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Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared
to monolayer graphene, due to the presence of multiple energy bands and the effect of edges. For
armchair nanoribbons we find that bound states gradually transform into atomic collapse states
with increasing impurity charge. This is very different in zig-zag nanoribbons where multiple quasi-
one-dimensional bound states are found that originates from the zero energy zig-zag edge states.
They are a consequence of the flat band and the electron distribution of these bound states exhibits
two peaks. The lowest energy edge state transforms from a bound state into an atomic collapse
resonance and shows a distinct relocalization from the edge to the impurity position with increasing

impurity charge.

I. INTRODUCTION

Atomic collapse is a phenomenon where for sufficiently
large charge of the nuclei bound states can enter the lower
positron continuum and turn into quasi-bound states [1-
4]. If the bound state is empty this process of entering the
negative continuum is accompanied with the production
of an electron-hole pair. Due to the very large nuclear
charge (Z.) needed in order to induce atomic collapse
it was never conclusively detected in experiments [5, 6].
However, the discovery of graphene enabled researchers
to approach the atomic collapse problem in a different
way. It was shown that due to the enhanced Coulomb
interaction in graphene, atomic collapse should occur at
significantly smaller charge (i.e. Z & 1) as compared to
the original predicted one of relativistic atomic physics (i.
e. Z >137) [7, 8]. Recently, atomic collapse was detected
in four distinct situations: i) with charged dimers placed
on top of a graphene lattice [9], ii) a vacancy charged with
an STM tip [10], iii) collapse induced by a sharp STM
tip [11], and iv) using an array of subcritical charges [12].

The experimental observation of atomic collapse to-
gether with its potential use for controlling charge car-
riers in graphene is a major motivation to study atomic
collapse in more detail, e.g. by considering different ar-
rangement of charges and different sample size. For ex-
ample in Refs. [13-17] atomic collapse was studied in the
presence of a dipole like field. Atomic collapse in the
presence of multiple charges of equal strength was stud-
ied in Refs. [12, 18, 19]. Atomic collapse was also inves-
tigated in different systems [20-25], e.g. in Refs. [24, 25]
gapped graphene was considered. In the latter case,
atomic collapse was found to be more analogous to the
one predicted for relativistic atoms. Instead of the sud-
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den appearance of atomic collapse states, as in the gap-
less case, in gapped graphene bound states gradually turn
into atomic collapse states when entering the hole con-
tinuum. Interestingly it was theoretized that atomic col-
lapse should also occur in gapped 1D-Dirac systems [26].
Such a strict 1D Hamiltonian is a rather crude approxi-
mation for graphene nanoribbons demanding for a more
detailed study of the problem.

In this paper we will consider how atomic collapse
manifests itself in finite width graphene nanoribbons.
It is known that nanoribbons come in different forms.
There are nanoribbons with armchair or zig-zag edges
and within these two types their can be either a gap or
no gap depending on the number of atomic chains. On
top of that the confinement in one of the spatial directions
leads to the appearance of multiple energy bands. These
properties are the reason that the atomic collapse of bulk
graphene will be different in graphene nanoribbons as we
will show in this paper. For example, we found that
the Coulomb potential results in bound states at zig-zag
edges. This is unexpected in view of the Klein paradox
that electrons cannot be confined by electrostatic field in
zero gap graphene.

II. MODEL

Here we use the tight binding model which includes the
graphene lattice structure in contrast to the continuum
model used in e.g. Ref. [26]. For graphene we use the
following tight binding Hamiltonian

I:] = Z(tija;»rbj—FH.C.)—FZ V(ﬁA)aIal—&—Z V(ﬁB)bjbl
(i,5) @ i

(1)

The first term represents the tight-binding Hamilto-
nian without any external fields. The hopping parame-
ter is given by ¢;; and for graphene we take the generally
accepted value -2.8 eV for nearest neighbour hopping.

The operators ai(ag) and bi(b;r) create (annihilate) an
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electron on the i site of sublattice A and B, respec-
tively. The last two terms include an electrostatic po-
tential which for our case is due to the presence of a
Coulomb charge, Ze, which we model by a Coulomb po-
tential V(r) = —Bhvp/+/r? + 13 with 8 = Ze? /khvp the
dimensionless coupling constant, vy the Fermi velocity
and k the effective dielectric constant. We took ro = 0.5
nm as a regularization parameter which is a reasonable
experimental value as was shown in Ref. [10]. Without
such a regularization a study of atomic collapse is not
possible for a point-size impurity [27]. In order to solve
the tight-binding Hamiltonian we use the open source
software pybinding [28]. In all the calculations we use a
broadening of 0.003 eV and the units of the Local Den-
sity of States (LDOS) are [eV.nm™2]. A 1000 nm long
nanoribbon is used to simulate the infinite long nanorib-
bon. For an armchair (zigzag) nanoribbon of width 4.8
nm (5 nm) the system contains 1.8%10% (1.9%10°) atoms.

IIT. ATOMIC COLLAPSE IN GRAPHENE

For completeness and for comparison purposes we re-
view atomic collapse in graphene. In graphene the atomic
collapse effect manifests itself in a different way as com-
pared to relativistic physics. In relativistic physics bound
states inside the gap region (A = 2mgc® with mg the
electron rest mass and ¢ the velocity of light) decrease in
energy with increasing value of the nuclear charge. How-
ever, if the nuclear charge is sufficently large the bound
state(s) enters the positron continuum and hybridize with
it. If this happens the bound state acquires a finite width
and turns into a quasibound state which is called atomic
collapse state. However, in graphene due to the gapless
nature the situation is very different. This is shown in
Fig. 1 where the LDOS at the impurity site is presented as
function of the charge strength 8 and the energy. It can
be clearly seen that when 3 > 0.5 resonances appear just
below the Dirac point for which the LDOS exhibits peaks
at the impurity site. These resonances are embedded in
the hole continuum and are therefore a clear and distinct
signature for atomic collapse since they represent an elec-
tron state hybridized with the negative continuum. Note
that with increasing value of the charge the resonances
move to lower energies and their width increases.

In the case of graphene nanoribbons the spectrum is
different in two fundamental ways: i) the single conic
bands of graphene are replaced by an infinite number
of bands, and ii) depending on the width of the ribbon
a gap can appear in the spectrum. In the next section
we will discuss how these changes in the spectrum affect
the manifestion of the atomic collapse effect in graphene
nanoribbons.
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FIG. 1. Density plot of the LDOS calculated at the impurity
site as function of energy and impurity strength 8 for bulk
graphene.
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FIG. 2. (a) LDOS measured at the center of an armchair
nanoribbon of width 4.8 nm. The gray region indicates the
gap region where the LDOS is zero and consequently no states
are found. (b) The same but the LDOS is calculated a dis-
tance 0.18 nm from the center of the nanoribbon. g = 0 in
both cases

IV. ATOMIC COLLAPSE IN ARMCHAIR
NANORIBBONS

For armchair nanoribbons their are two major types
of ribbons depending on the width of the ribbon [29]:
i) a gap in the spectrum is found when the number of
atomic chains is N = 3p or N = 3p + 1 with p a positive
integer. This gap is proportional to the inverse of the
ribbon width. These nanoribbons are semiconducting;
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FIG. 3. LDOS measured at the impurity position as function
of the charge for a graphene nanoribbon of width 4.8 nm, this
corresponds to a nanoribbon with N = 39 atomic chains. In
(a) the LDOS is shown for a charge placed in the center of
the nanoribbon and the LDOS is measured at the impurity
site while in (b) the LDOS is measured a distance 0.18 nm
away from the impurity in the direction perpendicular to the
nanoribbon.

ii) when N = 3p + 2 the spectrum of the nanoribbon is
gapless and these nanoribbons are metallic. However, it
was shown in experiments that all the armchair nanorib-
bons are semiconducting [30]. This discrepancy can be
explained by including third nearest neighbour hopping.
Since all armchair nanoribbons are gapped we will focus
on nanoribbons that are gapped within a nearest neig-
bour hopping tight binding model. Including third near-
est neigbour hopping only leads to quantitative correc-
tions making the metallic nanoribbons very similar to the
semiconducting ones. In Fig. 2(a) an example of a typical
LDOS of an armchair nanoribbon is shown. We calcu-
lated the LDOS at the center of the armchair nanoribbon
with width 4.8 nm. The gap (A = 0.25 V) is shown in
gray. The cusps in the LDOS are typical for nanoribbons
and a consequence of the 1D nature of the spectrum and
correspond to the onset of a new subband. In Fig. 2(b)
the LDOS is calculated a distance 0.18nm from the cen-
ter of the same nanoribbon in the direction perpendicular
to the nanoribbon length. Figs. 2(a) and 2(b) illustrate

that the electron probability corresponding to the differ-
ent bands can be zero at some of the carbon rows.

The gap region will allow for impurity bound states.
This is in contrast with gapless pristine graphene where
only quasi-bound states are possible. The effect of such
gap is clearly shown in Fig. 3(a) for -0.125 eV < E <
0.125 €V where the LDOS is measured at the impurity
site as function of the impurity strength 8 for an impurity
placed at the center of the nanoribbon. The width of
the ribbon taken along x—direction is chosen to be 4.8
nm, using the value of the inter carbon distance a.. =
0.142 nm this gives N = 39 atomic chains. When the
strength of the charge is gradually increased a clear and
distinct state sinks into the gap region corresponding to a
bound state. The LDOS of this state increases when the
charge increases which is due to the fact that the state
gets localized closer to the impurity. The lowest bound
state inside the gap keeps its bound state character until
the charge reaches 5 &~ 1.25. After this the bound state
gets redistributed over the negative continuum states and
aquires a finite width and turns into a resonant state.
Note that for larger 8 more bound states appear in the
gap region. All these bound states turn into resonances
when they enter the negative continuum region.

In Fig. 3(b) we show the LDOS at a distance 0.18 nm
away from the center of the nanoribbon. Interestingly,
more states and bands appear as compared to measuring
the LDOS at the center of the nanoribbon. This behavior
can be explained from the fact that in armchair nanorib-
bons some states show zero LDOS for certain rows of
atoms as discussed in Ref. [31]. The symmetric posi-
tion of the charge in the middle of the ribbon implies
that some states maintain zero LDOS at the center of
the nanoribbon, and consequently do not show up when
calculating the LDOS at the center. This behavior is
very similar to the effect of defects studied in Ref. [31].
In Fig. 3(b) we notice the appearance of an extra band
(around E ~ 0.25 €V) with a diving series of states which
qualitatively behave very similar to the states inside the
gap discussed earlier: they show a similar dependence
on f and turn into quasi-bound states when entering the
lower continuum.

So far we only studied the energy dependence of the
LDOS at a single atomic position. In Fig. 4 we plot the
spatial distribution of the LDOS for the first 5 electronic
states observed in Fig. 3(a) at § = 1. Figures 4(a)-4(d)
correspond to states inside the gap while Fig. 4(e) corre-
sponds to the first state outside the gap and belongs to
the next subband. In contrast to Schrodinger physics
with symmetric potentials, here we do not have even
and odd solutions and therefore no clear nodes in the
wavefuntions (or LDOS) are found. The LDOS exhibits
rather a dumbell character which is made more clear in
Figs. 5(a) - 5(d) where we show cuts through the LDOS
of Figs. 4(a) - 4(d). The discrete nature of the LDOS
reflects the discrete graphene lattice. These states have
some similarity to the ones found for a strict 1D-Dirac
Hamiltonian [26].
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FIG. 4. Spatial LDOS for 8 = 1 of the first five states (see
Fig. 3(a)) with energy: (a) E = —0.12 eV, (b) E = 0.037 eV,
(c) E = 0.086 eV, (d) E = 0.105 eV, and (e) E = 0.272 eV.
Red(blue) represents high(zero) LDOS while blue represents
zero LDOS.
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FIG. 5. Cut through z = 0 in the y direction for the spatial
LDOS calculations shown in Fig. 4. In (f) also a cut along
z-direction for y = 0 is shown for the state corresponding to

(e).

In Fig. 3, next to the states located inside the gap
region quasi-bound states appear that are attached to
higher energy bands. Those states can be seen in the
LDOS as peaks already at small charge right below the
band edge. They hybridize almost immediately with the
underlying continuum acquiring a finite width. Such res-
onances for positive energy are not atomic collapse states.
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FIG. 6. Cut of the LDOS presented in Fig. 3(a). In (a) the
LDOS is shown for § = 0.5 and in (b) for § = 1.5. As in Fig.
2 the gap is indicated by the gray region.

An atomic collapse state is a conduction band state re-
distributed over valence band states that are located in
the negative continuum. The resonances observed for
positive energy are therefore resonant states but are not
related to atomic collapse. These hybridized states were
investigated in Ref. [32] for small 5 within a continuum
model. Our tight-binding results show that these states
should appear as a clear signature in LDOS measurments
with e.g. a STM tip. Note that this is related to some
states that were recenly predicted for bilayer graphene
with a Coulomb impurity [33]. In Figs. 5(e) and 5(f) the
spatial LDOS for the first quasi-bound state observed in
the positive continuum in Fig. 3(a) is shown. This state
shows no dumbell-like distribution but a more 1S like
atomic orbital shape which is confirmed by a cut of the
spatial LDOS shown in Fig. 5(e) for x = 0. Also a cut for
y = 0 is shown next to the latter which indicates that the
state is not confined along the nanoribbon. Note that in
Fig. 3(b) the states below the second energy band do not
hybridize immediately with the underlying continuum.
This behavior is a consequence of the symmetric place-
ment of the charge. Further in the manuscript the effect
of an assymetricly placed charge on these states will be
investigated.

In Fig. 6 a cut of the LDOS of Fig. 3(a) is shown for
two values of §: (a) 8 = 0.5 and (b) 8 = 1.5. For
B = 0.5 the gap region can be clearly seen (denoted by
the gray region). Two bound states are visible inside the
gap. At the edge of the gap region a small peak can be
observed which corresponds to the second bound state.
When the charge is further increased to 8 = 1.5 the first
bound state of 5 = 0.5 has now entered the negative
continuum turning into a quasi-bound state with a size-
able width. Inside the gap region an additional number
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FIG. 7. Width of first (blue) and second (red) bound state
turning into a resonant state shown in Fig. 3(a) as function of
the impurity strength 8. The width is defined as the energy
range over which the peak loses 30% of it’s intensity.

of bound states appear due to the increased value of the
charge. For energy E > 0.125 eV two resonant states
originating from the first energy band can be observed.

In order to clearly show the bound state to quasi-bound
state transition seen in Fig. 3(a) we plotted the broad-
ening of the first and second bound state as function of
the strength of the charge in Fig. 7. For 0 < 8 < 1.2 the
width of the first bound state remains clearly constant
and small (=~ 0.003 eV which is the broadening used in
the calculation of the LDOS) which is representative for
a bound state. However after § ~ 1.2 the width starts
to increase drastically signifying the transition from a
bound state to a quasi-bound state. The second bound
state (red curve in Fig. 7) turns into an atomic collapse
state at § ~ 1.8. After the bound state has entered
the continuum its width increases with decreasing energy
similar as in the case of bulk graphene shown in Fig. 1.
The results in Fig. 7 thus show a distinct bound state to
atomic collapse state transition.

In all the above discussion, the charge was considered
to put at the center of the nanoribbon. The LDOS mea-
sured at the impurity show less peaks than it was mea-
sure 0.18 nm away from the impurity in Fig. 3. This
phenomenon triggers us to study the effect of the posi-
tion of the charge on the spectrum. The corresponding
LDOS is shown in Fig. 8 for the same nanoribbon as the
one in Fig. 3 but now for a charge placed 0.5 nm from
the center of the nanoribbon in Fig. 8(a) and 2 nm from
the center of the nanoribbon in Fig. 8(b). For a small
asymmetric placement of the charge the spectrum looks
very similar to the one shown in Fig. 3(b) for a symmetric
placement but where the LDOS is measured away from
the charge position. However, the bound states origi-
nating from the second energy band at F ~ 0.22 eV in
Fig. 8(b) start to show hybdridization with the underly-
ing continuum acquiring a finite width. This confirms our
theory that the special non-hybridizing behavior of these
states discussed in connection with Fig. 3(b) is due to the
symmetric placement of the charge. Increasing the asym-
metry even further as shown in Fig. 8(b) we notice that
these states show an even stronger hybridization mak-
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FIG. 8. LDOS measured at the impurity position as function
of the charge for a graphene nanoribbon of width 4.8 nm. In
(a) the charge is placed a distance 0.5 nm from the center of
the ribbon while in (b) the charge is placed a distance 2 nm
away from the center.

ing our point even stronger. Qualitatively similar fea-
tures in the spectrum are seen when placing the charge
asymmetrically. All the general features discussed for the
symmetric case remain: i) states inside the gap show a
transition from bound to atomic collapse state with in-
creasing charge £, ii) multiple energy bands appear, and
iii) below these higher energy bands states appear that
almost immediately hybridize with the underlying posi-
tive continuum. This shows that the physics presented in
this manuscript should be robust in experiments almost
independent of the exact position of the charge, paving
the way for the first experimental observation of a bound
state to atomic collapse state transition.

V. ZIG-ZAG NANORIBBONS

In the case of zig-zag nanoribbons there is an extra ele-
ment that is different from armchair nanoribbons, namely
the presence of zero energy edge states which have a flat
band character. It is expected that these edge states will
be strongly influenced by the presence of the impurity.
In Fig. 9 we show the LDOS calculated at the center of a
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FIG. 9. LDOS measured at the center (dashed blue) and
at 2 nm from the center (solid red) of a zig-zag nanoribbon
of width 5 nm without an impurity. The insert is the band
structure of the zig-zag ribbon.
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FIG. 10. LDOS measured at the impurity site as function of
the charge strength 8 and energy for a graphene nanoribbon
with zig-zag edges of width 5 nm. The impurity is located at
the center of the nanoribbon. The dashed line is the value of
the Coulomb potential at the edge.

zigzag nanoribbon (blue) of width 5 nm without an im-
purity. The cusps signifying the multiple energy bands
can be clearly seen. Note that compared to the LDOS of
the armchair nanoribbon discussed in the previous sec-
tion the LDOS does not show a gap around £ = 0 eV.
When the LDOS is calculated 2 nm away from the center
of the nanoribbon (red) an extra peak at E = 0 emerges
due to the edge states.

In Fig. 10 the energy dependence of the LDOS is shown
as function of the impurity strength for a zig-zag nanorib-
bon of width 5 nm for an impurity placed at the center
of the nanoribbon. A number of states originating from
E = 0 eV at § = 0 can be clearly observed. These
states are pulled towards lower energy with increasing

(a)
B=1.45
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FIG. 11. Cut of the spatial LDOS shown in Fig. 10 for (a)
B = 1.45 and (b) 8 = 2.25.

impurity charge. Since they originate from E = 0 eV
this band of discrete states can be attributed to the edge
states. They are bound states which we confirmed by the
fact that their width increases linearly with the imposed
numerical broadening and their position and width did
not change when we increase the length of the graphene
nanoribbon. The lowest state shows interesting behav-
ior with increasing impurity charge. It starts as a bound
state which can be seen from the narrow width of the
LDOS. However, when the impurity charge increases the
state comes in contact with the lower continuum band
(starting at E ~ -0.50 eV) and gradually turns into an
atomic collapse resonance. The width of this resonance
increases with increasing charge. The reason that the
band of edge states can support bound states lies in the
fact that this band consists of a mixture of conduction
and valence states. Consequently the conduction band
nature leads to the appearance of the previously dis-
cussed bound states. The behavior of the states in the
positive energy range of Fig. 10 is similar to the ones
shown for an armchair nanoribbon in Fig. 3 and there-
fore will not need any further discussion. Just below
FE =~ 0.5 eV the bound states do not hybridize with the
continuum below. However, when the charge of the impu-
rity increases these bound states come into contact with
the band of edge states gradually turning into a reso-
nance which is modulated by the appearance of the edge
states. This behavior can be most profoundly seen for
the first state originating from F = 0.5 eV. After being
modulated by the edge state the quasi-bound nature of
the state becomes clear around [ ~ 2.5.

In Fig. 11(a) and 11(b) two cuts of the LDOS of
Figs. 10 are shown for § = 1.45 and f = 2.25 show-
ing the situation before and after the first bound state
that started at F ~ 0.5 eV crosses the edge states. In
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FIG. 12.  Contour plot of spatial LDOS of the lowest state
in Fig. 10 for three values of the charge: (a) 8 = 0.781 (E =
-0.189 eV), (b) B = 1.607 (E = -0.432 eV) and (c) B = 2.59
(E =-0.871eV).

Fig. 11(a) the series of edge states can be clearly seen as
a distinct number of peaks between F ~ —0.1 eV and
E =~ —-04¢eV. At E~ —0.1 ¢V a very sharp peak can be
observed corresponding to the lowest bound state origi-
nating from E ~ 0.5 eV in Fig. 10. When the charge is
increased to 8 = 2.25 as shown in Fig. 10 the low energy
bound state of Fig. 11(a) has turned into a resonant state
which is being modulated by the edge states. This be-
havior is seen in Fig. 11(b) around F =~ -0.5 ¢V where the
resonant peak shows subpeaks corresponding to the edge
states. The interesting behavior of the edge states mod-
ulating the resonant states should be a clear signature to
look for in experiments.

Now we look into the evolution of the edge states as
function of the impurity charge 5. In Fig. 12 we plot the
spatial LDOS for the lowest edge state for three values of
the impurity charge 5. For small value of the impurity
charge (see Fig. 12(a)) the spatial LDOS is localised at
the edges confirming its edge state nature. Interestingly,
the edge state turns into an impurity bulk state with in-
creasing charge 8 (see Figs. 12(b) and 12(c)). This transi-
tion from edge to impurity state explains the change in 3
-dependence (linear versus nonlinear) observed in Fig. 10
and is a clear signature to look for in future experiments.

In Fig. 13 the energy of the fan of bound edge states
as function of the impurity charge 3, as derived from
the LDOS, is shown for the first 8 impurity edge states.
The lowest state which shows a clear edge to impurity
state transition discussed earlier is shown in red. The
energy levels could be fitted (for the region 0 < 8 < 1)
to E = —(af + bB?) with {a, b} respectively {0.161,
0.0698}, {0.216, 0.012}, {0.184, 0.019}, {0.154, 0.019},
{0.13, 0.018}, {0.112, 0.015}, {0.098, 0.013}, and {0.085,
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FIG. 13. First 8 states originating from the band of edge
states as function of the charge strength 8. The lowest state
clearly visible in Fig. 10 is shown in red. The dashed line is
the values of the Coulomb potential at the edge. For small
B the energy states behave as £ = —af. In the inset the
value of the fitting parameter a (in unit of eV) is shown for
the different curves. The straight line is given by a = 0.263 —
0.026mn.

24 2R (a)
— I/ \‘
€ I \
5 0 7 I‘ . l
> \ I'
-2 oW Y r=2.68 nm
T T T T T T T
s YYYYYXORYYYY) N
21 / ~ (b)
— II \‘
€
4 1 1
£ 0 . o !
> \ h
\ /
-2 N g’ r=2.85nm
T T T T T T T
24 /7 "~ (c)
/ \‘
= 1
£ 1
£ 01 ' . !
\ 1
> \ ;
21 b’ r=se
-6 -4 =2 0 2 4 6
X (nm)

FIG. 14. Contour plot of spatial LDOS calculated for § = 0.8
for the three lowest states seen in Fig. 13: (a) E = —0.193
eV, (b) E =-0.182 eV and (c) E = -0.172 eV. The solid dot
shows the position of the charged impurity and the dashed
circle indicates the radius(i) of the Coulomb potential at this
energy.

0.011} eV. It is evident that for small 5 the energy
is linear in B. This is in contrast with the states of
the 2D hydrogen atom which exhibits a quadratic de-
pendence E =~ (2 [34] while the lowest atomic col-
lapse states in bulk graphene (see Fig. 1) behaves as

E = (—Bhvgr/ro)exp(—7/+/B% —0.25) [8]. Using first



order perturbation theory with respect to the Coulomb
potential explains the linear 3-dependence of the bound
edge states. The quadratic term gives a very small cor-
rection to the linear behavior. The drop in b from the
first to the second state is a consequence of the fact that
the lowest state is turning into a bulk impurity state for
large S.

In the inset of Fig. 13 we show the fitting parameter a
as function of the number of the edge state which shows
a linear dependence a (eV) = 0.263 - 0.026n for 1 <
n < 7. This behavior can be understood from the fact
that for small 8 the edge states remain confined at the
edge, feeling a broader almost quadratic-like potential
for small energy and distances. Consequently, these edge
states feel a softer potential, explaining the weaker (-
dependence as function of the edge state number.

In Fig. 14 we plot the spatial LDOS for § = 0.8 for
the three lowest states shown in Fig. 13. All these three
states are in the region where they show almost perfect
linear behavior as function of the charge 5. We observe
that with increasing energy the spatial LDOS localization
shifts further away from the center of the nanoribbon
(where the Coulomb charge is placed). As a consequence
these states feel a weaker shift due to the decay of the
Coulomb potential, explaining why they are higher in
energy. In Fig. 15 a cut of the spatial LDOS along one of
the nanoribbon edges are plotted for the first four states
seen in Fig. 13. The cut is taken along the edge of the
nanoribbon. The lowest state consists of one peak while
the excited states consist of two peaks which move further
away from each other for higher energy states. These
figures are somewhat similar but not the same to the
electron probability of states found in Ref. [26] for the
Coulomb problem in gapped Dirac materials. The two
peak structure in LDOS symmetric around z = 0 can be
understood as follows. Lets consider the 1D edge states
and take the extreme limit of a flat band. The kinetic
energy is quenched and the Dirac equation is reduced to

V($7y0)¢($7y0) = Elﬁ(l‘,yo) (2)

where 3 is the position of the edge. This equation has
as solution ¥(z,y9) =~ d(z — x;) where x; is determined
by V(z;,y0) = E as shown by the dashed circles in
Fig. 14. Because the Coulomb potential V(z,y) is sym-
metric around z = 0 this gives two solutions z; = +|z;]|
and thus the wave function becomes

¥(x,90) = c(6(z — [z:]) + 6(z + [z:]) 3)

The separation between those d-functions increase with
energy which agrees with Fig. 15. Those J-peaks are
broadened in our numerical results because the edge
states exhibit some small dispersion and the edge states
penetrate into the bulk of the nanoribbon exponential
decreasing away from the edge.

From Fig. 10 and the previous discussion it is clear
that the states originating from the edge states are nar-
row and consequently represent bound states. However,
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FIG. 15. Cut of the spatial LDOS along the edge, calculated
for 8 = 0.8 for the four lowest states seen in Fig. 13: (a) E =
-0.193 eV, (b) E =-0.182 ¢V, (c) E =-0.172 eV and (d) E =
-0.160 eV.
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FIG. 16. LDOS calculation for the same nanoribbon as in
Fig. 10 but now with a charge which is placed 2 nm from
the center of the nanoribbon. The dashed line is the value
of the Coulomb potential at the closest edge. In the inset we
show the fitting parameter a (in units of eV) as function of
the number of the edge state for the five lowest states.

at first sight this seems strange because looking at Fig. 9
reveals that the LDOS is not zero below these edge states.
Consequently one may expect that these edge states will
hybridize with the underlying continuum turning into
resonant states (similar to the upper band states pre-
viously discussed for armchair nanoribbons). However,
this seems not the case. From our previous results for
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FIG. 17.  Contour plot of spatial LDOS calculated for g =
0.54 for three lowest states seen in Fig. 16: (a) E = —0.414
eV, (b) E = —0.284 eV and (¢) E = —0.177 eV. The solid
dot shows the position of the charged impurity and the dashed
circle indicates the radius(i) of the Coulomb potential at this
energy.

armchair nanoribbons one may expect that this behavior
can be related to the symmetric placement of the charge.
In order to confirm whether or not this suspicion is cor-
rect we calculated the LDOS at the impurity for a charge
placed 2 nm from the center of the nanoribbon in Fig. 16.
We limited the figure to the edge states since they are
here of interest. Because the states are more clearly sep-
arated it is now even more clear how these states originate
from E = 0 eV. We checked that the width of those peaks
in the LDOS scales with the numerical broadening con-
firming that they are bound states. For 8 < 1 the energy
of these states is linear the charge 8 similar to the states
shown in Fig. 10. This time the states can be almost
perfectly fitted to E = —af with {a} respectively {0.77},
{0.53}, {0.33}, {0.21}, {0.17}, {0.13}, {0.17},{0.12}, and
{0.10} eV for the eight lowest states seen in Fig. 16. In
the inset of Fig. 16 the fitting parameter a is shown as
function of the number of the edge state. In contrast with
the results for a symmetrically placed charge shown in the
inset of Fig. 13 no linear dependence is observed and the
states depend more strongly on the impurity charge .
The reason is that the Coulomb charge is placed much
closer to the edge, consequently the edge states feel a
much deeper Coulomb potential instead of the broader
potential felt by the edge states discussed earlier. There-
fore the edge states are more strongly influenced by the
charge explaining their more profound dependence on the
charge .

In Fig. 17 the spatial LDOS is shown for 8 = 0.54 for
the three lowest edge states seen in Fig. 16. The behavior
of these states is very similar to the ones shown in Fig. 14

for the symmetrically placed charge with the difference
that the state is now entirely localized at only one edge,
i.e. the edge closest to the potential center.

VI. CONCLUSION

We investigated how the finite width of graphene
nanoribbons influences the atomic collapse phenomenon
and found very different physical behaviours depending
on the type of edges.

We showed with tight binding calculations that the
manifestation of the atomic collapse in graphene nanorib-
bons is fundamentally different from its manifestation in
pristine graphene. In both armchair and zig-zag nanorib-
bons bound states turn into atomic collapse states when
entering the lower continuum. This kind of behavior
mimics closely the predicted atomic collapse in relativis-
tic physics: bound states in the mass gap turn into
quasi-bound states when entering the negative contin-
uum. Therefore, the experimental study of atomic col-
lapse in graphene nanoribbons could pave the way to
the first observation of the true analog of the relativistic
atomic collapse effect.

We showed that in the case of zig-zag nanoribbons the
well known edge states lead to a modulation of the quasi-
bound states when they cross the band of edge states.
This modulation should be measurable in experiments
when probing with an STM tip.

Furthermore we showed that the atomic collapse in
graphene nanoribbons differs from the manifestation in
pristine graphene in the following ways: i) instead of
the sudden appearance of quasi-bound states in pristine
graphene a gradual bound state to quasi-bound state
transition is predicted in nanoribbons providing a very
close analog of atomic collapse in relativistic physics. ii)
The appearance of multiple energy bands leads to a richer
spectrum as compared to pristine graphene with the ap-
pearance of multiple quasi-bound electron states below
each energy band. iii) In the case of zig-zag nanoribbons
an extra band of bound states appear, which are predom-
inantly localized at the edge of the nanoribbon. The flat
band character of those edge states are the origin of these
quasi 1D bound states and its LDOS consists of two iden-
tical peaks whose separation increases with energy. The
bound character of these states are also a consequence of
the fact that scattering on a zig-zag edge does not allow
intervalley scattering.

Last we would like to make a remark about the experi-
mental feasibility of observing the effects predicted in this
paper. The production of different types of nanoribbons
have been realized over the last few years [35-39]. Re-
cently [40], perfect edges in 2D materials was realized by
using a combination of top-down lithography with a near
anisotropic wet etching process. Placing the charges on
the nanoribbons should be possible using an STM tip as
realized in Ref. [9] for bulk graphene. Such an STM tip
can also be used to measure the LDOS. Alternatively,



it may be possible to mimic the potentials created by
charged dimers using an STM tip [11] or a charged va-
cancy [10] producing similar effects. We hope that given
the number of recent experiments it should be possible
to test our predictions in the near future.
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