components of the condensate. Therefore we are
particularly focused on the range of relatively small γ, where stable fractional vortices can exist.

In order to study this evolution of stable vortex configurationwhen varying γ, we plot infigures 2 and 3 the
vortex phase diagrams in the variable space log ,10g w( ). The logarithmic scale for γ is chosen because of our
particular attention to the range of weak interband couplings to track the transitions between fractional and
integer vortices. Figure 2 shows the areas of stability for vortex states assuming numbers of particles per unit
length in each band fixed,N1=N2=500. Figure 3 represents the analogous picture for the grand canonical
ensemble of fermionswith the total number of particles per unit lengthN=103.

Infigures 2 and 3, when varying γ atfixed temperatures, a rich variety of stable vortex configurations, both
integer and fractional, can be seen in the vortex phase diagrams. The sequence of stable vortex configurations
with an increasing interband coupling is physically quite transparent: fractional vortices turn to integer ones at a
critical coupling strengthwhich only slightly depends on the rotation frequency. On the contrary, when the
‘weak’ band is in the BCS regime, the dependence of the critical interband coupling strength on the rotation
frequency is rather complicated. As one can see fromfigures 2 and 3 (especially clearly in panels (e, f ), but also in
other phase diagrams), each vortex configuration except 3, 3, 0( )may appear twice, at low and high-rotation
frequencies. This trend in the sequences of the vortex stability areas for ,g w( ) phase diagrams is related to the
fact that each ‘phaseboundary’ in the T , w( ) phase diagrams exhibits a bend-over dependence onω. This bend-
over dependence ismanifested infigures 2 and 3 through an appearance of two distinct areas for given vortex
configurations (except when the upper-frequency areas lie in close vicinity to themaximal rotation frequency

Tmaxw ( ) and therefore are not seen). Note that the range of γ for which fractional vortices can exist is rather

Figure 2.Vortex phase diagrams in the log ,10g w( ) variable space for a two-band rotating Fermi gas with the numbers of fermions per
unit lengthN1=N2=500.
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small, and that the vortex phase diagrams infigures 2 and 3 are plotted in logarithmic scale for γ. This explains
the result that the phase boundaries weakly depend on γ in this range.

In the case of sufficiently weak interband coupling, the fractional vortices are energeticallymore favorable
with respect to integer vortices, exceptmaybe the low-temperature and high-rotation-frequency areas, where
the configuration 3, 3, 0( ) and higher (in our notations, this denotes three integer non-composite vortices) is
energeticallymore favorable with respect to fractional vortex states. This result does not ensure however that the
three-vortex integer configuration cannot be suppressed by a fractional configuration of a higher order if wewill
account formore vortices.When the interband coupling is a bit stronger, both fractional and integer vortex
configurations can survive. For a still stronger interband coupling, we can observe only integer vortices and
vortex systems. As a rule, stable fractional vortex configurations appear in such away that vortices survive in the
‘strong’ band, when the amplitude of the order parameter in the ‘weak’ band becomes sufficiently small.

3.2.2. Phase diagrams in variables T , w( )
Next, we analyze the vortex phase diagrams in the variables T , w( )which show areas of stability for different
vortex states in a two-band rotating Fermi gaswith several inverse scattering lengths and different interband
coupling strengths. Figure 4 shows the vortex phase diagrams for the ensemble with the fixed numbers of
particles per unit length (along the z direction)N1=N2=500. Infigure 5, the same fermionic systemwith
N≡N1+N2=1000 is considered for the thermalized state with a common chemical potential. In these
figures, panels (a)–(c) show vortex states at a rather small interband coupling strength γ=10−4. The panels (d)–
(f) represent the vortex phase diagrams for a larger (but still rather small) interband coupling γ=10−2. The left-
hand panels (a) and (d) offigures 4 and 5 correspond to the casewhen the ‘strong’ band is at unitarity, and ‘weak’
band is in the BCS regime—with, respectively, 1/as,1=0 and 1/as,2=−0.5. The central panels (b) and (e)
show the case of stronger couplings, with, 1/as,1=0.5 for the ‘strong’ band and 1/as,2=0 for the ‘weak’ band.
Finally, the right-hand panels (c) and (f) show vortex phase diagrams for 1/as,1=1 for the ‘strong’ band and
1/as,2=0 for the ‘weak’ band, i.e., when the ‘strong’ band is in the BEC regime.

As can be seen from figures 2 and 3, the value γ=10−4 represents the specific interesting case, because it lies
in a rather narrow range of γwhere fractional vortices turn to integer vortices. The other value, γ=10−2, is
chosen to showphase diagramswhere only integer vortex configurations survive. Higher interband coupling
strengths do not lead to substantial qualitative changes of phase diagrams, because fractional vortices can be
energetically favorable only at weak interband coupling. This explains the choice of parametersmade for
figures 4 and 5.

Figure 3.Vortex phase diagrams in the log ,10g w( ) variable space for a two-band rotating Fermi gas with the number of fermions per
unit lengthN=103, in an ensemble whereN1 andN2 are fixed by a common chemical potential.
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Figure 4.Vortex phase diagrams in the T , w( ) variable space for a two-band rotating Fermi gaswith different inverse scattering
lengths and interband coupling strengths indicated in thefigure, for the number of fermions per unit lengthN=103

(N1=N2=500).

Figure 5.Vortex phase diagrams in the T , w( ) variable space for a two-band rotating Fermi gaswith different inverse scattering
lengths and interband coupling strengths indicated in thefigure, for the number of fermions per unit lengthN=N1+N2=103 in
the ‘grand canonical’ casewhenN1 andN2 are determined by a common chemical potential.
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In the sameway as for a one-band Fermi gas, the vortex phase diagrams are restricted to the area of the
superfluid state, i.e., to temperaturesT below the critical temperatureTc w( ). The critical temperature is
frequency-dependent and tends to zerowhenω tends toω0. The value γ=10−4 for aweak interband coupling is
chosen here because, on the one hand, it is sufficiently small so that the vortex phase diagrams can contain
fractional vortex states, and, on the other hand, this value, although being small, is sufficient to yield rich stability
areas for both fractional and integer vortex states. The other set of phase diagrams has been calculated for a
relatively small but larger interband coupling strength γ=10−2, at which only integer vortex states survive.
Similarly to vortex phase diagrams for a one-band Fermi gas [12, 14, 15], the boundaries of the areas of stability
for different vortex configurations exhibit a non-monotonic dependence on the rotation frequency and a
reentrant behavior as a function of the temperature. The explanation of this bend-over behavior of critical
rotation frequencies is the same for two-band and one-band Fermi gases. As discussed in [12, 15], it is related to a
decrease of the radius of the superfluid core for a trapped Fermi gaswhen the rotation frequency becomes close
to the confinement frequency. The lower critical rotation frequency corresponds to the ordinary threshold for
vortex formation, similarly to that in a superconductor in an externalmagnetic field, when increasing the field
strength. The other (upper) critical rotation frequency appears when the radius of the superfluid core is
comparable with the healing length.

When comparing the vortex phase diagrams for ensembles with fixed numbers of particles andwith the
common chemical potential to each other, one can see that the ‘grand canonical’ ensemble ismore favorable for
fractional vortices than that withfixed numbers of particles. This difference is explained by the effect of a partial
depletion of a ‘weak’ band. As found in [31], this depletion is a feedback of the gap parameter to the relative band
populations. As a result, the areas of stability for fractional vortices in the case of a common chemical potential
(figure 5) are wider than in the case offixed equal numbers of particles in each band.Moreover, as can be seen
comparing figures 4(c) and 5(c), in the BEC regime this depletion can lead to a complete vanishing of integer
vortex phases.

Distinctmanifestations of the interband coupling in a two-band Fermi gas are related to the temperatureTc,2
equal to the critical temperature of the superfluid phase transition in the ‘weak’ band-condensate component in
the absence of the interband coupling. First, wefind a kink of the ‘phase boundaries’ between different vortex
configurations infigures 4 and 5, positioned atTc,2. This feature is absent in the one-band system considered in
[12, 14, 33]. It is directly related to a non-monotonic, resonant peak-shape temperature dependence of the
vortex healing length for the ‘weak’ band ξ2, analyzed in [31, 41, 42] and termed ‘hidden criticality’ in [42].
Although there is no true criticality atT≈Tc,2,many parameters of state demonstrate non-monotonic behavior
at this temperature. The peak position for ξ2 lies at the critical temperature for the ‘weak’ band in the absence of
the interband coupling, so that it is afingerprint of theweak-band criticality, which is lost in a two-band system.
Infigure 6, the evolution of this ‘hidden criticality’ point is shown as a function of T , w( ) for the inverse
scattering lengths k a k a1 0, 1 0.5F s F s,1 ,2= = -( ) ( ) , the numbers of fermions per unit length
N1=N2=500, and the interband coupling strength γ=10−2. The peak temperature of the healing length 2x
diminishes when the rotation frequency rises, with an increasing peakmagnitude and a decreasingwidth.

Figure 6.Healing length for a ‘weak’ band ξ2 in a two-band rotating Fermi gaswith the inverse scattering lengths
k a k a1 0, 1 0.5F s F s,1 ,2= = -( ) ( ) , the numbers of fermions per unit lengthN1=N2=500, and the interband coupling strength

γ=10−2 as a function of the temperature and the rotation frequency.
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The seemingly unusual sequence of phases in the phase diagrams for weak interband coupling (upper panels
offigures 4 and 5) can be transparently understood using simple physical reasoning. First, let us temporarily
‘turn off’ the interband interaction and consider each band-component independently as a one-band system.
For a one-band trapped Fermi gas, this behaviorwas independently analyzed in [12, 14, 15], using different
methods: BdG theory and EFT. These two theories completely agree in predictions on the behavior of vortex
states.

The evolution of the number of vortices in a given band-condensate, as a function of the rotation rate at a
fixed temperature is non-monotonic. The healing length, which is a parameter characterizing the vortex size, is
an increasing function of the rotation frequency. As established in [12, 14, 15], the number of vortices increases
when rotation frequency increases as long as the vortex size remains substantially smaller than the size of the
superfluid core.When the rotation frequency is further increased, an upper critical rotation frequency appears
such that the vortex state turns back to the superfluid state for higher rotation frequencies, because the radius of
the superfluid state reduces when the rotation frequency becomes close to themaximal rotation frequency at
which superfluidity vanishes. It was also found in [15] that the boundary between the states with different
numbers of vortices behaves similarly to the critical rotation frequency for a single vortex. For example, the
lower critical rotation frequency for a vortex pair is higher than the lower critical rotation frequency for a single
vortex. On the contrary, the upper critical rotation frequency for a vortex pair is lower than the upper critical
rotation frequency for a single vortex.

Regarding the variation of the number of vortices as a function of temperature at afinite rotation rate
(sufficient for stable vortices atT = 0), the number of vorticesmonotonically decreases with increasing
temperature, because the free energy of the systemwith vortices becomes higher when the vortex size increases
(as an increasing function of temperature). For a two-band systemwithout interband coupling, similarly to the
one-band system, the number of vortices in each band-component of the condensatemust be amonotonically
decreasing function of temperature. Therefore vortices in the ‘weak’ band in the absence of the interband
coupling cannot exist above the critical temperatureTc,2<Tc,1, while vortices in the ‘strong’ band can survive
aboveTc,2 and vanish at higher temperatures close toTc,1, as can be seen from figures 4 and 5.

Themonotonic dependence of vortex numbers as a function of temperature can be broken by interband
coupling, because in theweakly-coupled two-band system the healing length for the ‘weak’ band-component
exhibits a pronounced peak nearTc,2, as shown in [31]. In particular, the healing length for the ‘weak’ band
reaches a localmaximumatT≈Tc,2 and again reduces when temperature slightly exceedsTc,2. This favors an
increasing number of vortices in the ‘weak’ band-component of the condensate in a relatively narrow
temperature area aboveTc,2. Since the effects related to ‘hidden criticality’ are very transparent and necessarily
follow from the interband coupling, which is a highly controllable parameter (see, e.g., [21, 22]), the sequence of
phases obtained in ourwork can be experimentally observable and serve as a clear ‘smoking gun’ evidence for
multiband physics in superfluids.

The resonant dependence of the healing length for the ‘weak’ band influences the free energy of the two-
band Fermi gas, as can be seen from figure 7. Thisfigure shows the free energy difference δF for an integer vortex,
denoted as F 1, 1d ( ) for k a k a1 0, 1 0.5,F s F s,1 ,2= = -( ) ( ) and γ=10−2. Thus both the plot for the healing
length infigure 6 and the free energy shown infigure 7 correspond to the same values of parameters as the vortex
phase diagram infigure 4(d). The area T , w( ) forT Tc w< ( ) can be subdivided to two areas by the contour
indicating δF=0 shown in thefigure explicitly. These areas correspond to δF<0 and δF>0 (respectively,
inside and outside the contour for δF=0). As can be seen from figure 7, the behavior of contour lines for the
free energy in these two areas is quite different. Also the free energy exhibits a non-monotonic behavior of
isoenergetic contours which contain kinks along the path of the peak for the healing length ξ2. The same kinks
aremanifested in the contour lines of the vortex phase diagrams.

Second, the peak-shape dependence of the healing length in the ‘weak’ band-component of the condensate
ξ2 on the temperature leads to the fact that ξ2 decreases in a certain temperature range aboveTc,2 to values of the
same order as ξ1. The small healing length ξ2 facilitates vortex stabilization in the ‘weak’ band-component of the
condensate. As a result, as can be seen from figures 4(a)–(c) and 5(a) and (b), an area of integer vortex states
appears aboveTc,2 (see, e.g.,figure 6which corresponds to the same set of parameters as figure 4(a)). Note that
this area of integer vortex states aboveTc,2 is a consequence of a non-zero interband coupling, because at γ=0
there is no condensate in the ‘weak’ band. The appearance of this resonant regime is not present in vortex phase
diagrams for a one-band Fermi condensate. For comparison, in a one-band system, the sequence of different
vortex configurations is such that the areas of stability for higher winding numbers lie completely inside the areas
of stability for lowerwinding numbers [12, 15] in phase diagrams. For a two-band system, this ordering of vortex
states can be violated. Namely, atT<Tc,2 we observe the usualsequence of stability areas, where integer vortex
configurations change to fractional states with an increasing temperature. ForT>Tc,2, the ‘anomalous’
sequence becomes possible, where fractional states change to integer states when temperature rises.When
temperature further increases towardsTc, the sequence of stability areas becomes usualagain. The appearance of
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the ‘anomalous’ sequence of stability areas for fractional and integer vortex states is arguably themost striking
result of the interband coupling for two-band rotating Fermi gases.

3.3. Relevance to experiments
Recently, a new kind of orbital Feshbach resonance has been experimentally achieved in ultracold 173Yb
fermionic atoms [19, 20]. As shown in [43–45], themany-bodyHamiltonian describing this systemwith an
orbital Feshbach resonance is exactly analogous to that of a two-band s-wave fermionic superfluidwith contact
interaction.We canmap the parameters corresponding to these experiments on the present theory. According
to [19, 20, 43], the orbital-singlet and orbital-triplet scattering lengths are, respectively, a a1900s 0»+ and
a a200s 0»- , where a0 is the Bohr radius. In the experimental conditions of [19], an ultracold gas of
N=6×104 fermionic 173Yb atoms is confined to a cigar-like trapwith

2 13 Hz, 2 188 Hzx yw p w p= ´ = ´ , and 2 138 Hzzw p= ´ . This gives us the Fermi energy

E N3 2.604 10 JF x y z
1 3 30 w w w= » ´ -( ) , and the parameter k 1.1597 10 mF

7 1» ´ - . Using the set of units
described in section II and following to [43], we find the dimensionless parameters corresponding to the
experiment [19] to be 1/as,1=1/as,2≈4.50, and γ≈3.64. This strong interband coupling only allows for
integer vortices.

As can be seen from figures 2 and 3, in the range γ∼10−3 to γ∼10−2, where only integer vortex states
survive, the boundaries between areas of stability for different vortex states depend on γ extremely weakly.
Therefore the same sequence of vortex states when varying temperature as infigures 4(d)–(f) and 5(d)–(f)must
be observed also at stronger interband couplings, which are relevant for the experimentally realized case of 173Yb
atoms [19, 20].

The scattering lengths are highly controllable for ultracold Fermi gases. One can therefore expect that low
values of the interband coupling strength, which are needed for fractional vortices inmultiband superfluids, are
realizable in future experiments.

4. Conclusions

In this work, we have applied thefinite-temperature EFT to investigate integer and fractional vortices and
multivortex states in rotating two-band Fermi gases throughout the BCS–BEC crossover. As distinct from the
one-band system, a rich spectrumof vortex states is realizable in a two-band Fermi gas. Fractional vortices (the
states with different winding numbers in the two band-components of the condensate) are stable in this system
for sufficiently weak interband couplings.When the interband coupling strength γ exceeds a critical value,
which is dependent on the frequency of rotationω, only integer vortices and vortex clusters can be found.Note
that integer vortices inmany-vortex clusters are not necessarily composite: the vortex centers in ‘strong’ and
‘weak’ bandmay reside at different distances from the trap center.

Figure 7. Free energy for an integer vortex state 1, 1, 1( ) in a two-band rotating Fermi gaswith the inverse scattering lengths
k a k a1 0, 1 0.5F s F s,1 ,2= = -( ) ( ) , the numbers of fermions per unit lengthN1=N2=500, and the interband coupling strength

γ=10−2 as a function of the temperature and the rotation frequency. The path of the peak for the healing length ξ2 is shown by the
dashed curve.
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The phase boundariesbetween different stable vortex configurations in the T , w( ) vortex phase diagrams
depend non-monotonically on the rotation frequency, turning to zero both at lower and upper critical rotation
frequencies atT=0. Correspondingly, they exhibit a bend-over temperature dependence, quite similar to those
obtained in precedingworks for a one-band Fermi gas.

We have characterized the difference between vortex phase diagrams obtained for two-band Fermi
condensates in two different regimes: the regime offixed numbers of particles for each band-components of the
condensate, and the grand canonical ensemble when these numbers of particles are determined through the
common chemical potential. The depletion of the ‘weak’ band-component of the condensate in the grand
canonical ensemble can lead to a substantial expansion of stability areas with respect to those at fixed numbers of
particles. This difference can be experimentally verified.

A striking difference appears between the evolution of vortex configurations as a function of γ in the BCS
andBEC regimes. A rich variety of fractional vortex states exist at weak interband couplings in awide range of
rotational frequencies, which turn to integer vortex states at certain γ. The boundaries between different vortex
states strongly depend on γ in the BCS regime.On the contrary, in the BEC regime, these boundaries rather
weakly depend on the interband coupling strength.

The obtainedmanifestations of the non-monotonic behavior of the healing length in the ‘weak’ band-
component of the condensate through kinks of phase boundaries and the ‘anomalous’ resonant sequence of
stability areas in vortex phase diagrams can be experimentally accessible. Usually, the ‘hidden criticality’
phenomena and other effects of the interband coupling cannot be easily resolved experimentally. Therefore, the
aforesaidmanifestations can represent an effective and transparent ‘smoking gun’ for the interband coupling in
trapped atomic Fermi superfluids.
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Appendix. Gradient expansion for the effective bosonic action

The exact effective bosonic action for interacting fermions is obtained introducing auxiliaryHubbard–
Stratonovich fields and integrating the partition function out fermion fields as described in [31]. The resulting
effective bosonic action for a two-band system reads,
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( ) is the effective field action for a single band-component of the condensate determined by (dropping

the band index j):
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Next, the effective action (A2) is expanded as a Taylor series in powers of the pair field:
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Inmore detail, the trace Tr p
0 [( ) ] is written as:
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The free-fermionGreen’s functionmatrix r,0 t( ) is expressed through the Fourier representation,
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For spin-imbalanced fermions,μ in (A8) is the averaged chemical potential 2m m m= + ( ) . The chemical
potential imbalance parameter is 2z m m= - ( ) .

The action (A5) is still exact. Further, various approximations are possible. The crudest one is the saddle-
point (mean-field) approximation, where r ,n ntY( ) is replaced to a constant valueΔwhich realizes the least
action principle for Seff. The frequently used approach beyond the saddle-point approximation accounts for
Gaussian pair fluctuations about the saddle-point value [34]. It assumes thatfluctuations are small with respect
toΔ.We apply the alternativemethodwhich does not use an assumption of smallfluctuations but is related to
conditionswhen the pairfields slowly vary in time and space.Many approximations (in particular, the
Ginzburg–Landau andGross–Pitaevskii theories) use the same assumption.Within this scheme, thefirst-step
extension of the saddle-point approximation for fermions non-uniformly distributed in space (e.g., for fermions
trapped to a confinement potential) is the localfield approximation (LFA).Within this approximation, we set
the space and time variables for each r ,n n t( ) in (A6) to be the same, e.g., r r, ,n n 1 1 t t=( ) ( ). This leads to the
exact summation over p, resulting in the LFA effective action,
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where r,s
2tW Y(∣ ( )∣ ) has the same form as the saddle-point thermodynamic potential butwith the coordinate-

dependent squaredmodulus of the order parameter (and alsowith a coordinate-dependent chemical potential):
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Here Ek k
2 2x= + Y∣ ∣ is the Bogoliubov excitation energy.

The next stepwithin this scheme beyond the saddle-point approximation is the gradient expansion of the
pairfields r r, , ,n n n nt tY Y( ) ¯ ( ) about one commonpoint, e.g., about r ,1 1t( ). There is no difference which of the
fields is chosen as the background, because the trace (A6) is invariant with respect to cyclic permutations of pair
fields. The gradient expansion is then:
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and the same for the conjugated pairfield.Here, we restrict this series up to the second order derivatives in time
and space.Obviously, the zeroth-order termof the gradient expansion corresponds to the aforesaid LF
approximation. Also for other terms of (A11) substituted in (A5), thewhole sumover p is collected analytically
(for each termof the gradient expansion separately). As a result, we arrive at the EFT action functional derived in
[31] (denoting w 2º Y∣ ∣ ):
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with the coefficients:
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The functions f , ,s b e z( ) are the sums over fermionMatsubara frequencies:
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In [31], they are analytically determined using the recurrence relations:
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The range of validity of EFThas been carefully discussed in our precedingwork [33]. The incorporation of
rotation in the gradient expansion is described in [15]. The gradient expansion for the two-band fermion system
is performed for each band-component exactly in the sameway as for the one-band system.
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