|
Record |
Links |
|
Author |
Barreca, D.; Carraro, G.; Maccato, C.; Altantzis, T.; Kaunisto, K.; Gasparotto, A. |
|
|
Title |
Controlled Growth of Supported ZnO Inverted Nanopyramids with Downward Pointing Tips |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Crystal growth & design |
Abbreviated Journal |
Cryst Growth Des |
|
|
Volume |
|
Issue |
|
Pages |
acs.cgd.8b00198 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
High purity porous ZnO nanopyramids with controllable properties are grown on their tips on
Si(100) substrates by means of a catalyst-free vapor phase deposition route in a wet oxygen
reaction environment. The system degree of preferential [001] orientation, as well as
nanopyramid size, geometrical shape and density distribution, can be finely tuned by varying the
growth temperature between 300 and 400°C, whereas higher temperatures lead to more compact
systems with a three-dimensional (3D) morphology. A growth mechanism of the obtained ZnO
nanostructures based on a self-catalytic vapor-solid (VS) mode is proposed, in order to explain
the evolution of nanostructure morphologies as a function of the adopted process conditions. The
results obtained by a thorough chemico-physical characterization enable to get an improved
control over the properties of ZnO nanopyramids grown by this technique. Taken together, they
are of noticeable importance not only for fundamental research on ZnO nanomaterials with
controlled nano-organization, but also to tailor ZnO functionalities in view of various potential
applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000429508200073 |
Publication Date |
2018-03-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1528-7483 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.055 |
Times cited |
6 |
Open Access |
OpenAccess |
|
|
Notes |
This work has been supported by Padova University ex-60% 2015–2017, P-DiSC #03BIRD2016-UNIPD projects and ACTION post-doc fellowship. T. A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Rosa Calabrese (Department of Chemical Sciences, Padova University, Italy) and to Dr. T.-P. Ruoko (Department of Chemistry and Bioengineering, Tampere University of Technology, Finland) for skilful technical support. |
Approved |
Most recent IF: 4.055 |
|
|
Call Number |
EMAT @ emat @c:irua:149514 |
Serial |
4904 |
|
Permanent link to this record |