toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 3 Pages (down) 035434-35435  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322083700002 Publication Date 2013-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109807 Serial 1210  
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Double quantum dots defined in bilayer graphene Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 3 Pages (down) 035434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on sublattices of the layers and that the ground-state wave-function components change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000406284200005 Publication Date 2017-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145758 Serial 4739  
Permanent link to this record
 

 
Author Scuracchio, P.; Costamagna; Peeters, F.M.; Dobry, A. url  doi
openurl 
  Title Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 3 Pages (down) 035429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W-2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the nonequilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339443800009 Publication Date 2014-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes ; Discussions with S. D. Dalosto and K. H. Michel are gratefully acknowledged. This work was partially supported by PIP 11220090100392 of CONICET (Argentina) and the Flemish Science Foundation (FWO-VI). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118698 Serial 2911  
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Zhao, W.-S.; Peeters, F.M. doi  openurl
  Title Coulomb impurity on a Dice lattice : atomic collapse and bound states Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 3 Pages (down) 035427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The modification of the quantum states in a Dice lattice due to a Coulomb impurity are investigated. The energy-band structure of a pristine Dice lattice consists of a Dirac cone and a flat band at the Dirac point. We use the tight-binding formalism and find that the flat band states transform into a set of discrete bound states whose electron density is localized on a ring around the impurity mainly on two of the three sublattices. Its energy is proportional to the strength of the Coulomb impurity. Beyond a critical strength of the Coulomb potential atomic collapse states appear that have some similarity with those found in graphene with the difference that the flat band states contribute with an additional ringlike electron density that is spatially decoupled from the atomic collapse part. At large value of the strength of the Coulomb impurity the flat band bound states anticross with the atomic collapse states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749375200002 Publication Date 2022-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:186387 Serial 6977  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages (down) 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000003 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110087 Serial 3048  
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 3 Pages (down) 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610779200008 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176585 Serial 6719  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages (down) 035421,1-035421,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A perpendicular electric field applied to multilayers of graphene modifies the electronic structure near the K point and may induce an energy gap in the electronic spectrum. This gap is tunable by the gate voltage and its size depends on the number of layers. We use a tight-binding approach to calculate the band structure and include a self-consistent calculation in order to obtain the density of charge carriers. Results are presented for systems consisting of three and four layers of graphene. The effect of the circular asymmetry of the band structure on the gap is critically examined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200119 Publication Date 2009-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75984 Serial 887  
Permanent link to this record
 

 
Author de Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Topological confinement in trilayer graphene Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 3 Pages (down) 035420-35425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support two different branches of localized states for the case of bilayer graphene, and show similarities to the surface states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different unidimensional branches of states in each valley that are confined to the kink interface. They have the property E(k(y)) = -E(-k(y)) when belonging to the same valley and E-K(k(y)) = -E-K' (-k(y)). A kink-antikink potential profile opens a gap in the spectrum of these one-dimensional states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332220800005 Publication Date 2014-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq-PRONEX), the Flemish Science Foundation (FWO-Vl), and the Bilateral project between CNPq and FWO-Vl and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115830 Serial 3676  
Permanent link to this record
 

 
Author da Costa; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 035415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379502200008 Publication Date 2016-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas No. 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation, under the process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, the Brazilian Program Science Without Borders (CsF), and the Lemann Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134947 Serial 4190  
Permanent link to this record
 

 
Author Shakouri, K.; Simchi, H.; Esmaeilzadeh, M.; Mazidabadi, H.; Peeters, F.M. url  doi
openurl 
  Title Tunable spin and charge transport in silicene nanoribbons Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages (down) 035413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject to an external electric field E-z. The effect of an exchange field M-z is also taken into account and its consequences on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion symmetry in the presence of intrinsic spin-orbit interaction in combination of E-z and M-z fields. Our quantum transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely spin-polarized for low-energy carriers even when a few edge vacancies are present.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357806900004 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 70 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127099 Serial 3746  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages (down) 035409,1-035409,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200107 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75983 Serial 3762  
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Quantum magnetotransport properties of a MoS2 monolayer Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages (down) 035406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B. We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000367663500003 Publication Date 2016-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131093 Serial 4233  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Chwiej, T.; Adamowski, J. url  doi
openurl 
  Title Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages (down) 035401,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222996700089 Publication Date 2004-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69390 Serial 3063  
Permanent link to this record
 

 
Author Miranda, L.P.; Milovanović, S.P.; Filho, R.N.C.; Peeters, F.M. url  doi
openurl 
  Title Hall and bend resistance of a phosphorene Hall bar Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 3 Pages (down) 035401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The dependence of the Hall and bend resistances on a perpendicular magnetic field and on vacancy defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with the Landauer-Buttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic regime is found due to the presence of high- and low-energy transport modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies where the plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669002000003 Publication Date 2021-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179704 Serial 6997  
Permanent link to this record
 

 
Author Kuskovsky, I.L.; MacDonald, W.; Govorov, A.O.; Mourokh, L.; Wei, X.; Tamargo, M.C.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Optical Aharonov-Bohm effect in stacked type-II quantum dots Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue Pages (down) 035342,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000248500800117 Publication Date 2007-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 63 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69658 Serial 2470  
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Molecular states of two vertically coupled systems of classical charged particles confined by a Coulomb potential Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue Pages (down) 035336,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000248500800111 Publication Date 2007-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:69657 Serial 2184  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages (down) 035331,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000188883800075 Publication Date 2004-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69379 Serial 1722  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 3 Pages (down) 035329,1-035329,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617800101 Publication Date 2009-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77950 Serial 2989  
Permanent link to this record
 

 
Author Shi, J.; Peeters, F.M.; Edmonds, K.W.; Gallagher, B.L. url  doi
openurl 
  Title Even-odd transition in the Shubnikov-de Haas oscillations in a two-dimensional electron gas subjected to periodic magnetic and electric modulations Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 3 Pages (down) 035328-035328,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate low-temperature magnetotransport of high-mobility two-dimensional electron gases subjected to one-dimensional periodic magnetic and electric modulations. Our previous quantum perturbation theory is extended to lower temperatures and the energy broadening due to impurity scattering is incorporated. Numerical calculations are made for situations where several Landau bands overlap. We find that the Shubnikov-de Haas (SdH) oscillations are dominated by collisional resistance. The amplitudes of the SdH oscillations are strongly modulated and the positions of the SdH minima switch between even and odd Landau-level filling factors, in the resistance both parallel and perpendicular to the one-dimensional modulation. This is a consequence of the internal structure (i.e., smeared out van Hove singularities) of overlapping Landau bands. Our theoretical results are in good agreement with recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000177338500090 Publication Date 2002-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:94918 Serial 1091  
Permanent link to this record
 

 
Author Filinov, A.V.; Riva, C.; Peeters, F.M.; Lozovik, Y.E.; Bonitz, M. url  doi
openurl 
  Title Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages (down) 035323,1-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222996700086 Publication Date 2004-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 77 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69389 Serial 1661  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Multiple rings in a 3D anisotropic Wigner crystal: structural and dynamical properties Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 3 Pages (down) 035321,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000252862900102 Publication Date 2008-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:67821 Serial 2229  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Kálmán, O.; Peeters, F.M.; Benedict, M.G. url  doi
openurl 
  Title Aharonov-Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 3 Pages (down) 035304,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243895400086 Publication Date 2007-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63751 Serial 86  
Permanent link to this record
 

 
Author Dharma-Wardana, M.W.C.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Correlation functions in electron-electron and electron-hole double quantum wells : temperature, density, and barrier-width dependence Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 3 Pages (down) 035303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The classical-map hypernetted-chain (CHNC) scheme, developed for treating fermion fluids at strong coupling and at finite temperatures, is applied to electron-electron and electron-hole double quantum wells. The pair-distribution functions and the local field factors needed in linear-response theory are determined for a range of temperatures, carrier densities, and barrier widths typical for experimental double-quantum-well systems in GaAs-GaAlAs. For electron-hole double quantum wells, a large enhancement in the pair-distribution functions is found for small carrier separations. The CHNC equations for electron-hole systems no longer hold at low densities where bound-state formation occurs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455163800004 Publication Date 2019-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl). M.W.C.D.-W. acknowledges with thanks the hospitality and stimulating atmosphere of the Condensed Matter Theory group at the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:156734 Serial 5201  
Permanent link to this record
 

 
Author Jakovljevic, D.Z.; Grujic, M.M.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title Helical edge states in silicene and germanene nanorings in perpendicular magnetic field Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 3 Pages (down) 035301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to nonzero intrinsic spin-orbit interaction in buckled honeycomb crystal structures, silicene and germanene exhibit interesting topological properties, and are therefore candidates for the realization of the quantum spin Hall effect. We employ the Kane-Mele model to investigate the electron states in hexagonal silicene and germanene nanorings having either zigzag or armchair edges in the presence of a perpendicular magnetic field. We present results for the energy spectra as function of magnetic field, the electron density of the spin-up and spin-down states in the ring plane, and the calculation of the probability current density. The quantum spin Hall phase is found at the edges between the nontrivial topological phase in silicene and germanene and vacuum. We demonstrate that the helical edge states in zigzag silicene and germanene nanorings can be qualitatively well understood by means of classical magnetic moments. However, this is not the case for comparable-sized armchair nanorings, where the eigenfunctions spread throughout the ring. Finally, we note that the energy spectra of silicene and germanene nanorings are similar and that the differences between the two are mainly related to the difference in magnitude of the spin-orbit coupling.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000418354400001 Publication Date 2017-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work was supported by Erasmus+ and the Serbian Ministry of Education, Science and Technological Development (Project No. III45003). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:148426UA @ admin @ c:irua:148426 Serial 4878  
Permanent link to this record
 

 
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 3 Pages (down) 035142  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339974700001 Publication Date 2014-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 49 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118776 Serial 3080  
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Field effect on surface states in a doped Mott-insulator thin film Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages (down) 035131-35136  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport. DOI: 10.1103/PhysRevB.87.035131  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000001 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110086 Serial 1190  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 3 Pages (down) 035131  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single- band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single- band model when (interband) interactions are strong.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000405706600005 Publication Date 2017-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145209 Serial 4716  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Leenaerts, O.; Liu, X.-J.; Peeters, F.M. url  doi
openurl 
  Title New group-V elemental bilayers : a tunable structure model with four-, six-, and eight-atom rings Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 3 Pages (down) 035123  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four-and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000405363900005 Publication Date 2017-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work is supported by Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), National Natural Science Foundation of China (NSFC) ( No. 11574008), the Thousand-Young-Talent Program of China, and the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144834 Serial 4721  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 3 Pages (down) 035119-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832277500001 Publication Date 2022-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189515 Serial 7140  
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D. pdf  doi
openurl 
  Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 3 Pages (down) 035025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000406926600001 Publication Date 2017-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 13 Open Access  
  Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:145151 Serial 4717  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: