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Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of
single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon
polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and
by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an
additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small
gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size
dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the
calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical
phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W 2 for
out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from
every single phonon mode are then obtained by the nonequilibrium Green’s function technique. We found that,
while edge and central localized single atomic vacancies do not affect the low-energy transmission function of
in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand,
in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can
be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based
devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal
transport on the nanoscale.
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I. INTRODUCTION

The first astonishing properties seen in graphene after its
exfoliation were connected with its electronic structure. The
anomalous quantum Hall effect and the ultrahigh electron
mobility [1,2] are among the most celebrated properties. They
are consequences of the electronic band structure characterized
by two inequivalent cones at the edges of the Brillouin zone
making electrons behave as ultrarelativistic massless Dirac
fermions [2]. Later on, other fascinating properties were
discovered. Graphene is now considered as a multifunctional
material, combining outstanding electric, optical, mechanical,
and thermal properties [3–9]. In particular, thermal transport
plays an exciting role in graphene physics. Measurements have
shown that graphene is one of the best heat conductors with a
thermal conductivity κ as high as ∼5000 W/mK in suspended
samples [7–9]. These results opened the route for new thermal
control applications in nanoelectronics [10–15].

Numerous theoretical studies have addressed the problem
of the thermal conductivity in graphene but the intrinsic
mechanisms behind the large value of κ remain still to be
clarified [8,16–19]. Within graphene based nanosctructures,
nanoribbons (GNRs) are among the most studied. Their partic-
ular geometry and possible configurational defects, such as va-
cancies or 13C carbon isotopes, modify the usual phonon spec-
trum and therefore the thermal transport properties [20–25].
Understanding the microscopic mechanism for thermal trans-
port in confined geometries is therefore crucial to control the
heat dissipation at the nanoscale. Although some insights of
GNRs thermal properties can be deduced from former studies
on carbon nanotubes [26,27], to our knowledge, detailed

microscopic explanation of the effect of boundary conditions
and atomic vacancies in ribbons is still lacking.

In the present paper, we study the vibrational characteristics
and the thermal transport properties of graphene nanoribbons
with single atomic vacancies and subjected to different bound-
ary conditions: free and supported edges. To this end, we adopt
a fifth-nearest-neighbor force-constant model (5NNFCM)
[28–30] to obtain the phonon spectrum of both, armchair
(AGNR) and zigzag (ZGNR) ribbons, and compare the results
with those obtained by the elasticity theory of continuum
membranes (ETCM) [31–33]. Thermal transport properties
are then addressed by means of the nonequilibrium Green’s
function technique (NEGF) [34,35]. We analyze here the
contributions from in-plane and out-of-plane phonon modes
to the ballistic thermal conductance. Our results show that
it is possible to control the partial contributions of polarized
phonons to the thermal conductance of GNRs.

The paper is organized as follows. In Sec. II, we compare
the out-of-plane phonon modes of GNRs as determined by
the ETCM and the lattice dynamic 5NNFCM. In Sec. III, we
use the 5NNFCM within the NEGF technique to calculate
polarized phonon transmissions and thermal conductance of
free- and supported-edge ZGNRs in the presence of single
vacancies. Finally, in Sec. VI, we discuss the conclusions and
perspectives of our work.

II. PHONON MODES

We start by characterizing the phonon modes of GNRs
under two different boundary conditions: free and supported
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FIG. 1. (Color online) (a) Free-edge and (b) supported-edge con-
figurations. The ribbon width is denoted by W . Periodic boundary
conditions are considered in the y direction.

edges (see Fig. 1). As has been proposed in Ref. [32],
both conditions can be realized experimentally. The free-edge
configuration corresponds to a strip of graphene that stretches
on a wide trench and is supported on the extremes, whereas
the supported-edge situation represents a strip that stretches
over a thin trench and is supported on the edges.

A. Free-edge GNRs

1. Force-constant model

We consider the harmonic dynamics of carbon (C) atoms
in GNRs by using an inter-atomic force-constant model. We
employ to this end the 5NNFCM developed by M. Mohr and
collaborators [29] and used later by Michel and Verberck
[28] to study the phonon spectrum of single and multilayer
graphene. Following the notation adopted in Ref. [28], the
dynamical matrix can be expressed as

Dκκ ′
ij (q) =

∑
n′

�ij (nκ; n′κ ′)
M

e[iq·(X(n′,κ ′)−X(n,κ))], (1)

where M is the individual mass of the C atoms, κ = 1,2 reads
for the two atoms in each cell (graphene case), i,j = x,y,z are
the three axes directions of motion and X(n,κ) is the C atom
2D coordinate in the honeycomb lattice structure.

While considering ribbons with a finite number of atoms
in the transverse direction and adopting periodic boundary
conditions in the longitudinal direction, the wave vector q
becomes one-dimensional and runs only in the y direction
(see Fig. 1). The force-constant matrix �ij (nκ; n′κ ′) is written
in terms of parameters that represent the covalent bond
forces within the graphene plane [28,29]. A schematic plot
of the scope of this potential is displayed in Fig. 2. The
phonon dispersion and the corresponding eigenvectors for a
ribbon of finite width W are obtained by diagonalization of
the dynamical matrix Dκκ ′

ij (q) given in Eq. (1). A unit cell
consisting in a line (a pair of lines) of C atoms in the transverse
direction is adopted in order to obtain zigzag (armchair) edges.

FIG. 2. Schematic plot of the 5th nearest-neighbor force-constant
model 5NNFCM range. Dotted (dotted-dashed) lines indicate the unit
cell of ZGNRs (AGNRs). Crosses symbolize the vacancies we use
when calculating the thermal condunctance in Sec. III.

In Fig. 3, we show the phonon dispersion and eigenvectors of a
free-edge ZGNR (left) and an AGNR (right). In both cases, we
found the usual three acoustic phonon modes, the ZA (flexural)
mode, the TA (transversal) mode, and the LA (longitudinal)
mode. Unlike graphene, GNRs have a rotational symmetry
around a central axis in the long direction and hence an extra
acoustic mode is expected. In the present case, the fourth
acoustic mode, symbolized as 4ZA in Fig. 3(a), presents a
small gap at q = 0 (note that atomic displacements of the 4ZA
resemble an homogeneous rotation of the ribbon). We attribute
the small gap to the inaccuracy of the 5NNFCM, which was
defined by fitting graphene bulk phonons where this rotational
symmetry does not exist. Similar observations for GNRs
and CNTs with force-field models and first-principles DFT
calculations have been reported previously in Refs. [35–38].

For AGNRs, we find that the properties of the phonon
modes are in general very similar to the ones obtained for
ZGNRs, that is, the main vibrational properties at low energies
are somehow independent of the microscopic details of the
edges. Note, however, that very close to q = 0, the flexural
acoustic ZA mode experiences a change in the dispersion from
the quadratic behavior to a linear dependence. A similar trend
was obtained by using a force-constant model with interactions
up to fourth-nearest neighbors by Huang et al. in Ref. [35].
This behavior is also a consequence of using a potential best
suited for graphene.

2. Elastic theory

The vibrational behavior of graphene involving low-energy
acoustic phonon modes can be studied by the elasticity
theory of continuum membranes [39]. The two-dimensional
honeycomb lattice is then approximated by a continuum
membrane where deformations from the flat configuration
are parametrized using the Monge representation r(x,y) =
(x,y,h(x,y)), with h being the vertical displacement. The
effective free energy F in the harmonic approximation can
be expressed as a sum of bending and in-plane elastic energies
[31,39]:

F =
∫

d2x
κ

2
[(∇2h)2 − 2Det(∂α∂βh)]

+
∫

d2x
(
2μu2

αβ + λu2
αα

)
, (2)
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FIG. 3. (Color online) (a) Dispersion relations for free-edge zigzag (left) and armchair (right) nanoribbons of 32 atoms width calculated
with the 5NNFCM. In (b)–(d), we show the corresponding first six eigenmodes.

where uαβ = 1
2 (∂αuβ + ∂βuα) is the strain tensor, κ is the

bending rigidity, and μ and λ the Lamé coefficients.
In the harmonic approximation, in-plane and out-of-plane

modes are completely decoupled. In the following, we take
only into account the out-of-plane deformations. Results con-
cerning in-plane modes were reported in Ref. [32]. We consider
a free-edge ribbon of width W and length L � W running
along the y direction, where we assume periodic boundary
conditions. The edges in the narrow direction, located at
x = −W/2 and x = W/2, are taken as free boundaries. Then,
the coefficients of the variation of F with respect to h and
to its normal derivative ∂h/∂n at these edges should be
zero, which imposes [31]: (∂3

x + 2∂2
y ∂x)h(x = ±W

2 ,y) = 0 and
∂2
xh(x = ±W

2 ,y) = 0. Together with the kinetic contribution∫
d2x

ρ

2 ḣ2, where ρ is the surface mass density, plane waves of

0 5 10 15 20 25
q

0

100

200

300

400

500

600

700

800

900

1000

λ(
q)

ZA
4ZA
ZO2
ZO3
ZO4
ZO5 -2

-1

0

1

2

-2

-1

0

1

2

-0,4 -0,2 0 0,2 0,4
x/W

-2

-1

0

1

2

(a)

(b)

(c)

(d)

ETCM - Free-edges

FIG. 4. (Color online) (a) Dispersion relation λ̄(q̄) =
W 2

√
ρ

κ
ω(qW ) in terms of q̄ = qW for free-edge ribbons. In

(b)–(d), we show the eigenfunctions fn(x/W ) for the first six
branches.

the form h(x,y,t) = f (x) ei(qy−ωt) are proposed as solutions.
More details on the calculation can be found in our previous
Ref. [33]. In Fig. 4, we show the dispersion relation ωn(q)
and eigenfunctions fn(x), where n indicates the corresponding
n mode. In agreement with results found above with the
5NNFCM, we observe that the lowest energy branch, n = 0,
has a quadratic dispersion relation and can be identified with
the acoustic flexural mode (ZA). Note in Fig. 4 (b) that f0 is x

constant and can be understood as a homogeneous translational
mode in the z direction. The second branch, n = 1, appears
also as a flexural acoustic mode although it is not present in
an infinite membrane. As we mentioned before, this mode
is connected with an additional global rotational symmetry
of GNRs. The following branches are optical-like and can be
thought as overtones of the principal modes as we see in Fig. 4.
An overall good agreement is observed with results presented
in Fig. 3.

B. Supported edges

1. Force-constant model

The condition of supported edges was set adding fixed extra
carbon atoms at both edges extending the honeycomb structure
in the x direction. Although these extra atoms do not appear as
new elements in the lattice Hamiltonian because they remain
fixed in their equilibrium positions, their interactions modify
the diagonal terms according to the 5NNFCM. In Fig. 5, we
show the phonon dispersion given by the 5NNFCM for a
ZGNR (left) and a AGNR (right). It can be observed that
all the phonon branches have a gap at q = 0. These gaps are
related to the energy cost of global rigid displacements since
now the edges of the ribbon are fixed. Note that the behavior
of in-plane modes, labeled as ¯LO and ¯T O, in Fig. 5(a) (left
and right) is comparable with results obtained in Ref. [32] for
fixed membranes. Out-of-plane modes are further discussed
below. As a consequence of the supported edges, the edge
atoms are fixed for all eigenvectors and set to zero. Here,
analogously to the case of free-edge ribbons, we observe
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FIG. 5. (Color online) (a) Dispersion relations for supported-edge zigzag (left) and armchair (right) nanoribbons of 32-atoms width as
given by the 5NNFCM. (b)–(d) First six flexural eigenmodes. Note the similarity with the results of a fixed elastic membrane.

that overall similar trends are obtained between ZGNRs and
AGNRs.

2. Elastic theory

Supported edges in the ETCM are consistent with setting
h(x = ±W

2 ,y) = 0 and ∂xh(x = ±W
2 ,y) = 0. Physically, one

can interpret this as having the ribbon stuck to the edge [33]. In
Fig. 6, we show the phonon dispersion given by the elasticity
model under these conditions. A good agreement is found
with the results of the 5NNFCM. The main differences with
the case of free-edge ribbons is that here a gap appears for
all phonon branches due to the breakdown of the translational
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FIG. 6. (Color online) (a) Dispersion relation λ̄(q̄) =
W 2

√
ρ

κ
ω(qW ) in terms of q̄ = qW for supported-edge ribbons.

(b)–(d) Eigenfunctions fn(x/W ) for the first six branches. Note
that all eigenfunctions go to zero with no slope at the borders. As
free-edge ribbons, the branch number n matches the number of
nodes.

symmetry. In Ref. [33], we estimated that the gap for the first
out-of-plane mode of a supported-edge elastic membrane with
W = 30 nm, is around ∼7.9 μeV. On the other hand, the gap
for the in-plane modes [32] is around ∼1 meV, being thus
highly larger than the former one. As we will show below, this
has a strong impact in the thermal transport properties at low
temperatures.

C. System size effects

Before discussing the thermal transport properties of
graphene nanoribbons, it is worth to analyze the dependence
of the energy gap at q = 0 with the ribbon width W . In
free-edge ribbons, it is naturally expected that when the
ribbon width increases, the phonon band structure of graphene
is recovered. Following this reasoning, the larger the ribbon
width, the smaller the band gap of the low-lying optical
phonon modes will be. We have seen that energy dispersion
relations and eigenfunctions-eigenmodes present similar
behaviors in both, continuum elasticity theory and discrete
lattice methods. ETCM predicts [32,33,40] a scaling of the
gaps for in-plane modes as ∼1/W and for out-of-plane modes
as ∼1/W 2. In Fig. 7, we show the gap dependence with the
ribbon width W obtained by the 5NNFCM in ZGNRs. It is
observed that both, free- and supported-edge ribbons, satisfy
the scaling predicted by the elasticity theory. This is important
since it allows to estimate the band gaps in large experimental
samples. Related works found a weakening on the width
dependence for in-plane modes with increasing vibrational
order in very small samples [37,38]. These deviations may
arise from hydrogenated edges and geometry relaxation,
which have not been included in our study.

III. THERMAL TRANSPORT PROPERTIES

A. Calculation method

Thermal transport is analyzed in the ballistic regime
using the Landauer formalism within the NEGF technique
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FIG. 7. (Color online) (a) Gaps [ω(q = 0)] of out-of-plane modes as functions of width for free-edge ZGNRs (left) and supported-edge
ZGNRs (right). (b) Same as (a) for in-plane modes.

[41,42]. Calculations are performed in the harmonic approx-
imation neglecting any kind of phonon-phonon or electron-
phonon interactions [9,34]. For coherent phonon transport,
the atomic structure of graphene nanoribbons can be gen-
eralized as a central device between two homogeneous
semi-infinite contacts where Hamiltonians are defined by
using the 5NNFCM described in Sec. II. Left and right
contacts are thermal reservoirs at constant temperatures T1 and
T2, respectively, connected to the central device. Following
the steps described in Ref. [35], surface Green’s functions
(SGFs) are calculated to obtain phonon vibrational modes
at the contact’s surfaces. These functions are evaluated
using the decimation technique [43,44] and can be formally
expressed as

gL(R)(ω) = lim
δ→0

[(ω2 + iδ)I − HL(R)C]−1, (3)

where HL(R)CB are the harmonic Hamiltonians of left (right)
contacts. The introduction of the δ parameter is directly related
to the retarded characteristic of SGFs and the computational
times involved in the decimation technique [34,45]. The
convergence criterion adopted here is that the iterative process
is finished when the largest update of any element of gL(R)(ω)
is less than 1%. Once SGFs are computed, the phonon
transmission function is calculated as [35,41]

�(ω) = Tr[�L(ω)G(ω)�R(ω)G†(ω)]. (4)

Here, G(ω) is the Green’s function of the central device and
�L(R)(ω) is the left (right) broadening matrix. The energy flow
through the system is evaluated using Landauer formalism:

J =
∫

�ω

2π
�(ω)[N (TL,ω) − N (TR,ω)]dω, (5)

where N (T ,ω) is the Bose-Einstein equilibrium distribution
of phonons with energy �ω at temperature T . If we consider
a small temperature difference TR − TL between right and left
contacts, the thermal conductance in terms of temperature is

defined as

λ(T ) =
∫

�ω

2π
�(ω)

dN

dT
dω. (6)

The transmission function �(ω) of Eq. (4) takes into account
the behavior of all phonon modes in both contacts. In other
words, it can be interpreted as a summation over all phonon
polarizations at a given frequency ω. In order to calculate
different polarization-specific transmissions it is needed to
transform the broadening matrices. Note that this is important
since it will allow to determine the effect of atomic vacancies
and boundary conditions on the transmission of every single-
phonon mode. This procedure has been developed recently
in Ref. [46]. Basically, one has to substitute the broadening
matrices �L(R)(ω) by

γL(R)(w) =
∑

i

τL(R)λL(R),iϕL(R),iϕ
†
L(R),iτ

†
L(R), (7)

where {λL(R),i ,ϕL(R),i} are the corresponding eigenvalues and
eigenvectors of the matrix AL(R) = i(gL(R) − g

†
L(R)) and τL(R)

are the interaction matrices between left (right) contact and
the device. By replacing γL(R)(w) for �L(R)(ω) in expression
(4), we obtain for each value of i the transmission function of
one polarization mode propagating from left to right (right to
left).

B. Boundary conditions

The polarized phonon transmission functions (PPTFs) for
homogeneous free- and supported-edge ZGNRs of 32-atoms
width are shown in Fig. 8. As expected for any homogeneous
ribbon, the PPTF of each phonon mode adopts the value 0
or 1. For the free-edge case, we observe the presence of
the three acoustic modes ZA, LA, and TA until the small
energy gap of the 4ZA band is reached at ∼3 cm−1. At
this point, the transmission function value becomes 4 as
noticed in Refs. [17,40,45,47] for GNRs and CNTs where four
acoustic modes are found at ω = 0. Then, at higher energies
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FIG. 8. (Color online) Polarized phonon transmission function
for (a) free-edge and (b) supported-edge ZGNRs. W = 32.6 Å.

in accordance with the phonon spectrum of Fig. 3(a), left,
the extra contributions to the transmission function of the
next three optical modes appear exactly at the corresponding
energies ω1(0) ∼ 12 cm−1, ω2(0) ∼ 28 cm−1, and ω3(0) ∼
49 cm−1. Note that the calculations of phonon dispersion
modes and transmission functions are independent one of the
other.

The case of supported edges is shown in Fig. 8(b). Due to
the breakdown in the translational symmetry, all the phonon
modes have an energy gap ω(0) > 0 and therefore �(ω) = 0
until ω ∼ 6 cm−1 where the first gap is closed. This means
that no thermal conductance is possible in this energy interval.
Later on, as in the previous case, the transmission function
continuously increases by steps of one unit each time a new
gap is overcome as can be seen by comparing with Fig. 5(a),
left. Although not shown in Fig. 8, �(ω) also decreases
when ω exceeds the maximum energy of a particular phonon
mode.

We mention that while in free-edge GNRs in-plane modes
contribute to the thermal conductance already from ω = 0,
in the case of supported-edge GNRs their contribution to the
transmission function appears only after the contribution of
out-of-plane modes. This can be observed in Fig. 5(a), left,
where the ¯LO mode appears at higher energy than the ¯ZO2
and ¯ZO3 modes. Now, by considering that the energy gaps
of in-plane modes decay as W−1 (slower than out-of-plane
modes with W−2), we obtain that out-of-plane phonon modes
will govern only the thermal transport at low energy. As we
show in the following, contributions from out-of-plane phonon
modes can be modified by introducing atomic vacancies. The
behavior of PPTFs for AGNRs under both boundary conditions
considered is qualitatively similar. However, it can be seen that
ZGNRs have larger thermal conductances than AGNRs in the
entire temperature range [35,47,48].

C. Atomic vacancies

Let us study the effect of single atomic vacancies located
at the edge and at the center of ZZGNRs under both, free-
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FIG. 9. (Color online) Polarized phonon transmission function
for a free-edge ZGNR with a single vacancy localized (a) at an edge
and (b) at the center.

and supported-edge boundary conditions. Figure 9 shows the
PPTF for free-edge ZZGNRs with a vacancy at (a) the border
and (b) the center of the ribbon. We can observe important
differences as compared to the homogeneous case analyzed
above. Here the modes 4ZA and ZO2 deviate considerably
from the perfect transmission value equal to one. As a rule, all
of the out-of-plane contributions become severely diminished
by the presence of the vacancy. In contrast with this, note that
the corresponding in-plane contributions remain absolutely
unaffected at low energies. Calculations performed for other
widths (not shown here) show similar results. Following the
ideas of Ref. [26], this behavior can be related to the respective
group velocity of the given phonon modes. This is, while
single atomic vacancies do not interfere with long-wavelength
acoustic phonons with large group velocities, irrespective of
their symmetrical properties, they interact strongly with low-
speed propagating modes (small group velocity) as the out-of-
plane modes.

The case of supported-edge ribbons with single atomic
vacancies is displayed in Fig. 10. The overall behavior for
a central vacancy is similar to the case of free edges, here,
however, the reductions are somehow larger. Note that when
the vacancy lies at the center of the ribbon, irrespective
to the edge boundary condition, the contribution of every
flexural mode becomes more affected than when it lies at the
edge. Calculations for other widths show similar qualitative
behaviors.

D. Thermal conductance

Finally, the temperature dependence of thermal conduc-
tance for all the above analyzed cases is shown in Fig. 11. In
the limit when temperature T → 0, λ(T ) approaches the value
3K0, where K0 = π2k2

BT /3h = (9.456 × 10−13W K−2)T is
the thermal conductance quantum [35]. The usual result 4K0

for 1D systems [17,40,47,49] is achieved with exactly four
acoustic phonon bands. Here, the 4ZA mode presents a small
gap as already discussed, so the low-temperature behavior
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FIG. 10. (Color online) Polarized phonon transmission function
for a supported-edge ZGNR with a single vacancy localized (a) at an
edge and (b) at the center.

does not include this contribution. Note, however, that the
thermal conductance per unit cross-section λ(T )/(sW ) at
T = 100 K calculated with s = 3.5 × 10−10 m and W = 3.26
nm (free-edge ZGNR of Fig. 11) is consistent to those reported
in Refs. [25,40,49] where λ(T )/(sW ) ∼ 109 W K−1m−2.

According to the PPTFs of previous sections, we observe
that the largest λ(T ), in the whole range of temperatures, is
obtained for free-edge GNRs. The introduction of vacancies
reduces λ(T ) due to the lower contributions of flexural
phonons. As we discussed above, by supporting the ribbon
at its edges, a large gap opens up for in-plane phonons, which
produces a further reduction on λ(T ).

An interesting crossover takes place at low temperatures
(inset in Fig. 11). Because of the large gap of in-plane
phonon modes in supported-edge ribbons, λ(T ) is smaller as
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FIG. 11. (Color online) Thermal conductance as a function of
temperature for different boundary conditions and vacancy local-
izations. BV stands for a vacancy at the border and CV for a vacancy
at the center. In the inset, we show a zoom of the thermal conductance
for all configurations at low temperatures.

compared to the free-edge ribbons with vacancies either at the
border or at the center. At higher temperatures, the situation
is reverted and in-plane phonon modes start to contribute
to λ(T ). This process can be understood by noticing that
at high temperatures, homogeneous supported-edge ribbons
conduct heat via both, in-plane and out-of-plane phonon
modes, while free-edge ribbons with vacancies have reduced
(not perfect) contributions from flexural phonons. Therefore,
by introduction of vacancies or supporting the ribbon at its
edges, we have different mechanisms to control the relative
contributions of phonon modes to the thermal conduction at
different temperatures.

In the ballistic regime, when the width of the ribbon
increases, extra phonon modes are available for the thermal
conductance and λ(T ) increases. Although not shown here, we
found that the mentioned crossover holds for different ribbon
widths. Beyond the ballistic regime, nonmonotonic behavior
of the thermal conductivity κ in terms of lateral dimensions
and edge roughness are expected [50].

IV. CONCLUSIONS

The effects of edge and central located single atomic
vacancies on the ballistic thermal conductance of graphene
nanoribbons were calculated by means of the Landauer
formalism [41] using NEGF methods. We analyzed the cases of
free- and supported-edge ribbons. As a first step, we provided
a full comparison of the vibrational phonon modes obtained by
a fifth-nearest-neighbor force-constant model 5NNFCM, used
before in the description of graphene [28], and the continuum
elasticity theory.

We analyzed in detail the microscopic characteristics of
in-plane and out-of-plane low-energy phonon modes and
we ascribed the finite energy edge-localized fourth acoustic
phonon mode 4ZA, obtained through the 5NNFCM, to the
lack of rotational symmetry. This effect is also present in
DFT-based results [38]. We demonstrated that the scalings
against the ribbon width W of the phonon band gaps follow
1/W and 1/W 2 laws for in-plane and out-of-plane modes,
respectively.

We found that in-plane polarized transmissions can be
strongly reduced at low energy by setting fixed boundary
conditions. On the other hand, single vacancies reduce
considerably only the out-of-plane polarized transmissions.
We believe that these findings could open new routes to
design graphene-based structures where a control of the
polarized mode transmission is possible, thus having important
consequences in the thermal transport of nanoscale-devices.
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