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Abstract

Wereport the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a
cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature
effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant
dependence of the free energy as a function of the temperature and the rotation frequency is revealed
for a two-band superfluid. We particularly focus on novel features that appear as a result of interband
interactions and can be experimentally resolved. The resonant dependence of the free energy is directly
manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex
states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range
below the critical temperature T.. Significantly different behavior of vortex matter as a function of the
interband coupling is revealed in the BCS and BEC regimes.

1. Introduction

Quantum gases constitute a remarkable testing ground for the theory of the superfluid state and its various
macroscopic excitations, such as vortices and solitons. Vortices are stabilized in an atomic gas by rotating the gas,
just as vortices in superconductors can be stabilized by a magnetic field: the Coriolis force acts on a particlein a
rotating frame of reference in the same way as the Lorentz force acts on a charged particle in a magnetic field [1].
Consequently, vortices and many-vortex states in rotating trapped superfluid Fermi gases have become a subject
of an intense experimental [2-5] and theoretical [6—15] research during last two decades.

Since recently, this line of research has become of particular interest in multicomponent quantum systems.
For example, multiband superconductors, such as MgB,, were intensely studied both experimentally and
theoretically over the last decade. However, interaction parameters can hardly be tuned in solid-state systems.
Contrary to superconductors, interactions in ultracold Fermi gases can be controlled, and a broad range of
regimes from BCS to BEC can be realized. This stimulated a theoretical interest to multiband quantum gases in
anticipation of future experiments [ 16—18]. Recently, a two-band Fermi superfluid has been successfully created
in an ultracold gas of 173¥b atoms [19, 20] using the orbital Feshbach resonance predicted in [21] (see also [22]).
This makes a theoretical investigation of different phenomena in multiband Fermi gases (vortices, solitons, etc)
timely and important. Vortices in multiband superconducting and superfluid systems are particularly
interesting due to a rich variety of observable phenomena, such as fractional vortex states that occur when
winding numbers in different band-components of the condensate are not equal. Fractional vortices in
multiband superconductors have been investigated fairly thoroughly [23—25]. Concerning the BCS-BEC
crossover, there was a widely spread opinion during a long time that superconductors cannot be realized away
from the BCS regime. However recently the BCS—BEC crossover has been successfully reached in
superconducting FeSe [26]. Moreover, vortex matter in multiband superconductors in the BCS-BEC crossover
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regime has also attracted much attention [27]. Vortex states in multiband quantum atomic gases have been
studied to a far lesser extent.

Therefore, in this work, the subject of our interest are fractional vortices in two-band Fermi gases of
ultracold atoms in the BCS-BEC crossover. Although there is some similarity between superconductors and
condensed atomic Fermi gases, the analogy is not complete. For one difference, cold gases certainly require an
independent treatment by specific methods suitable in the entire BCS-BEC crossover range.

Recently, the stability of different vortex states in a rotating trapped one-band Fermi gas has been
theoretically studied in [ 14, 15] using, respectively, the coarse-grained Bogoliubov—de Gennes (BdG) theory [28]
(firstapplied to atomic Fermi gases in [29]) and the recently developed finite-temperature effective field theory
(EFT) [30, 31]. The finite-temperature EFT results agree with the results of the BdG theory and experiment for
different manifestations: collective excitations and vortices [15, 31], and solitons [32, 33]. The finite-
temperature EFT is aimed to find analytic results whenever possible. For example, for dark solitons in condensed
Fermi gases, the finite-temperature EFT provides exact analytic solutions of the soliton equation of motion [32],
while the BAG equations for the same problem have been solved only numerically.

Besides our studies, there are several modifications of the EFT of condensed Fermi gases described in
different publications and related to different ranges of external parameters (e.g., temperature and scattering
length). They are developed either for the close vicinity to the critical temperature [34] or for the case T = 0 (e.g.,
[35-37]). Asanalyzed in [31], the present finite-temperature EFT agrees with preceding works in all these
limiting cases.

At present, experimental data on vortices in two-band superfluid atomic Fermi gases are still lacking, in spite
of the expected new physics stemming from the interband interactions in such a system. We report the first such
theoretical study, to pave the way for future experiments with two- and multiband atomic Fermi superfluids.
This work builds on the research performed in [15], with an extension to two-band fermionic systems. The main
goal of the present investigation is to reveal novel vortex phenomena which can appear in a two-band Fermi gas,
that are arguably easy to verify experimentally. More specifically, we study the evolution of equilibrium vortex
states when varying the temperature and the interband coupling strength, as well as the frequency of rotation, to
identify regions of stability for fractional vortices, clusters of non-composite vortices, and multivortex states.
Two variants are considered: (1) the ‘canonical ensemble’ case when numbers of particles in each band are fixed
separately, and (2) the ‘grand canonical ensemble’ case, when the numbers of particles are determined from the
common chemical potential.

The paper is organized as follows. In section 2, the used method and approximations are described. In
section 3, the parameters of state and the vortex phase diagrams are analyzed in detail. Our results are
summarized in section 4.

2. Method

We apply the finite-temperature EFT developed in [31] to vortices and many-vortex states in a two-band Fermi
gas with s-wave pairing. The fermion system is confined to a cylindrically symmetric parabolic trapping
potential with confinement frequency wy. This setup can be relevant for ultracold fermionic atoms in elongated
traps, as, e.g., in [2—5]. The stabilization of vortices is achieved by rotating the fermionic system with an angular
frequency w. The rotation is incorporated in the EFT in the same manner asin [15].

The details of the finite-temperature EFT with a discussion of the approximations used and the range of
applicability of the method are readily available in [31]. The incorporation of rotation in the EFT and the
extension of the formalism to a two-band rotating Fermi gas have been already described in [15]. Consequently,
in this section we reproduce the formalism only briefly, because detailed derivations, discussions and proofs can
befoundin[15,31].

The treatment of rotating trapped Fermi gases is performed within the path-integral formalism in the space
of anticommuting fermion fields, see, e.g., [34, 35]. Throughout the treatment, we use units such that 2 = 1, the
fermion mass for a ‘strong’ band m; = 1/2,and the Fermi energy for a non-interacting fermion system Ep = 1.
Note that there is a difference between the Fermi energy for a Fermi gas in bulk and in a trapping potential. In the
present system of units, Eris the global rather than a local parameter, i.e., Eris not coordinate-dependent. For
example, the Fermi energy for a gas trapped to a 3D parabolic confinement potential with confinement
frequencies wy, w), w,is Ep & /% (Bwyw,w, N )!/3 when Nis sufficiently large. The parameter having the
dimensionality of the Fermi wave vector is formally determined as kr = /2mEp /7.

The thermodynamic quantities are calculated on the basis of the partition function,

Zx fD[[b, bles. (1
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Here, Sis the action functional for a two-band fermionic system [31]:

s= 3 soj+f dedrU(r, ), @)

j=1.2

where 8 = 1/(kgT), T is the temperature, kg is the Boltzmann constant, and Sy, ;is the free-fermion action for
the jth band,

So,J:f dedr > %J( +Hg])1/)g], (3)
o=1,1
with the one-particle Hamiltonian in the rotating frame of reference, which allows for independent populations
in different bands and different spins o, given by
(V —iAj(0)?  mjwy — w?)

Ho":_ + x2+ ) — 0.7 4
8] 2m; > ( V) = Hy (C))

where A;(r) is the rotational vector potential A;(r) = m;[w X r],and w = we, is the rotation vector. The
fermion—fermion interaction U (r, 7) for a two-band system assumes both intraband and interband contact
interactions,

U= > gt + &5 W thn, bty + Py, iy atr,)

j=12
+ P W@y oy, 11 2012 + P a,20,0) 5)

with intraband coupling constants g;;( j = 1, 2) and interband coupling constants g(“) and gl(zp ) which describe
interband contact interactions of density fluctuations with antiparallel and parallel spins, respectively.

The finite-temperature EFT action for a one- and two-band system of interacting fermions with s-wave
pairing has been formulated in [31]. Here, details of the derivation of the effective field action are given in the
appendix. After the Hubbard—Stratonovich transformation using bosonic pair fields ¥, ¥,, the integration over
fermion fields and the gradient expansion (assuming slow variation of the pair field in time and space), the
resulting action functional for a two-band system S{2%) takes the form:

St = > Sihr — f dr f dr ’Y (0, 4+ By, (6)
=12
where 7yis the strength of the interband coupling expressed through the interband scattering lengths,
1 1
T=2 2@ o )
12 G512

The one-band effective field action S for the jth band is determined by:

oY
sg;}_f dedrl (T2 + ( o ,-)

o, o, R (0(uP)Y . 2
+ Qja—a— By el I Ci(V; - V) — Ej(V(W[)
]

The coordinate-dependent thermodynamic potential €2, (| %[*) and the coefficients of the gradient expansion
givenin [15, 31] and explained in detail in the appendix. The rotation is incorporated in the effective action as
described in [15]. It leads to the appearance of the linear gradient term iDjA; - (\Iler\I/j - \Iijr\Ilj) in the effective
bosonic action, which vanishes in the absence of rotation. As shown in [15], the obtained extension of the
effective bosonic action to a rotating fermion system is in agreement with results of the functional
renormalization group theory [38, 39].

3. Confined vortex states in a two-band Fermi gas

3.1. Conditions for vortex stability

One of the most interesting consequences of rotation in a two-band Fermi system is the formation of fractional
vortices. The fractional vortices can be energetically favorable only at rather small interband coupling strength,
because the Josephson coupling energy (the last term in (6)) penalizes phase differences between the condensates
in different bands. However, two-band Fermi gases with vanishingly small (and even zero) interband coupling
can be prepared in practice—for example, when the two condensates are spatially separated. Therefore in the

3
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present work we study vortices in two-band Fermi gases with a particular attention to the range of small
Josephson coupling strengths.

The stability of different vortex states is analyzed using the free energy F®?), which is obtained from the
effective action (8) assuming pair fields to be stationary (time—independent),

F@b) _ Z FO — fdl- 7(\111‘1/2 + U0, ©)
j=12

where F(7) is the contribution to the free energy from the jth band-component of the condensate:
FO = [ arlQu,0P) + G/ - )
— Ei(V(151H))? + iDjA; - (Y — BV )], (10)

The pair field W(r) for a particular vortex state with n vortices in the jth band-component of the condensate
is described here by the variational function, which is a product of the background pair field A;(r) and the vortex
factor:

Wi(r) = Y(r, {a,, 0,;}) = Aj(r) Z a,;(r) elfi(®, (11)
v=1
where a,, ;(r) and 0, ; () are, respectively, the relative amplitude and the phase for the vth vortex in the jth band
component of the condensate. The phase for a vortex 6, ;(r) coincides with the polar angle calculated in the
frame of reference related to the vortex center. The vortex amplitudes in the present work, as well asin [15], are
modeled by variational functions,

J2¢

The parameter &; has the sense of the vortex healing length. The healing lengths and the positions of vortex
centers r,,;are variational parameters for vortex states. Their optimal values are found by the minimization of
the free energy (9) after substituting the variational function (11) there. The conditions of stability for vortex
states are determined here, as in [15], by considering the difference between the free energies with and without
vortices:

a@)tm%' %q (12)
v,j = .

6F = F{Y(0}] — FI{A;(N}]. 13)

The parametric ranges of existence for vortex configurations are determined by comparison of free energies
corresponding to different vortex states, including also the state without vortices, where Wi(r) = A;(r), and
choosing a vortex state with the lowest free energy.

The background distribution of the pair field A;(r) without vortices is determined using normalization
conditions for the fermion density. We consider here two possible constraints of the numbers of fermions in two
bands. Under the first condition, total numbers of particles in each band are fixed. The alternative condition is
the ‘grand canonical’ setting, when the populations in the two bands have been relaxed to values determined
through equal chemical potentials in the two band-components of the condensate. At present, the ensemble
with fixed numbers of particles seems to be more easily achieved in experiments with atomic Fermi gases than
the grand canonical ensemble with equal chemical potentials. However, it is interesting to consider them both,
in order to understand the influence of these constraints on vortex states.

In order to make clear the difference between the two aforesaid ensembles, we describe the normalization
conditions for trapped two-band Fermi condensates in detail. Since we consider systems where the scale of the
confinement potential is sufficiently large with respect to the vortex size, the normalization conditions are
applied within the local density approximation through coordinate-dependent thermodynamic parameters. For
aone-band Fermi gas trapped in a cylindrically symmetric confinement potential, the normalization condition
in the local density approximation reads,

o f © (B, u(), A(r)rdr = N, (14)
0

where n(8, pu(r), A(r)) is the fermion density depending on the radial variable r = /x? + y? through the
background pair field A (r) (we neglect here the feedback of vortices to the density normalization) and the
chemical potential, according to (4),

mn:mw—%wﬁwmﬂ
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The coordinate-dependent gap parameter is determined through the local gap equation [31],

f dk sinh BEj _m n m_ 0, (15)
(2m)>\ 2B (cosh BE + cosh 3¢)  k? 4ma,

2 2
consistently with the normalization condition (14). Here, E, = \/ (;—m - (r)) + A(r)? is the Bogoliubov

excitation energy, /1(r) = (p; + ) /2and ¢ = (u; — 1) /2 are, respectively, the averaged chemical potential
and the difference of chemical potentials for the ‘spin up’ and ‘spin down’ species.

The fermion density n entering normalization condition (14) can be calculated in different approximations,
e.g., the mean-field or Gaussian pair fluctuation approximation, as in [40]. In the present work, we restrict the
normalization of the density by the mean-field approximation, because account of fluctuations in the
background parameters can lead only to a rescaling of phase diagrams, without changing their shape and
sequences of areas of stability for vortex states. It should be noted that the gap equation has the same form (15)
with and without account of fluctuations [35, 40].

For a two-band system, coordinate-dependent parameters of state are determined from two normalization
conditions,

27rf0 m; (B, (0, A )rdr =N (j=1,2) (16)
together with the coupled set of two gap equations for the two-band Fermi gas given by equation (28) of [31],

f dk [ 1 sinh(8Ey ;) B mj]+ m;

(2m)’ \ 2Exj cosh(BEx;) + cosh(ﬁCj) K

nmyn,

A]‘ + ’}/A3,j = 0. (17)

471'[15‘1'

The difference between two aforesaid ensembles consists in the following. Under the first condition,
numbers of particles N;in (16) are fixed. The chemical potentials 11;(r) are determined from these two equations,
taking into account (17) which in fact depends on both (; and p,. In the ‘grand canonical’ setting, N; and N, are
not fixed separately. Instead, we apply (17) with the normalization condition for the total number of particles
N=N, +N,,

DY fooo (B, 11(r), Ay(r)rdr = N, (18)

j=12

where 1(r) is the same for both band-components of the condensate. Consequences of this difference, in
particular the depletion of the ‘weak’ band at low temperatures for the ‘grand canonical’ setting, were considered
in[31].

The free energy and the normalization integrals are calculated including both the superfluid core and the
normal phase which are spatially separated. It is assumed here that they both rotate with the frequency imposed
by a stirring field. A treatment beyond this approximation may lead only to a marginal correction to the obtained
results without changing the picture, because we consider vortices near the trap center, i.e., far from the
boundary between the superfluid and normal phases. The same assumption has been substantiated and applied
in[14,15].

The term ‘fractional vortex’ means that winding numbers for vortex states in two bands are not the same. In
order to classify different vortex configurations, we label the ‘strong’ band (with a larger inverse scattering length
1/a,) by index 1, and the ‘weak’ band by index 2. Following [23] we use the notation (n;, n,, n.) for the
classification of vortex states, where n; and n, are, respectively, the winding numbers in the first and second
band-components of the condensate, and n, is the number of composite vortices, i.e., integer vortices pinned to
each other in two bands. Correspondingly, the clouds in two band-components of the condensate classified by
the set of indices (n, mp, n.) look as or multivortex configurations corresponding to a cluster of #; vortices in the
first band and n, vortices in the second band, out of which 7, vortices coincide.

In the present treatment, we do not consider superfluids corresponding to two bands rotating relatively to
each other, because the rotation frequency is determined by a common stirring field. Therefore the vortex
clusters in different bands are in rest with respect to each other, forming a stable configuration. The relative
positions between vortices in two bands (both radial and angular) are determined minimizing the free energy
with respect to positions of all vortices.

Several resulting vortex clouds are exemplified in figure 1. Analogous clouds for a two-band superconductor
can be found, e.g., in [23]. The figure shows the spatial distribution of the amplitude of the pair field | W;(r)| in the
‘strong’ and ‘weak’ band-components of the condensate for several stable vortex states, both integer and
fractional ones. The third column of figure 1 shows the spatial behavior of the total particle density n = n; + n,.
The particle density is necessarily modulated in vortices due to the variation of the gap parameters. The
modulation of the particle density is experimentally observable. As can be seen from figure 1, fractional vortex
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Figure 1. Absolute value of the pair field for several vortex states in the first and second band-components of the condensate ina
rotating Fermi gas with the parameters 1 /(kray ;) = 0, 1/(kpay,s) = —0.5, T = 0.017T. The third column shows the total particle
density n = n; + n,. The values of the rotation frequency and the interband coupling strength are explicitly given in the figure. The
coordinates are measured in units of the inverse to the Fermi wave number, 1/k.

configurations can be experimentally resolved from integer vortex states due to a difference between vortex
patterns in the two bands. In the present work, we assume that the size of the trap is much larger than the healing
lengths of vortices in both band-components. This favors non-composite vortices, except for the case when they
are positioned in the center of the trap. Therefore, for the vortex states shown in figure 1, only the integer

(1, 1, 1) state is composite, and the other states are non-composite. It is worth noting however that the
distinction between composite and non-composite vortices depends on convention. The interband coupling
results in an attraction between vortices in different band-components of the condensate. This attraction tends
to minimize a non-compensated phase shift between the pair fields of the two band-components. It leads to the
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Figure 2. Vortex phase diagrams in the (log;, 7, w) variable space for a two-band rotating Fermi gas with the numbers of fermions per
unitlength N; = N, = 500.

binding of vortices in two bands. When the distance between vortex cores in the two band-components of the
condensate is of the same order as the healing lengths (or less), it may become difficult to resolve experimentally.
In experiments, such bound vortices can be observed as elongated. In this case, they are non-composite formally,
but close to composite vortices from the experimental point of view.

3.2. Vortex phase diagrams

3.2.1. Phase diagrams in variables (v, w)

Analyzing the areas of stability for vortex configurations, we consider first the evolution of the vortex states asa
function of the interband coupling strength . When the interband coupling is sufficiently strong, only integer
vortex states can survive, because the Josephson coupling contribution to the free energy is positive and
proportional to the relative phase difference for the two band-components of the condensate. Therefore we are
particularly focused on the range of relatively small +, where stable fractional vortices can exist.

In order to study this evolution of stable vortex configuration when varying -, we plot in figures 2 and 3 the
vortex phase diagrams in the variable space (log,, vy, w). The logarithmic scale for +is chosen because of our
particular attention to the range of weak interband couplings to track the transitions between fractional and
integer vortices. Figure 2 shows the areas of stability for vortex states assuming numbers of particles per unit
length in each band fixed, N; = N, = 500. Figure 3 represents the analogous picture for the grand canonical
ensemble of fermions with the total number of particles per unitlength N = 10°.

In figures 2 and 3, when varying -y at fixed temperatures, a rich variety of stable vortex configurations, both
integer and fractional, can be seen in the vortex phase diagrams. The sequence of stable vortex configurations
with an increasing interband coupling is physically quite transparent: fractional vortices turn to integer ones ata
critical coupling strength which only slightly depends on the rotation frequency. On the contrary, when the
‘weak’ band is in the BCS regime, the dependence of the critical interband coupling strength on the rotation
frequency is rather complicated. As one can see from figures 2 and 3 (especially clearly in panels (e, f), but also in
other phase diagrams), each vortex configuration except (3, 3, 0) may appear twice, at low and high-rotation
frequencies. This trend in the sequences of the vortex stability areas for (y, w) phase diagrams is related to the
fact that each ‘phase boundary’ in the (T, w) phase diagrams exhibits a bend-over dependence on w. This bend-
over dependence is manifested in figures 2 and 3 through an appearance of two distinct areas for given vortex
configurations (except when the upper-frequency areas lie in close vicinity to the maximal rotation frequency
Wmax (T) and therefore are not seen). Note that the range of y for which fractional vortices can exist is rather
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Figure 3. Vortex phase diagrams in the (log,, 7, w) variable space for a two-band rotating Fermi gas with the number of fermions per
unitlength N = 10?, in an ensemble where N and N, are fixed by a common chemical potential.

small, and that the vortex phase diagrams in figures 2 and 3 are plotted in logarithmic scale for y. This explains
the result that the phase boundaries weakly depend on «yin this range.

In the case of sufficiently weak interband coupling, the fractional vortices are energetically more favorable
with respect to integer vortices, except maybe the low-temperature and high-rotation-frequency areas, where
the configuration (3, 3, 0) and higher (in our notations, this denotes three integer non-composite vortices) is
energetically more favorable with respect to fractional vortex states. This result does not ensure however that the
three-vortex integer configuration cannot be suppressed by a fractional configuration of a higher order if we will
account for more vortices. When the interband coupling is a bit stronger, both fractional and integer vortex
configurations can survive. For a still stronger interband coupling, we can observe only integer vortices and
vortex systems. As a rule, stable fractional vortex configurations appear in such a way that vortices survive in the
‘strong’ band, when the amplitude of the order parameter in the ‘weak’ band becomes sufficiently small.

3.2.2. Phase diagrams in variables (T, w)

Next, we analyze the vortex phase diagrams in the variables (T, w) which show areas of stability for different
vortex states in a two-band rotating Fermi gas with several inverse scattering lengths and different interband
coupling strengths. Figure 4 shows the vortex phase diagrams for the ensemble with the fixed numbers of
particles per unitlength (along the z direction) N; = N, = 500. In figure 5, the same fermionic system with

N = N; + N, = 1000 is considered for the thermalized state with a common chemical potential. In these
figures, panels (a)—(c) show vortex states at a rather small interband coupling strength v = 10~*. The panels (d)—
(f) represent the vortex phase diagrams for a larger (but still rather small) interband coupling vy = 102 The left-
hand panels (a) and (d) of figures 4 and 5 correspond to the case when the ‘strong’ band is at unitarity, and ‘weak’
band is in the BCS regime—with, respectively, 1/a,; = 0and 1/a,, = —0.5. The central panels (b) and (e)
show the case of stronger couplings, with, 1 /a,; = 0.5 for the ‘strong’ band and 1/a,, = 0 for the ‘weak’ band.
Finally, the right-hand panels (c) and (f) show vortex phase diagrams for 1/a,; = 1 for the ‘strong’ band and
1/a,, = Ofor the ‘weak’ band, i.e., when the ‘strong’ band is in the BEC regime.

As can be seen from figures 2 and 3, the value y = 107% represents the specific interesting case, because it lies
in a rather narrow range of y where fractional vortices turn to integer vortices. The other value, y = 10~ is
chosen to show phase diagrams where only integer vortex configurations survive. Higher interband coupling
strengths do not lead to substantial qualitative changes of phase diagrams, because fractional vortices can be
energetically favorable only at weak interband coupling. This explains the choice of parameters made for
figures 4 and 5.
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Figure 4. Vortex phase diagrams in the (T, w) variable space for a two-band rotating Fermi gas with different inverse scattering
lengths and interband coupling strengths indicated in the figure, for the number of fermions per unitlength N = 10°
(N; = N, = 500).
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Figure 5. Vortex phase diagrams in the (T, w) variable space for a two-band rotating Fermi gas with different inverse scattering
lengths and interband coupling strengths indicated in the figure, for the number of fermions per unitlength N = N; + N, = 10%in
the ‘grand canonical’ case when Nj and N, are determined by a common chemical potential.
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887

Figure 6. Healing length for a ‘weak’ band &, in a two-band rotating Fermi gas with the inverse scattering lengths
1/(kpas;) = 0, 1/(kpas,) = —0.5,the numbers of fermions per unitlength N; = N, = 500, and the interband coupling strength
4 = 10" ?as a function of the temperature and the rotation frequency.

In the same way as for a one-band Fermi gas, the vortex phase diagrams are restricted to the area of the
superfluid state, i.e., to temperatures T below the critical temperature 7; (w). The critical temperature is
frequency-dependent and tends to zero when w tends to w,. The value ¥ = 10~ *for a weak interband coupling is
chosen here because, on the one hand, it is sufficiently small so that the vortex phase diagrams can contain
fractional vortex states, and, on the other hand, this value, although being small, is sufficient to yield rich stability
areas for both fractional and integer vortex states. The other set of phase diagrams has been calculated for a
relatively small but larger interband coupling strength v = 10~ 2, at which only integer vortex states survive.
Similarly to vortex phase diagrams for a one-band Fermi gas [12, 14, 15], the boundaries of the areas of stability
for different vortex configurations exhibit a non-monotonic dependence on the rotation frequency and a
reentrant behavior as a function of the temperature. The explanation of this bend-over behavior of critical
rotation frequencies is the same for two-band and one-band Fermi gases. As discussed in [12, 15], itis related to a
decrease of the radius of the superfluid core for a trapped Fermi gas when the rotation frequency becomes close
to the confinement frequency. The lower critical rotation frequency corresponds to the ordinary threshold for
vortex formation, similarly to that in a superconductor in an external magnetic field, when increasing the field
strength. The other (upper) critical rotation frequency appears when the radius of the superfluid core is
comparable with the healing length.

When comparing the vortex phase diagrams for ensembles with fixed numbers of particles and with the
common chemical potential to each other, one can see that the ‘grand canonical’ ensemble is more favorable for
fractional vortices than that with fixed numbers of particles. This difference is explained by the effect of a partial
depletion of a ‘weak’ band. As found in [31], this depletion is a feedback of the gap parameter to the relative band
populations. As a result, the areas of stability for fractional vortices in the case of a common chemical potential
(figure 5) are wider than in the case of fixed equal numbers of particles in each band. Moreover, as can be seen
comparing figures 4(c) and 5(c), in the BEC regime this depletion can lead to a complete vanishing of integer
vortex phases.

Distinct manifestations of the interband coupling in a two-band Fermi gas are related to the temperature T, ,
equal to the critical temperature of the superfluid phase transition in the ‘weak’ band-condensate component in
the absence of the interband coupling. First, we find a kink of the ‘phase boundaries’ between different vortex
configurations in figures 4 and 5, positioned at T . This feature is absent in the one-band system considered in
[12, 14, 33]. Itis directly related to a non-monotonic, resonant peak-shape temperature dependence of the
vortex healing length for the ‘weak’ band &,, analyzed in [31, 41, 42] and termed ‘hidden criticality’ in [42].
Although there is no true criticality at T ~ T, ,, many parameters of state demonstrate non-monotonic behavior
at this temperature. The peak position for &, lies at the critical temperature for the ‘weak’ band in the absence of
the interband coupling, so that it is a fingerprint of the weak-band criticality, which is lost in a two-band system.
In figure 6, the evolution of this ‘hidden criticality’ point is shown as a function of (T, w) for the inverse
scatteringlengths 1 /(kpas ) = 0, 1/(kpas,) = —0.5, the numbers of fermions per unit length
N, = N, = 500, and the interband coupling strength ¥ = 10>. The peak temperature of the healing length ¢,
diminishes when the rotation frequency rises, with an increasing peak magnitude and a decreasing width.
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The seemingly unusual sequence of phases in the phase diagrams for weak interband coupling (upper panels
of figures 4 and 5) can be transparently understood using simple physical reasoning. First, let us temporarily
‘turn off’ the interband interaction and consider each band-component independently as a one-band system.
For a one-band trapped Fermi gas, this behavior was independently analyzed in [12, 14, 15], using different
methods: BdG theory and EFT. These two theories completely agree in predictions on the behavior of vortex
states.

The evolution of the number of vortices in a given band-condensate, as a function of the rotation rate ata
fixed temperature is non-monotonic. The healing length, which is a parameter characterizing the vortex size, is
an increasing function of the rotation frequency. As established in [12, 14, 15], the number of vortices increases
when rotation frequency increases as long as the vortex size remains substantially smaller than the size of the
superfluid core. When the rotation frequency is further increased, an upper critical rotation frequency appears
such that the vortex state turns back to the superfluid state for higher rotation frequencies, because the radius of
the superfluid state reduces when the rotation frequency becomes close to the maximal rotation frequency at
which superfluidity vanishes. It was also found in [15] that the boundary between the states with different
numbers of vortices behaves similarly to the critical rotation frequency for a single vortex. For example, the
lower critical rotation frequency for a vortex pair is higher than the lower critical rotation frequency for a single
vortex. On the contrary, the upper critical rotation frequency for a vortex pair is lower than the upper critical
rotation frequency for a single vortex.

Regarding the variation of the number of vortices as a function of temperature at a finite rotation rate
(sufficient for stable vortices at T = 0), the number of vortices monotonically decreases with increasing
temperature, because the free energy of the system with vortices becomes higher when the vortex size increases
(as an increasing function of temperature). For a two-band system without interband coupling, similarly to the
one-band system, the number of vortices in each band-component of the condensate must be a monotonically
decreasing function of temperature. Therefore vortices in the ‘weak’ band in the absence of the interband
coupling cannot exist above the critical temperature T, < T, ;, while vortices in the ‘strong’ band can survive
above T, and vanish at higher temperatures close to T, ;, as can be seen from figures 4 and 5.

The monotonic dependence of vortex numbers as a function of temperature can be broken by interband
coupling, because in the weakly-coupled two-band system the healing length for the ‘weak’ band-component
exhibits a pronounced peak near T ,, as shown in [31]. In particular, the healing length for the ‘weak’ band
reaches alocal maximum at T & T, and again reduces when temperature slightly exceeds T, ,. This favors an
increasing number of vortices in the ‘weak’ band-component of the condensate in a relatively narrow
temperature area above T ,. Since the effects related to ‘hidden criticality’ are very transparent and necessarily
follow from the interband coupling, which is a highly controllable parameter (see, e.g., [21, 22]), the sequence of
phases obtained in our work can be experimentally observable and serve as a clear ‘smoking gun’ evidence for
multiband physics in superfluids.

The resonant dependence of the healing length for the ‘weak’ band influences the free energy of the two-
band Fermi gas, as can be seen from figure 7. This figure shows the free energy difference 6F for an integer vortex,
denotedas §F(1, 1) for1/(kgas ;) = 0, 1/(kpas,) = —0.5,andy = 10> Thus both the plot for the healing
length in figure 6 and the free energy shown in figure 7 correspond to the same values of parameters as the vortex
phase diagram in figure 4(d). The area (T, w) for T < T:(w) can be subdivided to two areas by the contour
indicating OF = 0 shown in the figure explicitly. These areas correspond to 6F < 0and 6F > 0 (respectively,
inside and outside the contour for 6F = 0). As can be seen from figure 7, the behavior of contour lines for the
free energy in these two areas is quite different. Also the free energy exhibits a non-monotonic behavior of
isoenergetic contours which contain kinks along the path of the peak for the healing length &,. The same kinks
are manifested in the contour lines of the vortex phase diagrams.

Second, the peak-shape dependence of the healing length in the ‘weak’ band-component of the condensate
& on the temperature leads to the fact that £, decreases in a certain temperature range above T, , to values of the
same order as &;. The small healing length &, facilitates vortex stabilization in the ‘weak’ band-component of the
condensate. As aresult, as can be seen from figures 4(a)—(c) and 5(a) and (b), an area of integer vortex states
appears above T, (see, e.g., figure 6 which corresponds to the same set of parameters as figure 4(a)). Note that
this area of integer vortex states above T, is a consequence of a non-zero interband coupling, becauseaty = 0
there is no condensate in the ‘weak’ band. The appearance of this resonant regime is not present in vortex phase
diagrams for a one-band Fermi condensate. For comparison, in a one-band system, the sequence of different
vortex configurations is such that the areas of stability for higher winding numbers lie completely inside the areas
of stability for lower winding numbers [12, 15] in phase diagrams. For a two-band system, this ordering of vortex
states can be violated. Namely, at T < T, , we observe the usual sequence of stability areas, where integer vortex
configurations change to fractional states with an increasing temperature. For T > T,,, the ‘anomalous’
sequence becomes possible, where fractional states change to integer states when temperature rises. When
temperature further increases towards T, the sequence of stability areas becomes usual again. The appearance of
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Figure 7. Free energy for an integer vortex state (1, 1, 1) in a two-band rotating Fermi gas with the inverse scattering lengths
1/(kpas;) = 0, 1/(kpas,) = —0.5,the numbers of fermions per unit length N; = N, = 500, and the interband coupling strength
4 = 10" *asafunction of the temperature and the rotation frequency. The path of the peak for the healing length &, is shown by the
dashed curve.

the ‘anomalous’ sequence of stability areas for fractional and integer vortex states is arguably the most striking
result of the interband coupling for two-band rotating Fermi gases.

3.3. Relevance to experiments

Recently, a new kind of orbital Feshbach resonance has been experimentally achieved in ultracold '*Yb
fermionic atoms [19, 20]. As shown in [43—45], the many-body Hamiltonian describing this system with an
orbital Feshbach resonance is exactly analogous to that of a two-band s-wave fermionic superfluid with contact
interaction. We can map the parameters corresponding to these experiments on the present theory. According
to[19, 20, 43], the orbital-singlet and orbital-triplet scattering lengths are, respectively, a;, =~ 1900a, and

as_ ~ 200a,, where g, is the Bohr radius. In the experimental conditions of [19], an ultracold gas of

N = 6 x 10*fermionic '7>Yb atoms is confined to a cigar-like trap with

wy = 2w X 13 Hz, w, = 27 X 188 Hz,and w, = 27 X 138 Hz. This gives us the Fermi energy

Ep = 7 Guwyw,w,;N)'/3 2 2.604 x 107> J,and the parameter kr ~ 1.1597 x 107 m~. Using the set of units
described in section I and following to [43], we find the dimensionless parameters corresponding to the
experiment[19]tobe 1/a,; = 1/a,, ~ 4.50,and y = 3.64. This strong interband coupling only allows for
integer vortices.

As can be seen from figures 2 and 3, in the range y ~ 10~ > toy ~ 10 %, where only integer vortex states
survive, the boundaries between areas of stability for different vortex states depend on -y extremely weakly.
Therefore the same sequence of vortex states when varying temperature as in figures 4(d)—(f) and 5(d)—(f) must
be observed also at stronger interband couplings, which are relevant for the experimentally realized case of '>Yb
atoms [19, 20].

The scattering lengths are highly controllable for ultracold Fermi gases. One can therefore expect that low
values of the interband coupling strength, which are needed for fractional vortices in multiband superfluids, are
realizable in future experiments.

4. Conclusions

In this work, we have applied the finite-temperature EFT to investigate integer and fractional vortices and
multivortex states in rotating two-band Fermi gases throughout the BCS-BEC crossover. As distinct from the
one-band system, a rich spectrum of vortex states is realizable in a two-band Fermi gas. Fractional vortices (the
states with different winding numbers in the two band-components of the condensate) are stable in this system
for sufficiently weak interband couplings. When the interband coupling strength -y exceeds a critical value,
which is dependent on the frequency of rotation w, only integer vortices and vortex clusters can be found. Note
that integer vortices in many-vortex clusters are not necessarily composite: the vortex centers in ‘strong’ and
‘weak’ band may reside at different distances from the trap center.
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The phase boundaries between different stable vortex configurations in the (T, w) vortex phase diagrams
depend non-monotonically on the rotation frequency, turning to zero both at lower and upper critical rotation
frequenciesat T = 0. Correspondingly, they exhibit a bend-over temperature dependence, quite similar to those
obtained in preceding works for a one-band Fermi gas.

We have characterized the difference between vortex phase diagrams obtained for two-band Fermi
condensates in two different regimes: the regime of fixed numbers of particles for each band-components of the
condensate, and the grand canonical ensemble when these numbers of particles are determined through the
common chemical potential. The depletion of the ‘weak’ band-component of the condensate in the grand
canonical ensemble can lead to a substantial expansion of stability areas with respect to those at fixed numbers of
particles. This difference can be experimentally verified.

A striking difference appears between the evolution of vortex configurations as a function of vy in the BCS
and BEC regimes. A rich variety of fractional vortex states exist at weak interband couplings in a wide range of
rotational frequencies, which turn to integer vortex states at certain . The boundaries between different vortex
states strongly depend on yin the BCS regime. On the contrary, in the BEC regime, these boundaries rather
weakly depend on the interband coupling strength.

The obtained manifestations of the non-monotonic behavior of the healing length in the ‘weak’ band-
component of the condensate through kinks of phase boundaries and the ‘anomalous’ resonant sequence of
stability areas in vortex phase diagrams can be experimentally accessible. Usually, the ‘hidden criticality’
phenomena and other effects of the interband coupling cannot be easily resolved experimentally. Therefore, the
aforesaid manifestations can represent an effective and transparent ‘smoking gun’ for the interband coupling in
trapped atomic Fermi superfluids.
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Appendix. Gradient expansion for the effective bosonic action

The exact effective bosonic action for interacting fermions is obtained introducing auxiliary Hubbard—
Stratonovich fields and integrating the partition function out fermion fields as described in [31]. The resulting
effective bosonic action for a two-band system reads,

. 8 / - -
S@ = 3 s - [ dr [ar L G, + Bowy, (A1)
=12 0 47
where § e(fjf) is the effective field action for a single band-component of the condensate determined by (dropping
the band index j):
Sett = Sp — TrIn[-G1]. (A2)

We follow here the notations of [34], where G !(r, 7) = G, '(r, 7) — F(r, 7)is the inverse Nambu tensor. It is
subdivided to the free-fermion inverse Nambu tensor G, ' and the matrix FF proportional to the pair field W:

6 A

-~ - B 0
Gyl(r, 1) = T 5 B (A3)
0 -5+ H
0 —U(r,
Fe, 7 =| - 7)) (A4)
—VU(r, 7) 0
Next, the effective action (A2) is expanded as a Taylor series in powers of the pair field:
Sett = S5 — TrIn[—G,'T + > LrrGomrl. (A5)

p=1 p
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In more detalil, the trace Tr [(G(F)?] is written as:

Tr[(GoF)*] = del ... dm, fdrl o dr, Tr [F(ry, 1) Go(r) — 12, 71 — T2)

X F(ry, m)Go(ry — 13, 73 — 73) ... F1p, 7)) Go(xp — 11, 7p — 7). (A6)
The free-fermion Green’s function matrix Gg(r, 7) is expressed through the Fourier representation,
Golr, ) = —— 3" Golk, melkr—ian, (A7a)
ﬂV k,n
i(wn — ilO =& 0
GO(k7 1’1) = 1 > (A7b)
i(wy —1Q) + &
with the free-fermion energies
K2
e=———i (A8)
2m

and the fermion Matsubara frequencies

Wy = 2n+ D .
g

For spin-imbalanced fermions, /¢ in (A8) is the averaged chemical potential 4« = (x4 + 44/) /2. The chemical

potential imbalance parameteris ¢ = (1 — 4) /2.

The action (A5) is still exact. Further, various approximations are possible. The crudest one is the saddle-
point (mean-field) approximation, where W(r,, 7,) is replaced to a constant value A which realizes the least
action principle for S.¢. The frequently used approach beyond the saddle-point approximation accounts for
Gaussian pair fluctuations about the saddle-point value [34]. It assumes that fluctuations are small with respect
to A. We apply the alternative method which does not use an assumption of small fluctuations but is related to
conditions when the pair fields slowly vary in time and space. Many approximations (in particular, the
Ginzburg-Landau and Gross—Pitaevskii theories) use the same assumption. Within this scheme, the first-step
extension of the saddle-point approximation for fermions non-uniformly distributed in space (e.g., for fermions
trapped to a confinement potential) is the local field approximation (LFA). Within this approximation, we set
the space and time variables for each F(r,, 7,,) in (A6) to be the same, e.g., F(r,, 7,) = F(r;, 7). Thisleads to the
exact summation over p, resulting in the LFA effective action,

B
S = [ dr [dr Qv nP),

(A9)

where €, (|U(r, 7)|?) has the same form as the saddle-point thermodynamic potential but with the coordinate-
dependent squared modulus of the order parameter (and also with a coordinate-dependent chemical potential):

k TP
QPP = —f ;TP[%IHQ cosh 3¢ + 2 cosh BEy) — & — ml|(2 | ]

_mlvp

4ma,

Here Ey = ,/ ff( + |U|? is the Bogoliubov excitation energy.

The next step within this scheme beyond the saddle-point approximation is the gradient expansion of the
pair fields ¥(r,, 7,), ¥(r,, 7,,) about one common point, e.g., about (x;, 73). There is no difference which of the
fields is chosen as the background, because the trace (A6) is invariant with respect to cyclic permutations of pair
fields. The gradient expansion is then:

(A10)

oV(ry, 1 0*(ry,
W(eyy 7) = Wy, 1) + (1 — ) e 1)y Lo O, 1)
on 2 ory
13 02U (ry,
= 1) VU ) =3 (ot — ) (g — ) SR ) (A1D)
ij=1 8x1,,»8x1,j

and the same for the conjugated pair field. Here, we restrict this series up to the second order derivatives in time
and space. Obviously, the zeroth-order term of the gradient expansion corresponds to the aforesaid LF
approximation. Also for other terms of (A11) substituted in (A5), the whole sum over p is collected analytically
(for each term of the gradient expansion separately). As a result, we arrive at the EFT action functional derived in
[31] (denoting w = [¥[?):
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o o of st

oV ov  Rw)(ow)’
+Qw )8 67’ (87')
C(W)(V\I/ V) — E(W)(v )] (Al2)
with the coefficients:
dk k2
- [= e ACE ) (A13)
= f (2‘“‘)3 S48, €0 O — (B, B O, (A14)
dk K2
B2 [ 56 6B O, (A15)
1
Q- [ G A G0 O = (B + DA, B O, (A16)

f AKBs B Q) + (B — 368, B O
)} 3w

4(& — 2F¢
+ Mﬁ(ﬁ, Ei, Q) + 2E¢wf,(B, Ew O |. (A17)

The functions f, (3, €, () are the sums over fermion Matsubara frequencies:
1 & 1
,E, () =— _ Al8
f(B,E, Q) ﬂn;@ PR (A18)

In [31], they are analytically determined using the recurrence relations:

sinh(3e)

(e 0 = 2 cosh(ﬂs) + cosh(ﬂ() (AL9)
8 b bl

fs+1(ﬁ’ g C) = fLM (A20)

2se Oe

The range of validity of EFT has been carefully discussed in our preceding work [33]. The incorporation of
rotation in the gradient expansion is described in [15]. The gradient expansion for the two-band fermion system
is performed for each band-component exactly in the same way as for the one-band system.
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