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The dependence of the Hall and bend resistances on a perpendicular magnetic field and on vacancy
defects in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model
in combination with the Landauer-Büttiker formalism is used to calculate the energy spectrum, the
lead-to-lead transmissions, and the Hall and bend resistances of the system. It is shown that the
terminals with zigzag edge orientation are responsible for the absence of quantized plateaus in the
Hall resistance and peaks in the longitudinal resistance. A negative bend resistance in the ballistic
regime is found due to the presence of highi- and low- energy transport modes in the armchair and
zigzag terminals, respectively. The system density of states, with single vacancy defects, shows that
the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus in
the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of
vacancies where the plateaus are destroyed and a diffusive regime appears in the bend resistance
are investigated.

I. INTRODUCTION

In pursuit of the next generation of nanodevices and to
continue its downscaling, scientists have started to focus
their attention on two-dimensional (2D) materials due
to their nanoscale thickness1. Among these materials,
black phosphorus, which in ambient is the most stable
phosphorus crystal at room temperature and pressure,
has drawn a lot of attention recently due to its unique
electronic properties which depend on the number of lay-
ered phosphorene2,3. Black phosphorus is a layered ma-
terial where each individual atomic layer is held together
by van der Waals interactions4–6. This allows the con-
struction of phosphorene devices with an arbitrary num-
ber of layers6,7. Each phosphorus atom in a phospho-
rene monolayer is bounded via sp3 hybridization form-
ing a puckered lattice structure. Unlike other 2D lay-
ered materials, black phosphorus shows interesting prop-
erties such as high carrier mobility3,6, anisotropic optical-
conductance8,9, and a band gap dependence on the num-
ber of layers9,10, ranging from 0.3 eV for bulk and 1.5
eV for monolayer phosphorene. This material also has a
good on/off switch, which makes it a good candidate for
field effect transistor (FET) devices11,12.

The above mentioned phosphorene FET devices were
analyzed at room temperature through Hall measure-
ments with mobility up to ∼ 1000cm2V −1s−1. It was
found that the carrier mobility is limited by charge im-
purities at low temperature12. It is important to men-
tion that Hall measurements can accurately determine
the carrier density, electrical resistivity, and the mobil-
ity of carriers in semiconductors13. It is well known
that 2D electron gas submitted to a perpendicular mag-
netic field leads to the formation of Landau levels, and
as a consequence it leads to the formation of quan-
tized levels and oscillations in the Hall and longitudi-
nal conductivity/resistance13–15. With the application
of a perpendicular magnetic field it is also possible to

focus electrons injected from a narrow injector allowing
the study of different properties of a material16 in such a
magnetic focusing experiment.

The presence of defects is almost inevitable in mate-
rials. In particular, vacancies in phosphorene were re-
ported to exhibit a highly anisotropic and delocalized
charge density, with intrinsic vacancies resulting in in-
gap resonance states17–19. In the absence of a magnetic
field, the effects of different types of vacancies in phospho-
rene monolayer were theoretically investigated in multi-
terminal systems showing that the presence of atomic de-
fects decrease (an increase) the longitudinal (transverse)
conductance20,21. Studies on graphene showed that va-
cancy disorder can cause the appearance of new states
in the Landau spectrum, which depend on the type and
density of vacancies, which can be observed in the bend
resistance and the density of states (DOS)22. To provide
insights on how vacancies affect the transport properties
of phosphorene, we analyze the different resistances in a
Hall bar configuration.

In this paper, the problem of magnetotransport in mul-
titerminal phosphorene monolayer is addressed. This will
be done by studying the resistance of a four-terminal Hall
bar system in the presence of a perpendicular magnetic
field. This paper is organized as follows. First, we present
in Sec. II the theoretical formalism to calculate the differ-
ent resistances in a Hall bar using the Landauer-Büttiker
formalism23 and the tight-binding model to describe the
phosphorene lattice24. In Sec. III, the results for a pris-
tine Hall bar with an applied perpendicular magnetic
field is presented. In Sec. IV, the effect of vacancies on
the DOS and the transport properties are investigated.
The perspectives and conclusions are presented in Sec.
V.
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II. SYSTEM AND METHODS

A. Phosphorene

FIG. 1. The phosphorene nanoribbon along the xy
plane (a), and the representation in the zx plane (b).
The different hoppings are shown in (a) and the
rectangular shaded box gives the unit cell. The coloured
dots refer to P atoms belonging to different sublattices.

The unit cell of phosphorene contains four atoms, with
a1 = 3.32Å and a2 = 4.38Å being the primitive vectors
and a = 2.22Å and θ = 96.79o are the in-plane bond
length and bond angle, see Fig. 1. For our numerical
simulations, we use the tight-binding model with five-
hoppings as introduced in Ref. [24]. The tight-binding
Hamiltonian is given by

H =
∑

i

ǫini +
∑

i 6=j

tijc
†
i cj , (1)

where the sums run over the lattices sites, c†i (cj) is the
creation (annihilation) operator, ǫi is the electron on-
site energy, tij are the elements of the hopping matrix.
Because all phosphorene atoms are equivalent, we may
set the on-site energy to zero. The five hopping pa-
rameters are given by t1 = -1.220 eV, t2 = 3.665 eV,
t3 = -0.205 eV, t4 = -0.105 eV, and t5 = -0.055 eV.
They describe the band structure of phosphorene in the
low-energy regime and agree with the one obtained from
DFT-GW calculations24.

The peculiar electronic properties of the phosphorene
band structure is shown in Fig. 2 (a) for the armchair
edge and Fig. 2(b) for the zigzag edge, both with width
W = 50 nm. The main difference between the two ori-
entations is the presence of a quasi flat band within the
band gap in the nanoribbon with zigzag edges resulting
in metallic behavior25,26, while the band structure for the
armchair terminal is semiconducting. The corresponding
DOS are also shown.

The phosphorene monolayer is modelled using a four
band tight-binding model, but can be reduced to a two-
band model due to the symmetry between the sublattices
A and D27 [see Fig. 1]. In this reduced form the number
of atoms in sublattices, labeled A and B for convenience,
are NA and NB . For pristine phosphorene monolayer
(without defects), NA = NB (sublattice symmetry). In
this system, vacancies are introduced by randomly re-
moving atoms from the phosphorene lattice, eliminating
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FIG. 2. Phosphorene nanoribbon band structure and
density of states for armchair (a), and zigzag (b) edges.
The nanoribbons correspond to the different leads in
the investigated Hall bar with width 50 nm.

the on-site energy and the hopping of the removed atom.
Figure 3 shows sections of the defective phosphorene Hall
bar with three types of atomic vacancies: A mono va-
cancy (MV) where a single sublattice atom is removed,
a type-I double vacancy (DV1) where an atom and its
neighbor sublattice atom on a different z-plane are re-
moved, and a type-II double vacancy (DV2) where the
neighbor sublattice atom is removed on the same z-plane.

In the MV case, where only one of the sublattice
atoms is removed, the sublattice symmetry is broken
(NA 6= NB). For the type-I DV, where two sublattice
atoms are removed, being two A (or two B), the sub-
lattice symmetry is also broken (NA 6= NB). However
for type-II, where one A and one B are removed, the
symmetry is preserved (NA = NB).

FIG. 3. The disorders in phosphorene Hall bar for
monovacancies (MVs), double vacancy type I (DV1)
and type II (DV2). Only half of the Hall bar is shown.

B. Hall bar

The Hall device is schematically presented in Fig. 4. It
is a four-terminal Hall bar system with an applied mag-
netic field in the z direction, where the magnetic field is
introduced through the vector potential.

The Landau gauge ~AH = −By~ex is one of the standard
gauges which works only for leads with translational sym-
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metry in x direction. For y translational symmetry, we
need to change it to the gauge ~AV = Bx~ey. The change
from one gauge to the other is done smoothly by im-
plementing the scalar function f(x, y) which rotates the
vector potential ~A′ = ~A+ ~∂f , where f is defined as22,28

FIG. 4. Schematic representation of the Hall bar. The
modified vector field ~A

′

(x, y) is shown by the arrows. In
the system, contacts 1 and 3 represent the armchair
terminals while contacts 2 and 4 the zigzag terminals.

f(x, y) = Bxy sin2 θ +
1

4
B(x2 − y2) sin 2θ. (2)

Here θ is the angle between the two leads (in our sys-
tem θ = π/2). To apply f(x, y) only in the main re-
gion we multiply it by a smooth step function ǫi(y) =
1

2
[1 + tanh(2(y − y0)/d)], which is non-zero only close to

the lead i. y0 is the crossover position and d is the width
of the crossover region. For our numerical calculations
we took y0 = W and d = W/5, where W = 50 nm22.
The modified magnetic field is then implemented on the
tight-binding Hamiltonian Eq. (1) by making use of the
Peierls substitution tij = tije

iφij . The Peierls phase is
then described as

φij =

∫ ~ri

~rj

~A · d~r. (3)

The resistances are calculated using Landauer-Büttiker
formula29. The four-terminal resistance in a cross-shaped
structure is given by

Rmn,kl =
h

2e2

(

TkmTln − TknTlm

D

)

, (4)

where h is the Planck’s constant. Rmn,kl is the resistance
with the voltage being measured between the leads k and
l when the current is driven into contact m and taken

out from contact n. In Eq. (4), D = (α11α22−α12α21)S,
with

α11 = [(T21 + T31 + T41)S − (T14 + T12)(T41 + T21)]/S,

α12 = (T12T34 − T14T32)/S,

α21 = (T21T43 − T41T23)/S,

α22 = [(T12 + T32 + T42)S − (T21 + T23)(T32 + T12)]/S,

where S = T12 + T14 + T32 + T34, and Tij is the trans-
mission probability from lead j to lead i. The resistances
given by Eq. (4) satisfy the relation Rmn,lk = Rnm,kl

and the reciprocity relation Rmn,kl(B) = Rkl,mn(−B)29.
In this paper we are also going to analyze the longitu-
dinal resistance defined as R13,13 (R24,24), which repre-
sents the resistance between the two opposite armchair
(zigzag) terminals. This schematic can also be calcu-
lated, in a first approximation30, by the analogous two-
terminals systems, where the resistance is simply propor-
tional to the transmission between the terminals13,30.

The probabilities Tij are numerically calculated us-
ing KWANT31, a software package for numerical calcula-
tion of tight-binding systems with emphasis on quantum
transport. It uses a matching wave-function approach32

to calculate the transmission of an n-propagating mode
in a contact terminal to the m mode in another con-
tact. This formulation is mathematically equivalent to
the non-equilibrium Green’s function but was found to
be numerically more stable31.

III. PRISTINE PHOSPHORENE HALL BAR

Due to the anisotropy of the lattice, the Landau level
splitting depends strongly the orientation and on the edge
type of the phosphorene nanoribbon8,26. This depen-
dency is shown in Fig. 5, where the electron energy spec-
trum for the armchair (ac) and zigzag (zz) nanoribon is
plotted against the magnetic field, for nanoribbons with
width W = 50 nm. For the zigzag orientation the effec-
tive electron mass is much smaller than the one for the
armchair nanoribbon. That is the origin of the different
spacing and magnetic field dependency of the Landau
levels8,26.

Next, we analyze the resistances for Fermi energy near
the intersecting points depicted in Fig. 5. The Hall
(R13,42) and bend (R14,23) resistances were calculated
for a Hall bar with terminals size 50 nm (with a total
of 342384 atoms in the system). Figure 6 shows the re-
sistance dependence on the Fermi energy (EF > 0 for
electrons and EF < 0 for holes) for two different values
of the applied magnetic field (5T and 10T). As the en-
ergy approaches the edges of the band, one can see the
Hall resistance goes to infinity while the bend resistance
goes to zero. The transition between two plateaus in the
Hall resistance indicate the points where the Fermi en-
ergy crosses a semiconductor transverse mode (see Fig.
5) formed due the presence of magnetic field. Notice that
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FIG. 5. The phosphorene energy levels for nanoribbons
as function of magnetic field. The nanoribbons with
width Wac = 50 nm and Wzz = 50 nm correspond to
the semi-infinite leads in the Hall bar. The points in the
figure indicate the intersection of the Fermi energy (EF )
with the Landau levels.

at such points the bend resistance exhibits a negative
dip. Another interesting phenomena is the presence of
negative values in the bend resistance, indicating a bal-
listic regime (the ballistic regime will be discussed further
when analyzing the resistances as a function of magnetic
field).

FIG. 6. Hall (R13,42) and bend (R14,23) resistance
dependency on the Fermi energy for two different values
of the magnetic field.

To study the effect of the ribbon orientation the longi-
tudinal resistances R13,13 and R24,24 are shown in Fig. 7.
These resistances were calculated using the two-terminal
relation for the resistances, which is just the inverse of the
transmission between the two opposite terminals. Due to
the anisotropic spectrum in phosphorene, one would ex-
pect that σxx < σyy, leading to R13,13 > R24,24, but for
Hall bar, the opposite happens. This is due to the pres-
ence of a scattering region in the Hall bar, that affects the
conductivity making σxx > σyy and also R13,13 < R24,24,

as explained in Ref. [21] for a cross-shaped phosphorene
nanoribbon.

(a)

(b)

FIG. 7. Longitudinal resistance, measured for the
armchair terminals (R13,13) and for the zigzag terminals
(R24,24), varying with the Fermi energy for two different
values of the magnetic field.

Next, we investigate the different resistances as a func-
tion of the magnetic field for a fixed Fermi energy. It
is well known that as the magnetic field increases, the
Fermi energy crosses the semiconductor (armchair) trans-
verse modes, resulting in well defined plateaus in the Hall
resistance8. In the system studied here, this behavior is
clear for EF = 0.345 eV and 0.34 eV (Figs. 8 and 9).
However, for EF = 0.363 eV (Fig. 10) the plateaus in
the Hall resistance are almost absent for a weak magnetic
field. This can be explained by looking at Fig. 5. The
Fermi energy EF = 0.363 eV is near to a zigzag trans-
verse mode, which is almost magnetic-field independent8.
Due to the metallic character, zigzag terminals induce
scattering between the transport modes, not allowing the
formation of quantized plateaus in the Hall resistance21.
However, as the magnetic field increases, the energy of
the zigzag Landau level differs from the Fermi energy,
and the plateaus on the Hall bar are recovered.

The ballistic regime observed in Fig. 6 becomes more
evident when analyzing the magnetic-field dependency
reported in Figs. 8-10. The bend resistances in Figs.
8-10 are plotted in panel (a) (blue curve) which goes to
zero as the magnetic field increases. A negative bend
resistance indicates that the electron trajectory does not
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bend to the closer non-axial terminal33,34. We can under-
stand this negative value by considering the definition of
the four terminal resistance as Rij,km = Vkm/Iij

29. For
R14,23, we have V23 = V2 − V3, indicating that V23 < 0,
as V2 is a zigzag (lower energy) terminal and V3 is an
armchair (high energy) terminal. Even though the bend
resistance approaches zero, one can still see peaks in the
resistances, indicating an increase in the transmission be-
tween axial terminals. These peaks happens whenever
the Fermi energy cross an armchair transverse mode in-
dicating an increase in the xx conductivity.

(a)

(b)

FIG. 8. (a) Hall (black), bend (blue) and (b)
longitudinal (blue) resistances for a pristine
phosphorene Hall bar for EF = 0.345 eV. The vertical
dashed lines mark the points where the Fermi energy
crosses the armchair Landau levels.

As stated before the R24,24 is larger than R13,13, and
they increase with different rates as the magnetic field
increases. Figures 8-10 also show that for strong mag-
netic fields, the bend resistances go to zero while R24,24

takes larger values. Another peculiar behavior for R13,13

is noticed when the Fermi energies 0.345 eV and 0.35 eV
cross the zigzag transverse mode (respectively at ∼ 8.0T
and ∼ 8.60T ). When that happens, a peak appears in
R13,13.

To understand the appearance of these peaks, Fig.
11 shows the magnetic-field dependency of the different
transmissions probabilities between the leads for EF =
0.345 eV. An expected behavior is the decrease of Tij

between two counterclockwise terminals as the magnetic
field increases. The transmission between the two arm-
chair terminals suddenly increases as the transmission

(a)

(b)

FIG. 9. (a) Hall (black) and bend (blue) and (b) Hall
(black) and longitudinal (blue) resistances for the
pristine phosphorene Hall bar for EF = 0.35 eV. The
vertical dashed lines marks the points where the Fermi
energy crosses the armchair Landau levels.

with the next counterclockwise zigzag transmission de-
creases. This behavior is an indication of the induced
transport-mode scattering by the zigzag terminals. Also,
the reflection probability of the zigzag transport modes
increase with magnetic field.

IV. EFFECT OF VACANCIES

Figure 12 shows the DOS for a phosphorene Hall bar
with MVs and DVs type I and II (see Sec. II). To get rea-
sonable statistics the DOS was averaged over ten samples
where the vacancies are randomly distributed. The num-
ber of vacancies is related to the quantity nx, which is
defined as the ratio between the atoms removed from the
lattice and the total number of atoms. The peaks shown
in Fig. 12 for the MV and DV2 systems are due to in-gap
states. The intensity of the DOS is proportional to the
number of defects18,35.

Although there are no transport modes inside the gap,
the in-gap defect states can affect the system’s conductiv-
ity via vacancy scattering20,36. This is shown in Figs. 13,
where the Hall and bend resistances are plotted against
the Fermi energy for two different values of vacancy den-
sity with an applied magnetic field B = 10 T. Each re-
sistance was obtained as an average R =

∑N
i Ri/N , for

N = 10 random samples. For nx = 0.01%, we can still
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(a)

(b)

FIG. 10. (a) Hall (black), bend (blue) and (b) Hall
(black) and longitudinal (blue) resistances for the
pristine phosphorene Hall for EF = 0.363 eV. The
vertical dashed lines mark the points where the Fermi
energy crosses the armchair Landau levels.
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FIG. 11. The transmission probability from the leads 1
(a) and 4 (b) to the other leads. The local current
density is calculated for specific magnetic fields 8.0, 8.4,
8.7 and 10.0 T, respectively (c), (d), (e) and (f).
Density values were normalized. The Fermi energy is
EF = 0.345 eV.

FIG. 12. DOS of the phosphorene Hall bar for pristine
and for three types of disorder with nx = 1%.
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FIG. 13. Hall and bend resistances for the phosphorene
Hall bar with different densities of vacancies for B = 10
T. The bend resistances were multipled by a defined
factor to increase its visibility. The grey vertical lines
mark the place where the Fermi energy crosses an
armchair transverse mode.

see the presence of plateaus in the Hall resistance, but it
vanishes for nx = 0.05% due to scattering.

Another interesting result is the presence of well-
defined peaks in the bend resistance, peaks that were not
present in the pristine case (see Fig. 8). This indicates
that already for small vacancy density the system is in
the diffusive regime. These peaks, unlike in the case in
graphene22, are not due to localization states. They oc-
cur when the Fermi energy cross an armchair transverse
mode and are related to the increase of diffusion due to
the vacancy scattering. Also, this effect is more evident
for MV disorder, as for the same vacancy density the MV
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are more spread in the system than DV1 and DV2.
The DV1 does not create in-gap defect states and the

resistances change slightly when compared with the pris-
tine case. This behavior becomes more evident in Figs.
14. The Landau plateaus are more resilient in DV1 and
the range of the bend resistance is of the same order of
magnitude as in the pristine case, while for MV and DV2
the bend resistances are higher. Further, one can see that
the presence of the defects with broken symmetry actu-
ally suppress the scattering effect provoked by the zigzag
transport modes. Analyzing Fig. 15, one notices that the
increase in the longitudinal resistance R24,24 at ∼ 9.3 T
is smaller for MV and DV2, and also with the increase
of density in DV1. Thus, one can infer that the presence
of resonant states reduces the scattering provoked by the
zigzag terminals. Apart from these specific effects, the
general behavior is that the MV and DV2 enhances the
resistances between two axial terminals. This behavior is
in agreement with Ref.21. To better understand this ef-
fect we show in Fig. 16 the local density of the transport
modes for a system with MV, DV1, and DV2 defects for
nx = 0.01% and 0.05% and magnetic field B = 10 T. As
the density is increased the modes are scattered to non-
axial terminals, which is reflected by the enhancement of
the longitudinal resistance.
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FIG. 14. The magnetic-field dependency of the Hall and
bend resistances for the phosphorene Hall bar with
vacancies at fixed Fermi energy EF = 0.35 eV.

V. CONCLUSIONS

In summary we analyzed the electrical transport prop-
erties of a phosphorene Hall bar in the presence of a
magnetic field and vacancy defects. The presence of ax-
ial and non axial terminals, with different characteris-
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FIG. 15. The magnetic-field dependency of the
longitudinal resistance for the phosphorene Hall bar
with vacancies at fixed Fermi energy EF = 0.35 eV.

tics, allowed us to study different transport properties
of phosphorene material21,37 (in this case, the Hall and
longitudinal resistances). In Sec. III, we studied the pris-
tine system where a ballistic regime was identified by the
bend resistance to certain regimes of Fermi energy and
magnetic field, and Landau plateaus show up in the Hall
resistance mainly due the semiconductor features of the
armchair terminals8,21. This can be seen for magnetore-
sistance for EF = 0.363 eV which matches a zigzag trans-
port mode (see Fig. 5) and shows no Landau plateaus
for the Hall resistance (see Fig. 10). Also, as stated in
Ref. [21], the presence of zigzag transport modes pro-
vokes scattering of the transport modes, resulting in a
larger peak in the resistance as the Fermi energy crosses
the zigzag Landau level, see Fig. 11.

The presence of vacancies changes the magneto trans-
port properties, depending on the sublattice symmetry
and on the vacancy density, as shown in Sec. IV. The
effects on the resistance are most noticeable for vacancy
types with broken sublattice symmetry, with the MV be-
ing the one that most affects the resistance. Although
DV1 does not create in-gap states (as shown in Fig. 12)
the defects still affect the phosphorene transport prop-
erties. When analyzing the magnetoresistance, a change
in the sign of the bend resistance appears, which indi-
cates a diffusive regime induced by scattering from the
defects. The present paper clearly indicates the much
richer transport features that can be observed in phos-
phorene as compared to graphene. The anisotropy of
the phosphorene lattice and the presence of a gap are
responsible for the increased complexity of its electrical
response.



8

FIG. 16. Current density for the phosphorene Hall bar with vacancy defects MV(a), DV1(b), and DV2(c) for
nx = 0.01% and MV(d), DV1(e) and DV2(f) for nx = 0.05%. We fixed EF = 0.35 eV and B = 10 T.
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