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Excitons and trions in monolayer transition metal dichalcogenides: A comparative
study between the multiband model and the quadratic single-band model
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The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides
are investigated using both a multiband and a single-band model. In the multiband model we construct the
excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band
edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation
self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave
functions. As a comparison, we also consider the simple single-band model which is often used in numerical
studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method
(SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We
find good agreement between the results of both methods, as well as with other theoretical works for excitons,
and we also compare with available experimental data. For trions the agreement between both methods is not as
good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models,
we see that the presence of the valence bands in the mutiband model leads to differences with the single-band
model when (interband) interactions are strong.
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I. INTRODUCTION

Two-dimensional (2D) atomically thin materials, such as
graphene [1] and transition metal dichalcogenide (TMD)
monolayers such as MoS2, MoSe2, WS2, WSe2, WTe2,
etc. [2–7], have attracted the attention of the condensed matter
community because they display new fundamental physics and
because their remarkable electronic properties are expected to
be important for future applications in electronics and optics.
In contrast to graphene, which has a gapless and linear spec-
trum [8], inversion symmetry breaking in TMD monolayers
leads to the formation of a direct band gap which is located at
the two inequivalent K and K ′ valleys at the corners of the first
Brillouin zone. Moreover, monolayer TMDs have an intrinsic
spin-orbit coupling, resulting in a splitting of the valence bands
with opposite spins [9]. These properties have propelled initial
efforts to demonstrate valley polarization and related novelties
for device applications based on valleytronics [3,5,7].

It was realized that for ultrathin semiconductors, the dielec-
tric environment plays a crucial role and influences the effec-
tive strength of the Coulomb potentials inside a semiconductor
layer [10]. Such long-range interactions become stronger as
the thickness of the semiconductor layer decreases, which
allows the formation of tightly bound excitons (electron-hole
pairs). This enhanced Coulomb interaction leads to exciton
binding energies of the order 0.5–1 eV in TMD monolayers
which, are 1–2 orders of magnitude larger than excitons in
typical semiconductors, which have been investigated for
more than half a century [11–15]. Recent photoluminescence
experiments in monolayer MoS2, MoSe2, WS2, and WSe2

confirmed the existence of excitonic states that are localized
in the band gap [16–20]. Furthermore, a few theoretical
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works pertinent to the excitonic absorption spectrum of these
materials have appeared recently [21–23].

In addition to excitons, trions have also been observed in
TMDs. Trions are charged excitons that consist of an electron
(e) or a hole (h) bound to an exciton (X). Since the first
prediction of the existence of two kinds of trions (X+ and
X−) in bulk semiconductors in 1958 [24], there have been
many theoretical [13,14,25] and experimental [4,15,26–28]
studies on trions in different systems, such as, e.g., semi-
conductor quantum wells (for example, see Refs. [13–15]).
Recent spectroscopic measurements on monolayer MoS2 and
WSe2 have demonstrated the existence of tightly bound
trions [16,29,30] with unprecedented binding energies, i.e.,
20–30 meV, which compares with 0.5–3 meV for trions in
GaAs quantum wells [31]. The binding energy of trions in
TMDs was recently calculated by Berkelbach et al. [32].

Here we present a theoretical analysis of the electronic
and structural properties of excitons and trions in monolayer
TMDs using two different models. In the multiband model we
construct the excitonic Hamiltonian, including the effect of
spin-orbit coupling, in the product base of the single-particle
states at the conduction and valence band edges [33]. Such
a model was used earlier to describe excitonic superfluidity
in double-layer graphene [34] and in 2D TMDs [35]. We
decouple the corresponding energy eigenvalue equation and
solve the resulting differential equation self-consistently, using
the finite element method (FEM). An import advantage of
this approach is that it allows us to readily obtain the excited
excitonic states.

As a comparison, we also consider the simple single-band
model, which is often used in numerical studies, and we
solve the eigenvalue equation using the FEM as well as
the stochastic variational method (SVM) using a correlated
Gaussian basis [36,37]. The SVM was successfully used to
describe the binding energy of excitons, trions, and biexcitons
in semiconductor quantum wells [13] and even their magnetic
field dependence [14]. Recently the SVM was used to calculate
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the binding energies of excitons, trions, and biexcitons in
TMD monolayers [38]. It was demonstrated that the theoretical
results of this work are in good agreement with experiments
and other theoretical results. In our work, we employ this
approach to calculate the binding energy and wave function of
excitons and trions in different monolayer TMDs and compare
the results with the FEM results for the single-band model and
the multiband model.

We also present a detailed comparison with available
theoretical and experimental results for the binding energy
of excitons and trions in TMDs and we demonstrate that
the multiband model can properly describe the experimental
absorbance spectrum.

Our paper is organized as follows. In Sec. II we present the
outline of the multiband model and the single-band model
together with an explanation of the SVM. The numerical
results for both excitons and trions, in both the multiband
and the single-band model, are discussed in Sec. III and a
comparison is made between the FEM and the SVM results.
In Sec. IV we summarize the main conclusions.

II. MODEL

A. Multiband model

Excitons and trions are many-body systems requiring the
use of quantum field theory. However, these excitonic systems
can be well approximated by treating them as few-body
systems. We start from the effective low-energy single-electron
Hamiltonian [9] in the basis Be = {|φe

c 〉,|φe
v〉} spanning the 2D

Hilbert space He, with |φe
c 〉 and |φe

v〉 the atomic orbital states
at the conduction (c) and valence (v) band edge, respectively:

He
s,τ (k) = at(τkxσx + kyσy) + �

2
σz + λsτ

I2 − σz

2
, (1)

where σi (i = x,y,z) are Pauli matrices, I2 is the two-by-two
identity matrix, a the lattice constant, t the hopping parameter,
τ = ±1 the valley index, s = ±1 the spin index, � the band
gap, and λ the spin-orbit coupling strength leading to a spin
splitting of 2λ at the valence band edge. Since a hole with
wave vector k, spin s, and valley index τ can be described as
the absence of an electron with opposite wave vector, spin, and
valley index, the single-hole Hamiltonian can immediately be
obtained from the single-electron Hamiltonian as Ĥ h

s,τ (k) =
−Ĥ e

−s,−τ (−k), and the eigenstates of this Hamiltonian span
the Hilbert space Hh. The total Hamiltonian of N electrons
and M holes is given by the sum of the separate single-particle
Hamiltonians, and the corresponding Hilbert space is given
by the product space of all the Hilbert spaces spanned
by the eigenstates of the separate Hamiltonians, Htot =
He

1 ⊗ · · · ⊗ He
N ⊗ Hh

1 ⊗ · · · ⊗ Hh
M , and has dimension 2N+M .

The most straightforward set of basis states spanning this
total Hilbert space is given by the set of all the possible
combinations of tensor products of the atomic orbital states
of the individual particles at the conduction and valence
band edges. In schematic notation this can be written as
B = Be

1 ⊗ · · · ⊗ Be
N ⊗ Bh

1 ⊗ · · · ⊗ Bh
M , which is a set of 2N+M

states as is required.
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FIG. 1. Interaction potential between a hole and an electron in
a monolayer TMD for κ = 1 and with screening length r0 = 0 Å
(solid, blue), r0 = 20 Å (dashed, red), and r0 = 60 Å (dotted, black).
The inset shows a schematic illustration of a monolayer TMD placed
between two dielectrica.

Interactions between the different particles can now be
added and will enter in the total excitonic Hamiltonian as

N+M∑
i<j

sgn(qiqj )V (|r i − rj |)I2N+M . (2)

The TMD monolayer is surrounded by a dielectric with a
dielectric constant different from that of the TMD, as shown
in the inset of Fig. 1. It is well-known that this leads to a
particular screening of the 1/r Coulomb potential such that
the interaction potential Vij is now given by the 2D screened
potential [39–41]

V (rij ) = e2

4πκε0

π

2r0

[
H0

(
rij

r0

)
− Y0

(
rij

r0

)]
, (3)

with rij = |r i − rj |, where Y0 and H0 are the Bessel function
of the second kind and the Struve function, respectively,
with κ = (ε1 + ε2)/2, where ε1(2) is the dielectric constant
of the environment above (below) the TMD monolayer and
r0 = 2πχ2D/κ the screening length, where χ2D is the 2D
polarizability of the TMD. In this work we will always
consider TMDs placed on a substrate with a dielectric constant
ε2 = εr and with vacuum on top, i.e., ε1 = 1. The interaction
potential is shown in Fig. 1 for different screening lengths. For
r0 = 0 this potential reduces to the bare Coulomb potential
V (rij ) = e2/(4πκε0rij ). Increasing the screening length leads
to a decrease in the short-range interaction strength while the
long-range interaction strength is unaffected. For very large
screening lengths r0 → ∞ the interaction potential becomes
logarithmic, i.e., V (rij ) = e2/(4πκε0r0)ln(r0/rij ).

1. Exciton

The exciton Hamiltonian is constructed in the basis Bexc =
{|φe

c 〉 ⊗ |φh
c 〉,|φe

c 〉 ⊗ |φh
v 〉,|φe

v〉 ⊗ |φh
c 〉,|φe

v〉 ⊗ |φh
v 〉}. As an ex-

ample, the noninteracting matrix element between the first
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and second basis state is given by

H exc
1,2 = (〈

φe
c

∣∣ ⊗ 〈
φh

c

∣∣)[Ĥ e
se,τ e (ke) ⊗ 1 + 1 ⊗ Ĥ h

sh,τh (kh)
](∣∣φe

c

〉 ⊗ ∣∣φh
v

〉) = at
( − τhkh

x − ikh
y

)
, (4)

where the orthonormality of the basis functions was used. The other matrix elements can be calculated in a similar way and this
gives the total exciton Hamiltonian

H exc
α (ke,kh,reh) =

⎛
⎜⎜⎜⎜⎝

−V (reh) at
( − τhkh

x − ikh
y

)
at

(
τ eke

x − ike
y

)
0

at
( − τhkh

x + ikh
y

)
� − λshτh − V (reh) 0 at

(
τ eke

x − ike
y

)
at

(
τ eke

x + ike
y

)
0 −� + λseτ e − V (reh) at

( − τhkh
x − ikh

y

)
0 at

(
τ eke

x + ike
y

)
at

( − τhkh
x + ikh

y

)
λ(seτ e − shτh) − V (reh)

⎞
⎟⎟⎟⎟⎠, (5)

where the interaction terms have now been added and where
α is a shorthand notation for se,τ e,sh,τ h. The eigenvalue
problem for this Hamiltonian,

H exc
α (ke,kh,reh)

∣∣�exc
α

〉 = Eexc
α (ke,kh)

∣∣�exc
α

〉
, (6)

defines the exciton energy Eexc
α (ke,kh) and the exciton

eigenstate |�exc
α 〉 = (|φe,h

c,c 〉,|φe,h
c,v 〉,|φe,h

v,c 〉,|φe,h
v,v〉)T , where the

subscript α and the superscript exc have been dropped in
the right-hand side for notational clarity. The above eigenvalue
problem is a matrix equation which, following a procedure
analogous to earlier works [33–35,42], can be decoupled to a
single equation, as shown in Appendix. For s-state excitons
created by exciting charge carriers with circularly polarized
light, implying that the electrons and holes are created in a
single valley and therefore have both opposite spin index as
well as opposite valley index, this equation reduces to[

− 2a2t2

Eexc
α + V (r)

∇2
r − 2a2t2

(
∂

∂r

1

Eexc
α + V (r)

)
∂

∂r

−V (r) + �sh,τh

]
φe,h

c,v (r) = Eexc
α φe,h

c,v (r), (7)

with �sh,τh = � − λshτh the effective band gap. When
exciting the charge carriers with linearly polarized light,
implying that electrons and holes are created in both valleys,
there will also be electrons and holes with the same valley
index; however, these will also have the same spin index,
and as such the equation above still holds. Therefore, in
general, two particles can be excited simultaneously if they
have the same value of sτ . This equation is a differential
eigenvalue equation, which we solve with the FEM, with the
additional complication of the eigenvalue appearing in the
left-hand side as well. Therefore we have to solve this equation
self-consistently by choosing an initial value for Eexc

α and
inserting it in the left-hand side and numerically calculating the
corresponding eigenvalue in the right-hand side. This newly
calculated eigenvalue is subsequently used in the left-hand
side to calculate a new eigenvalue. This is repeated until
convergence is reached. When the exciton energy Eexc

α is
calculated, the binding energy is also known as it is given
by Eexc

b,α = �sh,τh − Eexc
α .

2. Trion

In this paper we will only consider negative trions, as
opposed to positive trions. However, the two kinds of trions
exhibit very similar properties and the procedure presented

below can very easily be modified to describe positive trions.
We construct the trion Hamiltonian in the basis Btri = {Bexc ⊗
|φe2

c 〉,Bexc ⊗ |φe2
v 〉}, in which it can be written as

H tri
α,se2 ,τ e2 =

(
H exc

α + V1 Oe2

O†
e2 H exc

α + V
se2 ,τ e2

2

)
, (8)

with H exc
α the exciton Hamiltonian (5) and with

Oe2 = at
(
τ e2ke2

x − ike2
y

)
I4, (9)

V1 =
(

�

2
− V (rhe2 ) + V (re1e2 )

)
I4, (10)

V
se2 ,τ e2

2 =
(

−�

2
+ λse2τ e2 − V (rhe2 ) + V (re1e2 )

)
I4. (11)

From the second equation of the eigenvalue problem
H tri

α,se2 ,τ e2 |� tri
α,se2 ,τ e2 〉 = Etri

α,se2 ,τ e2 |� tri
α,se2 ,τ e2 〉, it follows that∣∣�e2

v

〉 ≈ (
Etri

α,se2 ,τ e2 I4 − V
se2 ,τ e2

2 − Dexc
α

)−1O†
e2

∣∣�e2
c

〉
, (12)

with |�e2
c 〉 = (|φe1,h,e2

c,c,c 〉,|φe1,h,e2
c,v,c 〉,|φe1,h,e2

v,c,c 〉,|φe1,h,e2
v,v,c 〉)T ,

|�e2
v 〉 = (|φe1,h,e2

c,c,v 〉,|φe1,h,e2
c,v,v 〉,|φe1,h,e2

v,c,v 〉,|φe1,h,e2
v,v,v 〉)T , and with

Dexc
α the four-by-four diagonal matrix containing the

diagonal elements of the exciton Hamiltonian (5). In this
approximation, the kinetic energy of the first electron and the
hole is assumed to be small compared to the band gap and the
trion energy. Inserting the above relation in the first equation
of the eigenvalue problem we find

[
H exc

α +Oe2

(
Etri

α,se2 ,τ e2 I4 − V
se2 ,τ e2

2 −Dexc
α

)−1
O†

e2
+V1

]∣∣�e2
c

〉
= Etri

α,se2 ,τ e2

∣∣�e2
c

〉
. (13)

This eigenvalue problem is similar to the exciton eigenvalue
problem (6), but now with additional terms on the diagonal.
Therefore, this four-by-four matrix equation can be decoupled
in a similar fashion as described in Appendix for excitons and
the resulting differential equation is shown in Eq. (A9). In the
derivation of this differential equation, we assumed that the
wave function is independent of the angular coordinates ϕe1h

and ϕhe2 . Therefore, as an approximation we take ϕe1h = ϕhe2

such that we have |re1h + rhe2 | = re1h + rhe2 . Equation (A9)
again has to be solved self-consistently to determine the trion
energy Etri

β and the component φe1,h,e2
c,v,c (re1h,rhe2 ) of the trion

wave function. The other components of the wave function
can be determined from Eq. (12) and equations which are
analogous to Eqs. (A4) and (A6) and which can be found by
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decoupling the eigenvalue problem. The trion binding energy
is given by Etri

b,β = �/2 + Eexc
α − Etri

β .

B. Single-band model

The Hamiltonian for an N -particle excitonic system can
also be approximately written in the form

H =
N∑

i=1

h̄2k2
i

2mi

+
N∑

i<j

sgn(qiqj )V (|r i − rj |), (14)

with qi and mi the charge and effective mass of particle i

and where V (|r i − rj |) is again given by Eq. (3). Here, we
assumed that the electron and hole bands are isotropic and
parabolic, which is a good approximation for the low-energy
spectrum of the considered TMDs. However, the above form of
the Hamiltonian implies that both the electron and hole single-
particle states form a single parabolic band. The corresponding
energy eigenvalue equation is given by(

− h̄2

2μ
∇2

r − V (r)

)
ψexc(r) = Eexcψexc(r) (15)

and [
− h̄2

2μ

(∇2
re1h

+ ∇2
rhe2

) + h̄2

mh

∇re1 h · ∇rhe2

−V (r12) − V (r23) + V (r12 + r23)

]
ψ tri(r12,r23)

= Etriψ tri(r12,r23), (16)

for s-state excitons and negative trions, respectively, and with
μ = (1/me + 1/mh)−1 the reduced mass. Here, we again
transformed to center of mass and relative coordinates and
take K = 0. These differential equations can be solved directly
with the FEM, although for the trion differential equation
we have to make the approximation that the wave function
is independent of the relative angular coordinates and take
|re1h + rhe2 | = re1h + rhe2 .

However, it is possible to determine the ground-state energy
and wave function of the above Hamiltonian including all the
angular correlations. In order to do this, we follow Ref. [38] and
employ the SVM, which allows us to solve this Hamiltonian
quasiexactly. We expand the many-particle wave function
�(r1, . . . ,rN ) in a basis of given size K:

�ML,S,MS
(r1, . . . ,rN ) =

K∑
n=1

cnϕ
n
ML,S,MS

(r1, . . . ,rN ), (17)

where the basis functions are taken as correlated Gaussians:

ϕn
ML,S,MS

(r1, . . . ,rN )

= A

⎡
⎣

⎛
⎝ N∏

j=1

ξmn
j
(rj )

⎞
⎠e− 1

2

∑N
i,j=1 An

ij r i .rj χn
S,MS

⎤
⎦, (18)

with ξm(r) = [x + sgn(m)iy]|m|. The matrix elements An
ij are

the variational parameters and form a symmetric and positive
definite matrix An. χn

S,MS
is the total spin state of the excitonic

system corresponding to the total spin S and z component of
the spin MS , which are conserved quantities. This total spin

TABLE I. Lattice constants [9], hopping parameters [9], band
gaps [9], spin splittings [43], charge-carrier masses [32], and
screening lengths [32] for different TMD materials suspended in
vacuum.

a (Å) t (eV) � (eV) 2λ (eV) m (m0) r0 (Å)

MoS2 3.193 1.10 1.66 0.15 0.50 41.47
MoSe2 3.313 0.94 1.47 0.18 0.54 51.71
WS2 3.197 1.37 1.79 0.43 0.32 37.89
WSe2 3.310 1.19 1.60 0.46 0.34 45.11

state is obtained by adding step-by-step single-particle spin
states. Therefore, multiple total spin states belonging to the
same S and MS value are possible, as these can be obtained
by different intermediate spin states. The integers mn

j satisfy

the relation
∑N

j=1 mn
j = ML, with ML the z component of

the total angular momentum, which is also conserved. For the
exciton we consider the (S,MS) = (0,0) singlet state, and for
the trion we consider the (S,MS) = (1/2,1/2) doublet state.
Furthermore, we always take ML = 0, which is the lowest
energy state. Finally, A is the antisymmetrization operator
for the indistinguishable particles. The matrix elements of
the different terms of the Hamiltonian between these basis
functions can be calculated analytically [38].

To find the best energy value, we randomly generate a ma-
trix An, integers mn

j , and a spin function χn
S,MS

multiple times.
The wave function with the set of parameters that gives the low-
est energy is then retained as a basis function, and we now have
a basis of dimension K = 1. Subsequently, we again randomly
generate a set of parameters and calculate the energy value in
the K = 2 basis consisting of our previously determined basis
function and the new trial basis function. This is repeated mul-
tiple times, and the trial function that gives the lowest energy
value is then retained as the second basis function. Following
this procedure, each addition of a new basis function assures
a lower variational energy value, and we keep increasing our
basis size until we reach convergence of the energy value. This
procedure is explained in more detail in Ref. [36].

In this model, the binding energies for excitons and
trions are given by Eexc

b = −Eexc and Etri
b = Eexc − Etri,

respectively, where Eexc and Etri are the exciton and trion
energy, respectively.

III. RESULTS

The material constants for four different TMDs are listed in
Table I. Unless specified otherwise, all calculations are done
for MoS2 suspended in vacuum. However, when comparing
the two models, not all these parameters are independent. The
single-electron energy spectrum following from the multiband
Hamiltonian (1) is given by

Es,τ (k) = λsτ

2
±

√
a2t2k2 + �2

s,τ

4
(19)

and is shown schematically in Fig. 2. For small k this energy
spectrum can be approximated by

Es,τ (k) ≈ λτs ± �s,τ

2
± h̄2k2

2ms,τ

, (20)

035131-4



EXCITONS AND TRIONS IN MONOLAYER TRANSITION . . . PHYSICAL REVIEW B 96, 035131 (2017)

FIG. 2. Schematic representation of the low-energy band struc-
ture of 2D TMDs and different kinds of excitons. Blue and red
bands are spin-up and spin-down bands, respectively. The open and
closed circles indicate holes and electrons, respectively. The blue
solid ellipse and the red dotted ellipse indicate intravalley A excitons
in the K and K ′ valley, respectively. The red dashed ellipse indicates
an intravalley B exciton in the K valley. The large purple dot-dashed
ellipse indicates an intervalley A exciton.

with the charge-carrier mass given by

ms,τ = h̄2�s,τ

2a2t2
. (21)

Note that this implies that particles with different spin index
or with different valley index have a different effective mass.
This quadratic approximation is inherent to the single-band
model and is therefore often made in numerical studies of
excitonic systems such as in Monte Carlo calculations and
in SVM calculations. Even at high charge-carrier densities
of 1013 cm−2, the quadratic dispersion overestimates the full
hyperbolic dispersion by an amount of the order of only 0.1–
1 meV. However, in the single-band model the energy spectrum
in Eq. (20) is further approximated to a single band, and as
such a parameter is lost. We have two (effective) parameters
(at and �s,τ ) in the multiband model and only one (ms,τ ) in
the single-band model. We will elaborate more on this in the
next subsection.

In both the multiband model as well as the single-band
model, we will calculate the correlation function between two
particles i and j , defined as

Cij (r) = 〈�|δ(r i − rj − r)|�〉, (22)

from which we can calculate the probability of finding particles
i and j at a distance r . For an axisymmetric system, this
reduces to

Pij (r) = 2πrCij (r), (23)

which satisfies ∫ ∞

0
Pij (r)dr = 1. (24)

The average distance between particles i and j is then obtained
by

〈rij 〉 =
∫ ∞

0
rPij (r)dr = 2π

∫ ∞

0
r2Cij (r)dr. (25)

When both the excitonic energy spectrum as well as the
wave functions are known we can also calculate the absorbance
spectrum using the formula [44]

α(ω) ∝ 1

ω
Im

⎛
⎝∑

j

|P0|2
∣∣φe,h,j

c,v (0)
∣∣2

Ej − h̄ω − iγ

⎞
⎠, (26)
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FIG. 3. Binding energy for excitons in MoS2 in vacuum as a
function of the band gap for fixed charge-carrier mass calculated in the
multiband model. The red and black dashed lines are the single-band
SVM and experimental result, respectively. The green dashed line
indicates the realistic value of the band gap of MoS2.

with Ej the exciton energy, φe,h,j
c,v the corresponding dominant

component of the exciton wave function, h̄ω the photon energy,
γ the broadening of the peaks, and where P0 = 2ms,τ at/h̄ is
the coupling strength with optical fields of circular polarization
evaluated at the band edges [9].

A. Exciton

In the single-band model, the difference in exciton energies
as calculated with the FEM and SVM, respectively, is of the
order of 10−3 meV. Therefore, in this subsection we show only
SVM results for the single-band model.

In Fig. 3 we show the binding energy as a function of
the band gap. For each value of the band gap we calculate
the value of at such that it fixes the charge-carrier mass at
0.5m0 to facilitate comparison with the single-band model
results and the experimental results. The figure shows that the
binding energy calculated in the multiband model converges
to the binding energy calculated in the single-band model
in the limit of an infinite band gap. As mentioned above,
in the single-band model, the charge-carrier mass replaces
the role of the parameter at in the multiband model as the
parameter that determines the curvature of the energy bands.
However, the band-gap parameter is effectively lost. Only
conduction electrons (electrons in the conduction band) and
conduction holes (the absence of electrons in the valence band)
are considered in the single-band Hamiltonian (14), which can
therefore be viewed as an infinite band-gap approximation,
with the conduction band edge at zero energy and the valence
band edge at minus infinity. As the band gap decreases,
the binding energy increases. This is due to the interband
interactions, which become more important. It should be
noted that when the band gap becomes of the same order
as the binding energy, the latter will start to decrease since
the exciton state will always be located inside the band gap.
At the realistic value of the band gap of MoS2, indicated by
the green dashed line, we see that the multiband model result
agrees better with the experimental result than the single-band
result.

The dependence of the five lowest energy levels of an
exciton on the screening length is shown in Fig. 4. Similar
to the case of the (2D) hydrogen atom, there are an infinite
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FIG. 4. Five lowest energy levels for excitons in MoS2 in vacuum
as a function of the screening length calculated in the multiband
model. The red dashed curve is the single-band SVM result for
the ground state. The black dashed line indicates the edge of the
continuum. The green dashed line indicates the realistic value of the
screening length of MoS2.

number of energy levels which pile up towards the edge of the
continuum, which for the case of 2D TMDs lies at �s,τ . As the
screening length increases, and thus the interaction strength
decreases, all the energy levels converge towards the edge
of the continuum. In this limit the multiband model results
also agree perfectly with the single-band model results. For
small screening lengths, however, the interactions are strong
and therefore the contribution of the interband interactions
becomes more important, yielding significant differences
between the multiband and the single-band model. Note that
since the conduction band edge in the single-band model is
located at zero energy, all the single-band model results are
shifted by an amount �s,τ to facilitate comparison with the
multiband model results.

In Fig. 5 we show the five lowest energy levels for
excitons in WS2 and WSe2 on a SiO2 substrate calculated
with the multiband model and compare it with an analytical
model [45] and experimental results [17,18]. This shows that
the agreement of the multiband model with the experimental
results is better than that of the analytical model. Our results

1.6

1.8

2.0

2.2

2.4

FIG. 5. Five lowest energy levels for excitons in WS2 (left panel)
and WSe2 (right panel) on a SiO2 substrate, as determined from
our FEM solution of the multiband model (blue), the analytical
model of Ref. [45] (red), and the experimental results of Refs. [17]
(WS2) and [18] (WSe2) (black). For these calculations we used the
parameters specified in Ref. [45], i.e., �s,τ = 2.4 eV, a = 3.197 Å,
and t = 1.25 eV for WS2, �s,τ = 1.97 eV, a = 3.310 Å, and t = 1.13
eV for WSe2, and a dielectric constant of εr = 3.9 for the SiO2

substrate.
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FIG. 6. Binding energy for A (blue) and B (red) excitons in MoS2

in vacuum as a function of the spin-orbit coupling strength calculated
in the multiband model. The green dashed line indicates the realistic
value of the spin-orbit coupling strength of MoS2.

always overestimate the experimental results, except for the
ground state of WS2 for which we find a smaller value.

Due to the spin splitting of the valence band there are
effectively two band gaps and as a consequence two different
kinds of excitons. These are commonly referred to in the
literature as A and B excitons and are illustrated in Fig. 2.
When examining Eq. (7), we indeed see that there is a
small difference in the equation depending on the value of
shτh = ±1. When shτh = 1 Eq. (7) describes the A exciton,
and when shτh = −1 it describes the B exciton. To illustrate
this, the A excitons in Fig. 2 in the K and K ′ valley have se =
1, τ e = 1, sh = −1, τ h = −1 and se = −1, τ e = −1, sh =
1, τ h = 1, respectively. The B exciton in the figure has
se = −1, τ e = 1, sh = 1, τ h = −1. Note that the intervalley
exciton, which can arise due to excitation of the charge carriers
with linearly polarized light, also has seτ e = shτh. In Fig. 6
we show the binding energy for A and B excitons as a
function of the spin-orbit coupling strength. In the absence
of spin-orbit coupling the binding energies for both kinds of
excitons are equal since there is no spin splitting of the energy
bands. For finite spin-orbit coupling, the B exciton binding
energy is always larger than the A exciton binding energy, and
this difference increases with increasing spin-orbit coupling,
since the A exciton binding energy decreases whereas the B

exciton binding energy increases. Since increasing λ will cause
the A exciton band gap to become smaller whereas the B

exciton band gap becomes larger, one may expect an increase
(decrease) in the binding energy of the A (B) exciton due to
the respective changes in the band gap (see Fig. 3). However,
while in Fig. 3 we fixed the charge-carrier mass, we now
consider the more realistic case in which at is fixed. By means
of Eq. (21) we see that an increasing (decreasing) band gap
leads to an increasing (decreasing) charge-carrier mass. This
reduces (enhances) the kinetic energy and therefore enhances
(reduces) the binding energy, thus explaining the results in the
figure. At the realistic value of the spin-orbit coupling strength
of MoS2, indicated by the green dashed line, the difference in
binding energy of the A and B exciton is 12.9 meV and the
difference in the ground-state energy of the A and B exciton is
137.1 meV. In the following of the present work we consider
only the A exciton.

035131-6



EXCITONS AND TRIONS IN MONOLAYER TRANSITION . . . PHYSICAL REVIEW B 96, 035131 (2017)

0.0

0.2

0.4

0.6

0 1 2 3 4
0.0

0.2

0.4

0.6

FIG. 7. Different components (i = c,j = v: blue solid curve, i =
c, j = c and i = v, j = v: red dashed curve, i = v, j = c: black
dotted curve) of the ground-state wave function for excitons in MoS2

in vacuum for �s,τ = 1.585 eV (a) and �s,τ = 500 eV (b) for fixed
charge-carrier mass calculated in the multiband model. The green
dot-dashed curve is the single-band SVM result.

In Fig. 7 we show the different components of the exciton
ground-state wave function. For the realistic value of the
band gap, we see that the component with the electron in
the conduction band and the hole in the valence band is the
most important one; it is an order of magnitude larger than
the component with both particles in the conduction band
and the component with both particles in the valence band
(these two components are identical) and almost 2 orders of
magnitude larger than the component with the electron in the
valence band and the hole in the conduction band. Furthermore,
the single-band model wave function is in good agreement with
the dominant component. Note that the single-band model
wave function has only one component, since in this model
only conduction particles are considered. It is precisely the
other components, representing the contribution of excitons
consisting partly or entirely of valence particles, which lead to
the increasing binding energy with decreasing band gap shown
in Fig. 3. For the case of a very large band gap, we see that
these valence components are completely suppressed and that
the dominant conduction component agrees perfectly with the
single-band model wave function, which is in correspondence
with the fact that the binding energy in the multiband model
converges to the single-band model binding energy in the limit
of an infinite band gap.

The interparticle distance probability distributions for the
first three states of an exciton are shown in Fig. 8(a). This shows
that the excited states have a larger probability for the particles
being at a larger distance from each other. In general, the
interparticle distance probability distribution of the nth state
exhibits n maxima. Furthermore, the single-band model result
agrees very well with the multiband model result. In Fig. 8(b)
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FIG. 8. Interparticle distance probability distribution (a) and
average interparticle distance as a function of the screening length
(b) for the first three states for excitons in MoS2 in vacuum calculated
in the multiband model. The red dashed curve is the single-band
SVM result for the ground state. The green dashed line indicates the
realistic value of the screening length of MoS2.

we show the average interparticle distance for the first three
states as a function of the screening length. This shows that
the average interparticle distance increases with the screening
length, which is a consequence of the reduced interaction
strength, as well as with increasingly excited states. Again,
the single-band model result agrees well with the multiband
model result.

We show the optical absorption spectrum in Fig. 9. Our
results obtained with the multiband model are in good
agreement with results obtained from numerically solving
the Bethe-Salpeter (BS) equation [46]. The most noticeable
difference between the two is the height of the peak at around
2.27 eV, which corresponds to the 2s state of the B exciton,
which is about 50% of the peak of the 1s state of the B

exciton in the results obtained from the BS equation whereas
it is about 20% of this peak in our multiband model. The
splitting between the peaks of the 1s state of the A and the
B exciton is similar for the three different results shown in
this figure. However, both the multiband model and the BS
equation predict that the B exciton peak is higher than the A

exciton peak, whereas in the experimental results the A exciton
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FIG. 9. Excitonic absorbance spectrum for MoS2 on a SiO2

substrate, as determined from our FEM solution of the multiband
model (blue solid curve), the numerical solution of the Bethe-Salpeter
equation of Ref. [46] (red dashed curve), and the experimental results
of Ref. [16] (black dotted curve). Note that the results of the two
theoretical results are shifted such that they match the A exciton
energy of the experimental results. The results of the different models
are also rescaled to facilitate comparison. For our numerical results
we used a broadening of 25 meV.
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TABLE II. Exciton binding energies (meV) for different TMD
materials in the single-band model obtained with the SVM and in the
multiband model (MB), compared with previous theoretical results in
the single-band model and experimental studies. Results of the present
work are listed in bold. We used εr = 3.8 for SiO2 and εr = 4.58 for
bilayer graphene (BLG).

Substrate Theory Experiment SVM MB

MoS2 Vacuum 551.4 [47] 570 [48] 555.0 [38] 559.5
526.5 [49]

SiO2 348.6 [49] 320.4 323.9

MoSe2 Vacuum 477.8 [47] 480.4 [38] 483.8
476.9 [49]

SiO2 322.9 [49] 286.1 288.8
BLG 550 [50] 256.7 259.2

580 [51]

WS2 Vacuum 519.1 [47] 523.5 [38] 528.6
509.8 [49]

SiO2 322.9 [49] 320 [18] 284.1 287.5
312 [52]

WSe2 Vacuum 466.7 [47] 470.2 [38] 474.4
456.4 [49]

SiO2 294.6 [49] 370 [18] 262.5 265.5

peak is more pronounced than the B exciton peak. It should
be noted that the experimental absorbance was not measured
up to high enough photon energies to clearly distinguish the
excited states.

In Table II we show the exciton binding energies for
different TMD materials and substrates in the single-band
model obtained with the SVM and in the multiband model,
compared with theoretical studies in the single-band model
using ground-state diffusion Monte Carlo [47] and path-
integral Monte Carlo [49], as well as experimental results.
The results obtained in the multiband model are in good
agreement with the other theoretical and SVM results, which
are all calculated in the single-band model. Note that the
authors of Ref. [49] use a value of εr = 3.0 for SiO2, which
explains why their binding energies in this case are consistently
larger than ours. If we take εr = 3.0 we find a binding energy
of 365.2 meV, 323.5 meV, 328.6 meV, and 301.5 meV for
MoS2, MoSe2, WS2, and WSe2, respectively, with the SVM.
This agrees well with the results of Ref. [49]. We find that
the multiband model results are larger by about 3–5 meV
as compared to the single-band SVM results and as such
are closer to the experimental results. The agreement with
the experimental results is good for MoS2 and for WS2,
whereas for WSe2 and especially for MoSe2 the agreement
with the experimental results is less good; but for the latter,
a possible explanation is given by the fact that the use of
bilayer graphene, a strictly two-dimensional material, as a
substrate must be taken into account in a different way as
compared to just inserting its dielectric constant in the screened
interaction potential (3). However, it is also remarkable that
the experimental result in the presence of a substrate is
about 100 meV larger than the theoretically predicted result
in vacuum.
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FIG. 10. (a) Different components (i = c,j = v,k = c: blue
curve; i = c, j = c,k = c: red curve; i = c, j = v,k = v: black
curve; i = v, j = v,k = c: brown curve) of the ground-state wave
function for trions in MoS2 in vacuum as a function of the hole
coordinate xh for yh = 0 and for fixed electrons calculated in
the multiband model. The green dashed curve and orange dotted
curve are the single-band SVM and FEM result, respectively. (b)
Same as (a) but now as a function of the electron coordinate xe2 for
ye2 = 0 and for a fixed electron and hole. Open and closed circles
indicate the positions of holes and electrons, respectively.

B. Trion

Here we limit ourselves to trions consisting of an A

exciton and an additional electron. In Fig. 10 we show the
different components of the trion ground-state wave function.
Similar to what we found for the case of the exciton, we
now have one dominant component which represents a trion
consisting of three conduction particles, three components
which are an order of magnitude smaller representing a trion
consisting of two conduction particles and one valence particle,
three components which are 2 orders of magnitude smaller
representing a trion consisting of one conduction particle and
two valence particles, and one component which is 3 orders
of magnitude smaller representing a trion consisting of three
valence particles. In Fig. 10, we show only the four largest
components.

We show the wave function as a function of the hole x

coordinate when its y coordinate and the two electrons are fixed
in Fig. 10(a). This shows that the hole localizes equally around
the two electrons. The component φe1,h,e2

c,c,c of the wave function
also shows extrema around the electron positions, whereas the
main contribution of the other two nondominant components
is in between the two electrons. Furthermore, the SVM
wave function shows qualitatively the same behavior as the
dominant multiband model wave function component and the
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FIG. 11. Dominant component φe1,h,e2
c,v,c (re1h,rhe2 ) of the ground-

state (a) and second excited-state (b) wave function for trions in
MoS2 in vacuum as a function of the relative coordinates calculated
in the multiband model.

single-band FEM wave function, but there are substantial
quantitative differences. These differences are a consequence
of the fact that we neglected the dependence of the wave
function on the angular coordinates when using the FEM.

In Fig. 10(b) we show the wave function as a function
of the electron x coordinate when its y coordinate and the
hole and the other electron are fixed, which shows that the
electron localizes around the hole. The other components show
a similar behavior as the dominant component. In this case the
agreement between the SVM and FEM wave functions is better
than in the case of fixed electrons.

The dominant component of the ground-state wave function
and the second excited-state wave function is shown as a
function of the relative coordinates in Fig. 11. The ground-state
wave function has a single maximum at re1h = rhe2 = 0,
meaning that the three particles form one symmetric system
with comparable average interparticle distances between all
the particles. We find 〈reh〉 ≈ 0.96 nm and 〈ree〉 ≈ 1.40 nm,
yielding a ratio of 〈reh〉/〈ree〉 = 0.69. The second excited state,
however, has two maxima: one at re1h = 0 and rhe2 ≈ 3 nm and
one at re1h ≈ 3 nm and rhe2 = 0. This means that the structure
of the trion is now given by an exciton, consisting of one of
the electrons and the hole, with the additional electron circling
around it. In this case we find 〈reh〉 ≈ 2.31 nm and 〈ree〉 ≈ 3.81
nm. However, since the two electrons are identical, this implies
that 〈reh〉 is the average of the average distance between the
hole and the inner electron and the average distance between
the hole and the outer electron. Approximating the latter by
the average electron-electron distance, we find that the average
distance between the hole and the inner electron is given by
〈rin

eh〉 ≈ 0.80 nm. This gives 〈rin
eh〉/〈ree〉 = 0.21.

In Table III we show the trion binding energies for different
TMD materials and substrates in the single-band model
obtained with both the SVM and the FEM and in the multiband
model, compared with theoretical studies in the single-band
model using ground-state diffusion Monte Carlo [47,53] and
path-integral Monte Carlo [49], as well as experimental results.
For TMDs suspended in vacuum, the results obtained with
the multiband model are larger than the SVM results by a
similar amount as in the case of excitons. For TMDs placed
on a SiO2 substrate, the multiband model results are lower
than the SVM results. Again, note that εr = 3.0 is used for
SiO2 in Ref. [49], explaining their larger binding energies in

TABLE III. Negative trion binding energies (meV) for different
TMD materials in the single-band model obtained with both the SVM
and the FEM and in the multiband model (MB), compared with
previous theoretical results in the single-band model and experimental
studies. Results of the present work are listed in bold. We used εr =
3.8 for SiO2.

Substrate Theory Exp. SVM FEM MB

MoS2 Vacuum 33.8 [47] 33.7 [38] 23.1 37.9
32.0 [49]
32 [53]

SiO2 24.7 [49] 18 [16] 23.2 3.4 14.5

MoSe2 Vacuum 28.4 [47] 28.2 [38] 21.1 32.5
27.7 [49]
31 [53]

SiO2 22.1 [49] 30 [4] 19.7 5.3 14.2

WS2 Vacuum 34.0 [47] 33.8 [38] 18.8 35.2
33.1 [49]
31 [53]

SiO2 24.3 [49] 30 [54] 20.2 − 1.9 9.4
30 [55]

WSe2 Vacuum 29.5 [47] 29.5 [38] 18.3 32.1
28.5 [49]
27 [53]

SiO2 21.5 [49] 30 [56] 19.3 0.4 10.4

this case. If we take εr = 3.0 we find a binding energy of
24.9 meV, 21.6 meV, 24.0 meV, and 20.5 meV for MoS2,
MoSe2, WS2, and WSe2, respectively, with the SVM. This
agrees well with the results of Ref. [49]. Furthermore, the
single-band FEM results agree very badly with the single-band
SVM results, even predicting unstable trions in WS2, showing
the importance of angular correlations in trions. In general,
the agreement with the experimental results is not as good as
for the case of excitons. In a recent experiment [57] a binding
energy of 21 (32) meV was found for positive (negative) trions
in WSe2 encapsulated in hexagonal boron nitride layers. This
difference was attributed to a combination of a small difference
in the effective mass of the two charge carriers and exchange
interaction effects.

IV. SUMMARY AND CONCLUSION

In this paper, we studied the electronic and structural
properties of excitons and trions in 2D transition metal
dichalcogenides. We considered a multiband model, taking
into account the full low-energy dispersion for monolayer
TMDs, including the spin-orbit coupling, and solved it
using the finite element method. We also considered a
simplified single-band model which we solved with both the
finite element method as well as the stochastic variational
method.

Calculating the excitonic energies and wave functions in
the single-band model with the FEM instead of the SVM has
the advantage that it allows one to readily obtain the excited
excitonic states and that the calculations are computationally
about a factor 5 faster than the SVM calculations. We found
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nearly perfect agreement between the results of both methods
and good agreement with other theoretical results for the
case of excitons. For the case of trions, we found significant
differences between the two methods. This is due to the neglect
of the angular dependence of the wave function when using
the FEM. Therefore, we can conclude that angular correlations
are important in trions and as a result that the SVM is
needed to obtain good quantitative results. Furthermore, for
biexcitons and even larger excitonic systems, calculating the
excitonic energies and wave functions will become almost
impossible with the FEM while it is still feasible with the
SVM.

The agreement of these theoretical models with experi-
mental results is reasonable, although there are significant
differences. A possible explanation can be that, considering
the very small size of the excitonic systems, i.e., of the order
of a few lattice constants, a continuum approach may lead
to considerable errors and a discrete lattice approach may be
necessary to obtain very good quantitative agreement with
experiments.

Furthermore, we found that the exciton binding energy
in the multiband model converges towards the single-band
model result in the limit of an infinite band gap. For finite
band gaps the multiband model result is larger than the
single-band model result. We were able to explain this by
means of the contribution of interband interactions. The
multiband model therefore allows to take into account the
contribution of excitonic systems consisting partly or entirely
of valence particles. This was confirmed by plots of the
different components of the wave functions of the excitonic
systems. Another advantage of the multiband model is that
it allows for a more straightforward analysis of A and B

excitons. Finally, we can conclude that it should be interesting
to determine the energies and wave functions for trions and
biexcitons in the multiband model using the SVM.
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APPENDIX: DECOUPLING OF THE EXCITON EIGENVALUE EQUATION

Due to the presence of the V (|re − rh|)I4 term, the Hamiltonian does not commute with ke nor with kh. This means
that the components of the single-particle wave vectors are not good quantum numbers and should be replaced by their
corresponding differential operators when solving the eigenvalue problem in the position representation. However, if we transform
the single-particle coordinates to center-of-mass and relative coordinates,

R = re + rh

2
, r = re − rh, K = ke + kh, k = ke − kh

2
, (A1)

the interaction term becomes V (r)I4. As a consequence, the Hamiltonian does not commute with the relative wave vector k but
does commute with the center-of-mass momentum K . Therefore, K is a conserved quantity and its components are good quantum
numbers. Since we are only interested in the exciton states with the lowest energy, we take K = 0 to discard the translational
kinetic energy. Defining

Oe = at(τ ekx − iky)I2, Oh = −at(−τhkxσx + kyσy), (A2)

the exciton eigenvalue equation (6) can be rewritten as[
Oh − V (r)I2 + � − λshτh

2
(I2 − σz)

]∣∣�e
c

〉 + Oe

∣∣�e
v

〉 = Eexc
α

∣∣�e
c

〉

O†
e

∣∣�e
c

〉 + [
Oh − V (r)I2 − � − λseτ e

2
(I2 + σz) + λ(seτ e − shτh)

2
(I2 − σz)

]∣∣�e
v

〉 = Eexc
α

∣∣�e
v

〉
, (A3)

with |�e
c 〉 = (|φe,h

c,c 〉,|φe,h
c,v 〉)T and |�e

v〉 = (|φe,h
v,c 〉,|φe,h

v,v〉)T . It follows from the second equation that

∣∣�e
v

〉 ≈
[
Eexc

α I2 + V (r)I2 + � − λseτ e

2
(I2 + σz) − λ(seτ e − shτh)

2
(I2 − σz)

]−1

O†
e

∣∣�e
c

〉
, (A4)

where we have assumed the relative kinetic energy to be small compared to the band gap and the exciton energy. Using this
result, the first equation of (A3) can be written as(

−V (r) + a2t2k2

Eexc
α + V (r) + � − λseτ e

+ a2t2

[
(τ ekx − iky)

1

Eexc
α + V (r) + � − λseτ e

]
(τ ekx + iky)

)∣∣φe,h
c,c

〉
+ at(τhkx + iky)

∣∣φe,h
c,v

〉 = Eexc
α

∣∣φe,h
c,c

〉
at(τhkx − iky)

∣∣φe,h
c,c

〉 + (
−V (r) + � − λshτh + a2t2k2

Eexc
α + V (r) − λ(seτ e − shτh)

+ a2t2

[
(τ ekx − iky)

1

Eexc
α + V (r) − λ(seτ e − shτh)

]
(τ ekx + iky)

)∣∣φe,h
c,v

〉 = Eexc
α

∣∣φe,h
c,v

〉
. (A5)
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From the first equation we now have

∣∣φe,h
c,c

〉 ≈ at(τhkx + iky)

Eexc
α + V (r)

∣∣φe,h
c,v

〉
, (A6)

again assuming the relative kinetic energy to be small compared to the exciton energy. Inserting this in the second equation
of (A5) and going to position representation we get[

− a2t2

(
1

Eexc
α + V (r)

+ 1

Eexc
α + V (r) − λ(seτ e − shτh)

)
∇2

r − V (r) + � − λshτh

− a2t2

(
∂

∂r

1

Eexc
α + V (r)

+ ∂

∂r

1

Eexc
α + V (r) − λ(seτ e − shτh)

)
∂

∂r

]
φe,h

c,v (r) = Eexc
α φe,h

c,v (r), (A7)

where we have used

[(τkx − iky)f (r)](τkx + iky)φ(r) = −
[(

τe−iτϕ∂r − i

r
e−iτϕ∂ϕ

)
f (r)

](
τeiτϕ∂r + i

r
eiτϕ∂ϕ

)
φ(r) = −[∂rf (r)]∂rφ(r), (A8)

where f (r) is a general function which depends only on the radial coordinate. For s states the wave function φ(r) does not depend
on the angular coordinate. The energy levels and the component φe,h

c,v (r) of the wave function can be determined from Eq. (A7).
The other three components of the wave function can be determined from Eqs. (A4) and (A6). For seτ e = shτh Eq. (A7) reduces
to Eq. (7).

The trion eigenvalue problem in Eq. (13) can be decoupled in a similar fashion, in which it is again useful to transform to
center-of-mass and relative coordinates and assume the conserved center-of-mass momentum K to be equal to zero. When the
extra electron has se2τ e2 = se1τ e1 = shτh, meaning that it can be excited simultaneously with the other electron and the hole, we
find, when going to position representation, the decoupled differential equation(

−V
(
Etri

β ,re1h,rhe2

)(∇2
re1h

+ ∇2
rhe2

− ∇re1h
· ∇rhe2

) −
[

∂

∂re1h

V
(
Etri

β ,re1h,rhe2

)] ∂

∂re1h

−
[

∂

∂rhe2

V
(
Etri

β ,re1h,rhe2

)] ∂

∂rhe2

+ 1

2

[
∂

∂re1h

V
(
Etri

β ,re1h,rhe2

)] ∂

∂rhe2

+ 1

2

[
∂

∂rhe2

V
(
Etri

β ,re1h,rhe2

)] ∂

∂re1h

−V
(
re1h

) − V
(
rhe2

) + V
(
re1h + rhe2

) + �sh,τh + �

2

)
φe1,h,e2

c,v,c

(
re1h,rhe2

) = Etri
β φe1,h,e2

c,v,c

(
re1h,rhe2

)
, (A9)

with

V
(
Etri

β ,re1h,rhe2

) = 2a2t2

Etri
β + V

(
re1h

) + V
(
rhe2

) − V
(
re1h + rhe2

) − �
2

, (A10)

and where β is a shorthand notation for α,se2 ,τ e2 .
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