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Correlation functions in electron-electron and electron-hole double quantum wells: Temperature,
density, and barrier-width dependence
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The classical-map hypernetted-chain (CHNC) scheme, developed for treating fermion fluids at strong coupling
and at finite temperatures, is applied to electron-electron and electron-hole double quantum wells. The pair-
distribution functions and the local field factors needed in linear-response theory are determined for a range
of temperatures, carrier densities, and barrier widths typical for experimental double-quantum-well systems in
GaAs-GaAlAs. For electron-hole double quantum wells, a large enhancement in the pair-distribution functions
is found for small carrier separations. The CHNC equations for electron-hole systems no longer hold at low
densities where bound-state formation occurs.
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I. INTRODUCTION

Quantum nanostructures with charge carriers confined in
reduced dimensions [1] continue to be of great interest.
Enormous progress in fabrication techniques has led to the
realization of systems in which the carriers have extremely
high mobilities and can be taken down to very low densities
[2,3]. A system consisting of a pair of strongly coupled quasi-
two-dimensional (2D) layers of mutually interacting electron
or hole fluids separated by a thin insulating layer with negligi-
ble tunneling is predicted to support novel phases stabilized
by interlayer Coulomb interactions. These phases include
excitonic superfluids [4–10], coupled Wigner crystals and
charge-density waves [11,12], and entangled states relevant
in electronics and quantum information devices [13]. Cou-
pled double-layer systems can be fabricated in conventional
semiconductor heterostructures using two adjacent quantum
wells [4,14–19], or, alternatively, they can be fabricated using
two sheets of atomically thin materials such as monolayer
or bilayer graphene, separated by a high insulating barrier of
hBN or WSe2 [20–23].

Coupled double-layer systems, which can be represented
as coupled 2D interacting plasmas, provide a means of study-
ing intricate many-particle interactions that depend on carrier
density, masses, spin, as well as temperature. At low densities
and for small separations of the layers, the carrier correlations
can become very strong, especially for coupled electron-hole
layers with their attractive interactions. Świerkowski et al.
[24] demonstrated the importance of electron-hole correla-
tions in experimental electron-hole drag resistivity data. Cor-
relations in double quantum wells have been studied using
quantum Monte Carlo simulations [9,25–29].
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At finite temperatures, the degeneracy of the carriers is
controlled by the ratio of their temperature to the Fermi
energy, t = T/EF . When t > 1, degeneracy starts to signif-
icantly decrease, and this is accompanied by a decreasing
importance of quantum effects, which in turn affects the cor-
relations. For low-density holes in GaAs with their relatively
large effective mass, the Fermi temperature can be as little as
a few degrees Kelvin. For example, for a hole layer density
n = 4 × 1010 cm−2 in GaAs, the Fermi temperature is only
4 K. Hence the need to account for the temperature depen-
dence of exchange and correlation among carriers becomes
unavoidable even at nominally “low” temperatures, and this is
an overarching objective of this study.

The direct evaluation of pair-distribution functions and
linear-response functions of quantum systems is extremely
important, since all static properties (e.g., thermodynamics)
as well as linear-response properties (e.g., conductivities) of a
system can be accessed if the corresponding pair-distribution
functions are known, without recourse to the many-body wave
function [30].

In this study, we calculate the temperature-dependent pair-
distribution functions and local field factors for electron-
electron (e-e) and electron-hole (e-h) double quantum wells
that are needed for finite-temperature studies such as in
the calculation of drag resistance, plasmon dispersions, hot
electron relaxation, as well as for the calculation of ther-
modynamic properties [19,31–36]. Because of its intrinsic
importance, and for the sake of simplicity, we restrict our-
selves to symmetric double-layer systems, where we consider
equal densities and equal effective masses of carriers in both
layers. Here we note that Maezono et al. [28], who studied
excitonic condensation at zero temperature, have followed
the same philosophy and state that “we have studied the
simplest possible such model system, with equal electron
and hole populations and equal masses, and parallel in-
finitely thin two-dimensional layers of variable separation and
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carrier density. It is important to establish the behavior of this
simple system before more complicated cases such as those
of unequal electron and hole masses and/or unequal electron
and hole densities can be tackled with confidence.” Such
symmetric systems describe a very important class of double
quantum wells manifested by graphenelike bilayers where
a variety of effects arise [10,12,20–23,25,28,37]. A further
motivation is that the symmetric system is likely to be the case
for which quantum Monte Carlo and Feynman-path-integral
methods will be feasible for providing benchmarks [28] for
finite-temperature systems. Since no external field is applied,
we consider the unpolarized case in this study. Negligible
tunneling of carriers across the insulating barrier separating
the layers is assumed.

In stochastic methods such as quantum Monte Carlo
(QMC) simulations [25], the explicit many-body wave func-
tion has to be used, which limits this method to a small number
of carriers (typically N ∼ 100). If there are two different
types of carriers in the two wells, each with two possible
spins, a QMC calculation with ∼100 particles implies ∼24
particles per species, so statistical errors become important.
Given the sensitivity of the calculations to the assumed form
of the wave function, to boundary conditions, to backflow ef-
fects, etc., reliable calculations at finite-T remain a challenge.
Alternative perturbation methods based on Feynman graphs,
quantum kinetic equations, etc., are either limited to weak-
coupling approximations or to “decoupling approximations”
[38]. Such kinetic equation methods often fail to even obtain
non-negative pair-distribution functions g(r ), an elementary
a priori requirement since g(r ) is the probability, given a
particle at the origin, of finding another particle at a distance
r from the origin.

The classical-map hypernetted-chain (CHNC) method in-
troduced in Ref. [39] uses a mapping of the quantum elec-
tron system to an “equivalent” classical electron system, and
is able to directly evaluate pair-distribution functions and
linear-response functions of the quantum system. It has been
successfully implemented for homogeneous electron systems,
including hot plasmas and quantum Hall fluids. The method
leads to positive g(r ) at all couplings and satisfies the known
sum rules adequately. We recall that Laughlin’s plasma model
for the quantum Hall effect [40], extended by Haldane [41],
Halperin [42], and MacDonald et al. [43], requires an ansatz
wave function and uses an effective quantum temperature
for the classical fluid, even for quantum systems at zero
temperature. The hypernetted-chain (HNC) equation was used
by Laughlin [40] to obtain the pair-distribution functions of
the quantum Hall fluid.

The CHNC method follows the philosophy of Laughlin’s
plasma map, but exploits density-functional theory (DFT)
ideas based on a single determinant wave function. DFT uses
a single-particle wave function with an exchange-correlation
(XC) functional, even for many-body systems. In the CHNC
method, the temperature of a classical Coulomb fluid is
chosen to reproduce the XC energy of the quantum fluid at
zero temperature. The pair-distribution functions and local
field factors of the electron fluid can then be calculated at
arbitrary temperatures, densities, and spin polarizations using
simple generalizations. The resulting CHNC pair-distribution
functions and local field factors were shown to be in good

agreement, where comparable results are available, with re-
sults from QMC simulations for the 2D electron fluid [44,45].
The method has been further successfully applied to mul-
ticomponent quantum electron layers and also to hydrogen
plasmas, but no previous applications to double quantum
wells or coupled layers have been presented.

The density-density linear-response function χ (q, ω) for
the 2D electron fluid depends on many-body interactions,
which in DFT are treated as exchange-correlation effects. As
usual, we express the response function χ (q, ω) in terms of
a reference “zeroth-order” χ0

R (q, ω) and a local field factor,
denoted by G(q, ω) [46],

χ (q, ω) = χ0
R (q, ω)/

[
1 − (2π/q ){1 − G(q, ω)}χ0

R (q, ω)
]
.

(1)

In Eq. (1), the usual 2D bare Coulomb potential V (q ) =
2π/q is used. The many-body effects are contained in the lo-
cal field factor G(q, ω). Note that in the random phase approx-
imation, XC effects are neglected, so G(q, ω) = 0. The local
field factor is closely related to the vertex function �(q, ω) of
the electron-hole propagator. The static form of the local field
factor, G(q ), is identical to G(q, 0). Considerable efforts have
been devoted to determining G(q ), using perturbation theory,
kinetic-equation methods [38,47], etc. A partially analytic,
semiempirical approach invokes parametrized models con-
strained to satisfy sum rules [48], which are then fitted [49,50]
to limited results obtained from QMC simulations [51,52].
However, such methods are not feasible at finite temperatures.

In the present study, we determine temperature-dependent
pair-distribution functions and the local field factors needed
for understanding the properties of double quantum wells at
finite T . We use the HNC equation rather than the more com-
plicated modified HNC equation (MHNC) for the following
reasons. The MHNC includes a “bridge diagram contribution”
and improves the calculated pair-distribution functions at
strong coupling. However, as shown in Ref. [44], the local
field factors are already in very good agreement with the QMC
results when the HNC equation is used, while the available
hard-disk ansatz for the bridge contributions [45] provides no
further improvement in the local field factors. This justifies
our use of the HNC instead of the MHNC equation.

II. THE CLASSICAL MAP HYPERNETTED-CHAIN
TECHNIQUE

In this section, we outline the established CHNC method
and our extension of the method to the double-quantum-well
system. The charge carriers are of two spin species, so in prin-
ciple a double quantum well contains nc = 4 (four) compo-
nents, requiring self-consistent evaluation of nc(nc + 1)/2 =
10 (ten) pair-distribution functions. However, for equal den-
sities and spin-unpolarized carriers, there are only two pair-
distribution functions that are different. Thus an unpolarized
two-component up- and down-spin electron (or hole) layer
can be reduced to an effective single-component paramagnetic
fluid. This transforms the problem into a two-component
problem with only three independent pair-distribution func-
tions.
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A. The method

The classical-map HNC approach for a single system of
fermions (e.g., a 3D fluid, or a 2D layer) was discussed in a
number of papers [39,45,53–57]. It was shown that the static
properties of the 2D and 3D electron systems (as well as
electron-proton systems [58]) can be calculated via an equiv-
alent classical Coulomb fluid having an effective “classical-
fluid” temperature Tcf such that the classical fluid has the
same correlation energy as the quantum system. The exchange
energy is already exactly included in the method, since the
zeroth-order pair-distribution function is constructed from the
Slater determinant of the free-electron (or hole) fluid. At T =
0, the corresponding Tcf is called the “quantum temperature”
Tq and can be determined easily using the known XC energies
of the uniform electron fluid.

Once Tq is set, the method can be used to determine
pair-distribution functions, local field factors, and XC energies
wherever QMC data are unavailable, as was the case for
finite-T 3D systems. For instance, the finite-T XC energies
for the 3D electron system using the classical map HNC [53]
given in the year 2000 agreed very well with the QMC results,
which only became available more than a decade later [59].
Applications to many systems and to hot-dense plasmas are
given in Refs. [59,60]. It should also be noted that classical
molecular-dynamics (MD) simulations can be used to deter-
mine the pair-distribution functions of the equivalent classical
fluid. However, the HNC integral equation provides a compu-
tationally very efficient and adequately accurate method for
uniform systems.

The mapping is based on a physically motivated extension
of the classical Kohn-Sham equation, i.e., a Boltzmann-like
equation for the density n(r ) = n̄ exp{−VKS(r )/Tq} at the
Tq chosen so that the quantum system of mean density
n̄ is “equivalent” to the classical system in the sense that
n(r ) yields the known XC energy of the fermion fluid. The
quantum temperature Tq applies when the system is at the
physical temperature T = 0. The 2D Tq was fitted to the
form [45]

t = Tq/EF = 2/
[
1 + 0.864 13

(
r1/6
s − 1

)2]
, (2)

where EF = 1/r2
s is the electron Fermi energy in Hartrees,

with rs the average interparticle spacing within a layer. Tq

is also in Hartrees. (Effective atomic units, which subsume
the effective mass and the material dielectric constant, are
used throughout.) Other possible improved forms for Tq have
been discussed by Bulutay et al. [56] and Totsuji et al. [57],
but they lead to similar results to Eq. (2) in the range of rs

that is of interest to us in this study. At finite temperature
T , the classical-fluid temperature Tcf is taken to be Tcf =
(T 2

q + T 2)1/2, as discussed in Refs. [53,61].
In this section, we discuss only a single layer or quantum

well treated as an infinitely thin sheet. The extension to dou-
ble quantum wells is given in Sec. III. The pair-distribution
functions are given by the HNC equation [62] extended to
include the bridge terms (i.e., in effect, the MHNC equation).
The MHNC equations, the Ornstein-Zernike relations for the
pair-distribution functions gij (r ), and the “direct correlation

function” cij (r ) are [62]

gij (r ) = exp[−βcfφij (r ) + hij (r ) − cij (r ) + Bij (r )],

hij (r ) = cij (r ) + �s ns

∫
dr′hi,s (|r − r′|)cs,j (r′). (3)

The inverse temperature βcf = 1/Tcf. The subscripts here
denote the spin indices. The total correlation function hij (r ) =
gij (r ) − 1 has been introduced. These relations involve (i) the
pair potential φij (r ) and (ii) the bridge function Bij (r ) [63].

When the bridge contribution (clusters beyond the HNC
diagrams) is set to zero, we get the HNC equation. If a
classical MD simulation is used to obtain the pair-distribution
functions of the “equivalent” classical fluid, then the bridge
term is automatically included without the need for hard-
sphere models used in MHNC. The relevant pair potentials
φij (r ) for interacting particles are

φij (r ) = P (r )δij + V c(r ), (4)

P (r ) = h0
ii (r ) − c0

ii (r ) − ln
[
g0

ii (r )
]
. (5)

P (r ) is the “Pauli exclusion potential,” which brings
in exchange effects contained in the noninteracting pair-
distribution function g0

ii (r ). The Coulomb interaction between
a pair of particles is denoted by V c(r ). Since we are treating
paramagnetic electrons g0

11 = g0
22, we have suppressed the

spin indices on P except when needed for clarity. In Sec. III
we generalize these potentials φij (r ) for applications to dou-
ble quantum wells.

The individual pair-distribution functions gij (r ) depend on
the pair potentials φij (r ), as given in the HNC equations.
Equation (4) treats the pair potentials as a sum of the Coulomb
interaction V c(r ) and the Pauli exclusion potential P (r ). The
latter mimics the exchange hole arising from the antisymme-
try of the underlying Slater determinant, which is the only
wave function used in DFT, even for many-particle systems.
Since the noninteracting g0

ij (r ) do not contain the Coulomb
potential, the Pauli exclusion potential P (r ) (which is in effect
a kinematic interaction) can be obtained by an inversion of
g0

ii (r ) via the HNC equation [64], as summarized in Eq. (5).
Since g0

12(r ) = 1, the Pauli potential P12(r ) = 0 for antiparal-
lel spins. The Pauli potential between two parallel-spin elec-
trons is obtained by HNC inversion via Eq. (5). This potential
is repulsive, long-ranged, and scale-independent (i.e., depends
only on r/rs).

B. Reduction of the two-spin fluid to a single effective fluid

In this study, we consider only zero spin polarization, ζ =
0. Hence an averaged pair-distribution function for the para-
magnetic electron fluid in a single layer can be constructed,

gp(r ) = {g11(r ) + g12(r )}/2. (6)

Since the gp(r ) is an average, the corresponding Pauli-
exclusion potential P (r ) is not the same as that used in
g11(r ), but it needs to be determined anew, using g0

p(r ) at the
given density and temperature as input. The use of such an
average potential and an average gp(r ) is justified as long as
there are no magnetic or spin-dependent interactions in the
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Hamiltonian. The density of the carriers in the quantum well
is the full carrier density n, while for ζ = 0 the density of each
spin component is n/2.

The Coulomb potential used in the quantum problem is the
operator 1/r . In the classical map, the potential is an effective
Coulomb potential V c(r ) containing a diffraction correction
associated with the de Broglie wavelength of the interacting
electron pair at their classical fluid temperature Tcf. It may be
noted that this “regularization” of the Coulomb potential for
small r is similar to the use of the Compton cutoff momentum
in high-energy collisions. Tcf defines the de Broglie thermal
momentum of the pair,

kth = √
(2πmrTcf). (7)

For equal effective masses m	, the reduced mass is mr =
m	/2. Improved forms of kth and Tcf for 2D CHNC have
been proposed by Totsuji et al. [57]. These are, however, not
expected to cause significant changes over the range of rs and
T studied here, and hence we use the original parametrizations
given in Ref. [45].

For an interacting pair of carriers in a 2D layer, we have

V c(r ) = (1/r ){1 − e−kthr},
V c(q ) = 2π

{
1/q − 1/

(
q2 + k2

th

)1/2}
. (8)

The 2D Fourier transform of V c(r ) is denoted by V c(q ).
As already noted, we use units h̄ = e = me = 1, and effec-
tive atomic units containing the effective mass m	 and the
background dielectric constant κ of the quantum well. The
classical Coulomb potential in Eq. (8), called a “diffraction-
corrected” potential, behaves as a Coulomb potential for
length scales larger than a de Broglie wavelength ∼1/kth.
However, for a close approach the potential is not singular
and reduces to a finite value, viz., kth.

We solve the HNC equations, Eqs. (3), using an iterative
numerical approach similar to that given by Ng [65]. The
central strategy is to remove long-range interactions coming
from the Coulomb and Pauli potentials and to treat them
analytically in doing the Fourier transforms, leaving the short-
range parts to be done numerically. The Pauli potential and
direct correlation functions derived from the noninteracting
g0(r ) serve as the initial inputs to start off the interactions
inclusive of the Coulomb interactions.

For 0 < t = T/EF < 1, the electron system remains par-
tially degenerate, while for t > 1, the electrons will approach
classical behavior. Classical correlations scale according to
the coupling parameter � = 1/(rsT ). This contrasts with the
quantum correlations at T = 0 that scale with rs . When T �
Tq , only classical correlations are important for r > 1/kth. In
the partially degenerate regime, there is no simple coupling
parameter, but in constructing our � the classical fluid tem-
perature Tcf replaces T .

C. Calculation of the local field factors

The pair-distribution functions gij (r ) can then be used to
extract the local field factors for the quantum fluid. The struc-
ture factor Sij (q ) is related to the gij (r ) by the usual Fourier
transform. In contrast to the quantum case, for a classical fluid
the density-density linear-response function χij (q ) is directly

related to the structure factor,

Sij (q ) = −(1/βcf)χij (q )/n. (9)

For the single well, the static local field G(k) for the
paramagnetic case is obtained from

V c(q )G(q ) = V c(q ) − Tcf

n

[
1

S(q )
− 1

S0(q )

]
. (10)

In CHNC, the structure factor for the noninteracting sys-
tem, S0(q ), is based on a Slater determinant and not on the
noninteracting structure factor corresponding to the Lindhard
function χ0

L. QMC results use a reference χ0
L such that the

local field factor contains a kinetic-energy tail, as discussed in
Ref. [44]. The S0(q ) for the noninteracting 2D electron fluid is
numerically known at any T , and hence the calculation of the
temperature-dependent local field factor is simple, once the
interacting S(q ) and the classical temperature Tcf are obtained
from CHNC.

For numerical work it is convenient to reexpress the equa-
tion for the local field factor in terms of the direct correlation
functions cij (k) using the following standard relations among
structure factors and direct correlation functions:

Sij (q ) = δij + nhij (q ),

hij (q ) = cij + �scisnhsj (q ). (11)

Then it can be shown that

Gij (q ) = {
c̃ij (q ) − c0

ij (q )
}
/{βcfV

c(q )}, (12)

where c̃ij (q ) = cij (q ) + βcfV
c(q ) is the short-ranged direct

correlation function. The local field factor of the averaged
paramagnetic fluid is given by

Gp(q ) = {G11(q ) + G12(q )}/2, (13)

where the contributions from the two spin species in the
single layer are explicitly displayed. The good agreement
of local field factors for single layers at T = 0 obtained by
these methods and from QMC was presented in Ref. [44].
Finite-T local field factors are as yet not available from QMC
or path-integral simulations of 2D layers.

III. THE CHNC METHOD FOR DOUBLE
QUANTUM WELLS

We now generalize the discussion to two coupled layers
(e.g., as in graphene) or two coupled quantum wells. Our
system consists of left and right wells separated by a barrier
of width b. The wells are assumed to be infinitely thin, so the
barrier width b should include the actual width of the barrier
b0 plus one-half of the widths W of each well. Since W is the
same for symmetric wells, b = b0 + W . The barrier material,
with only a few percent of Al in the GaAlAs alloy, is usually
not too different from the well material (GaAs), so we take the
static dielectric constant of the barrier to be the same as that
of the well.

As we are working with paramagnetic fluids and their
pair-distribution functions gp(r ) with appropriate exchange
interaction, there are no longer any spin indices. Therefore,
from now on we use indices to refer to the left (1) and right (2)
wells. The intralayer Coulomb interaction V c(r ) [Eq. (8)] is
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now written V c
11(r ) = V c

22(r ), while the interlayer interaction
between carriers across the barrier is V12(r ).

It is conventional to approximate the interlayer interac-
tion by

V12(r ) = z1z2/ρ, ρ = √
(r2 + b2), (14)

V12(q ) = 2πz1z2e
−bq/q. (15)

zi = ∓1 is the charge of the carriers in layer i, and r is the
in-plane distance. Since carriers in opposite layers are distinct
fermions, in the classical map there is no Pauli-exclusion
potential acting between left- and right-layer carriers. The
interlayer interaction acts on the electron wave functions to
produce a modified Coulomb potential. Equation (14) is thus
only approximately true for a close approach. The form we
adopt for the diffraction-corrected classical Coulomb poten-
tial across the barrier is

V c
12(r ) = z1z2

{
1 − e−kb

thρ
}
/ρ. (16)

There is some ambiguity in the choice of the thermal
cutoff wave vector kb

th, even for symmetric double wells
at the same temperature and density, when the interacting
pair is separated by a barrier thickness b. In each layer, kth

corresponds to a de Broglie length λ = 2π/kth. In limiting
close encounters when there is a barrier, we should include
the effect of the barrier width as well and use λb = b + λ, so
kb

th = 2π/λb. This correction will be significant only for e-h
pairs with their attractive Coulomb potential for cases where
the treatment of short-ranged interactions is of importance. In
principle, the classical potential is meaningful only for layers
of a minimum nonzero thickness capable of supporting at
least one-half a de Broglie wavelength. However, in order to
maintain the transparency of the computation, in this study
we have retained the approximation of using a common kth

everywhere. If kb
th = 2π/λb were instead used, the value of

geh(r ) as r → 0 is reduced somewhat, especially for larger rs .
QMC benchmarks and alternative calculations would be very
useful in clarifying the accuracy of such approximations.

If the classical temperatures Tcf of the layers were different,
then further considerations are needed. It can be shown that
a good approximation is to use the geometric mean of the
thermal kth of the two components in the above approach.
This has been tested for 3D CHNC calculations with two
components of different temperatures [60].

The intralayer local field factors G11(q ) = G22(q ) and the
interlayer local field factor G12(q ) are determined for the
double quantum wells in analogy to Eq. (12), but with the
indices now referring to the layers, and using the appropriate
diffraction-corrected Coulomb potentials V c

ij (q ) [see Eqs. (8)
and (16)],

Gij (q ) = {
c̃ij (q ) − c0

ij (q )
}
/
{
βcfV

c
ij (q )

}
, (17)

with c̃ij (q ) = cij (q ) + βcfV
c
ij (q ).

IV. DOUBLE QUANTUM WELLS WITH CARRIERS OF
IDENTICAL CHARGE AND MASS

We present results for symmetric double quantum wells
containing the same unpolarized carriers at finite tempera-
ture t = T/EF and (equal) average interparticle spacings, rs ,

FIG. 1. Panels (a) and (b) show the pair-distribution functions
g11(r ), g12(r ) for paramagnetic electrons in a double well (DW) of
separation b = 1, at fixed finite temperature T/EF = 1, for densities
rs = 1, 4, 10. The paramagnetic gp (r ) for a single well (SW) at
T/EF = 1 is also shown for rs = 1 and 10. Panels (c) and (d) display
the corresponding pair-distribution functions at T = 0 for the double
well only.

within the layers. Here we take two wells separated by a
barrier of width b = 1 (corresponding to ∼5 nm in graphene
and ∼10 nm in GaAs). Finite temperatures can be accessed
using Feynman-path-integral methods, and such results would
be valuable for benchmarking the CHNC results. However, as
of yet no calculations are available for this system.

In Figs. 1(a) and 1(c), we display the intralayer pair-
distribution functions g11(r ) = g22(r ) for two layers at fixed
temperatures T/EF = 1 and T = 0, for carrier densities with
rs = 1 to 10. In electrons in GaAs wells, this range corre-
sponds to densities of n � 3 × 1011 to 3 × 109 cm−2. For this
density range, we see that the in-layer pair-distribution func-
tions g11(r ) are not very sensitive to changes in temperature,
at least up to T/EF = 1.

At the high density rs = 1, g11(r ) for the double quantum
well (black line) is almost identical to the paramagnetic gp(r )
of a single quantum well (curve marked with boxes). However
with decreasing density, as the Coulomb-interaction energy
becomes relatively stronger compared to the Fermi energy
(e.g., for rs = 10), we see that the pair-distribution functions
for the double and single wells are substantially different. The
double-quantum-well pair-distribution function g11(r ) is less
strongly coupled than in a single well, with its maximum
at a smaller r/rs . For lower densities, the double quantum
well g11(r ) behaves in a manner similar to gp(r ) of a single
well at nearly twice the density. This is to be expected at
densities for which the average interparticle spacing in a well
is much larger than the barrier separation, rs � b. However,
this implies that using local field factors calculated for single
wells for use in double-well studies can become a significant
source of error for larger rs values.

In Figs. 1(b) and 1(d) we display the corresponding inter-
layer pair-distribution functions g12(r ), which are a measure
of the Coulomb correlations between the layers. While the
very short-range interlayer correlations are only weakly af-
fected by temperature, at least up to T/EF = 1 for the density
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FIG. 2. (a) The intralayer static local field factors G11(q ) for
paramagnetic electrons in a double quantum well (DW) of separation
b = 1, at temperature T/EF = 1 for different densities rs = 1, 4, 10.
The G11(q ) for a single well (SW) at T/EF = 1 is also shown for
rs = 1. (b) The corresponding interlayer static local field factors
G12(q ) for the double well only.

range considered, at larger r/rs the peak found at lower
densities in the zero temperature g12(r ) that is centered near
r/rs = 1.25 is already completely suppressed by T/EF = 1.
Interestingly, the peak height in g12(r ) grows until about rs ∼
6, after which it decreases slightly for higher rs values. This is
further evidence that, as the Coulomb coupling becomes more
important relative to the kinetic energy, the quantum double
well behaves increasingly like a single, wider well with larger
effective density.

Local field factors at finite T/EF = 1 are displayed in
Figs. 2(a) and 2(b) for the density range corresponding to rs =
1 to 10. The intralayer local field factor G11(q ) is only weakly
dependent on density, but the interlayer local field factor
G12(q ), which is small for rs = 1, grows with decreasing
density, and by rs = 10 it has approached the form of G11(q ).
This is another indication that the barrier separation, fixed
here at b = 1, has become so small compared with the average
interparticle spacing that the separation of the layers no longer
affects the correlations. The changes in G12(q ) with rs are
large by q = 2kF , which is the important q-vector range for
the interactions.

Figure 3 shows the pair-distribution functions over a wider
range of temperatures t . The barrier width is again b = 1.
The density is fixed at rs = 4, corresponding to n � 2 ×

FIG. 3. The interlayer and intralayer pair-distribution functions
for paramagnetic electrons in a double quantum well of separa-
tion b = 1 for temperatures t = T/EF = 0, 4, 10 at a fixed density
rs = 4.

FIG. 4. Variation of the intralayer and interlayer pair-distribution
functions g11(r ) and g12(r ) at fixed finite temperature T/EF = 1 for
electron-hole quantum double wells (DW) separated by a barrier of
thickness b = 1, for different densities rs = 1, 4, 5. Comparison of
g11(r ) with the gp (r ) of a single well (SW) is also given in (a) for
rs = 1 and 5. The value of limr→0 g12(r ) increases dramatically with
increased coupling (larger rs).

1010 cm−2 for electrons in a GaAs well. Both the intralayer
and interlayer correlations become weaker with increasing t .
We saw in Fig. 1 that the zero-temperature peak in g12(r ) had
already completely disappeared by t = 1.

V. ELECTRON-HOLE DOUBLE QUANTUM WELLS

Figure 4(a) shows the intralayer pair-distribution functions
g11(r ) and g22(r ) for electron-hole layers at equal densities for
fixed finite temperature T/EF = 1 and barrier thickness b =
1. For symmetric wells, g11(r ) = g22(r ). As already noted,
the properties of symmetric double quantum wells are of
importance for graphenelike systems with atomically thin,
equivalent layers. They should be the most straightforward
candidates for future work using quantum Monte Carlo and re-
lated methods. Figure 4(b) shows the corresponding interlayer
pair-distribution function g12(r ). The value of limr→0 g12(r )
increases with increased coupling (increasing rs).

The present theory goes far beyond the usual mean-field
theories that originated with Keldysh [66] and other early
workers (as reviewed in, e.g., Ref. [35]). The CHNC is
designed to include XC effects arising from the interactions
beyond mean-field effects. There is no provision for excitonic
states in the existing CHNC theory, although the calculation
may remain robust into the weakly bound excitonic regime
before it fails. The pairing of oppositely charged particles
leads to a rearrangement of the ground state of the system.
This is accompanied by the appearance of an order param-
eter proportional to the magnitude of the gap in the single-
particle excitation spectrum of the system [33]. The added
correlations due to pairing are not included in the present
formulation since the classical-map technique uses a Tq

[Eq. (2)] fitted to reproduce the XC energy of a simple Fermi
liquid. However, since the method is motivated by density-
functional ideas (e.g., it uses pair densities instead of wave
functions), the possibility of extending it to regimes of exciton

035303-6



CORRELATION FUNCTIONS IN ELECTRON-ELECTRON … PHYSICAL REVIEW B 99, 035303 (2019)

FIG. 5. The intralayer and interlayer local field factors G11(q )
and G12(q ) for paramagnetic fluids in electron-hole double quantum
wells of separation b = 1, at fixed finite temperature T/EF = 1. Re-
sults for the densities corresponding to rs = 1, 2, 4, 5 are displayed.
The interlayer local field factor G12(q ) becomes negative in the
electron-hole system.

formation, superfluidity, etc., may be envisaged, borrowing
ideas from the density-functional approach to superconduc-
tivity [67].

In Fig. 5 we display the density dependence of the corre-
sponding local field factors for temperature T/EF = 1. While
the intralayer local field factors G11(q ) are similar to those
of electron-electron double quantum wells, a notable feature
here is the negativity of the electron-hole interlayer local
field factor G12(q ). It is this feature that leads to zeros in
the denominators of response functions, signaling the for-
mation of new elementary excitations, i.e., excitons in this
case.

A. The effect of the barrier width

The effect of increasing barrier thickness b on the pair-
distribution functions and the local field factors is presented

in Figs. 6(a)–6(d) for an electron-hole double quantum well
of fixed equal densities rs = 4. The barrier width b is varied
from 0.5 to 3, corresponding in n-GaAs to a range from 5 to
33 nm. As expected, a thicker barrier weakens the coupling
between the layers, so g12(r ) and G12(q ) are proportionately
weakened.

We note the rapid rise of limr→0 g12(r ) in Fig. 6(b) as the
barrier width is diminished. For density rs = 4, no conver-
gence was obtained for barrier thickness less than b ∼ 0.267,
at which point g12(r = 0) has reached 8.2. In n-GaAs, b ∼
0.267 corresponds to a barrier thickness of ∼2.9 nm. This lack
of convergence is a consequence of very strong interactions
that cause excitonic bound states to emerge in the physical
system. On general grounds, one expects that for cases where
the barrier thickness b exceeds the mean exciton radius, the
system may be reliably studied by the present formulation.

VI. CONCLUSIONS

We have presented results for the pair-distribution func-
tions and local field factors as a function of temperature, den-
sity, and barrier width for electron-electron and electron-hole
double quantum wells. While the single-layer CHNC results
have been checked against corresponding Quantum Monte
Carlo results at T = 0 to establish its accuracy, comparable
QMC results are not yet available at finite T .

Our results confirm that there are significant modifications
of the distribution functions and local field factors due to
finite-temperature effects, in particular when T exceeds the
Fermi temperature. As already noted, in GaAs the Fermi
temperature is only 4 K at a hole layer density n = 4 ×
1010 cm−2. Our results also reveal that the local field factors
calculated for single wells cannot be used for the accurate
calculations of properties of double quantum wells, unless the
densities are high (rs ∼ 1).

The local field factors with their density and temperature
variation need to be included in the linear-response func-
tions that enter into many measurable properties of double
quantum wells. Such properties include (i) thermodynamic

FIG. 6. (a) The intralayer pair-distribution functions for paramagnetic fluids of fixed equal density rs = 4, in electron-hole double quantum
wells at finite temperature T/EF = 1, for different barrier widths b, as labeled. (b) The corresponding interlayer pair-distribution functions
g12(r ). As expected, the value of g12(r ) decreases with increasing b. (c) The corresponding intralayer local field factors G11(q ). (d) The
interlayer local field factors G12(q ).
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functions; (ii) the drag resistivity of interacting double layers
as a function of density, temperature, and carrier type; (iii)
plasmon dispersion in such layers as a function of the density
and temperature of the layers; and (iv) energy relaxation of
hot electrons injected into one of the layers. The CHNC
formalism presented here can be readily generalized to spin-
polarized layers and to layers with carriers of different ef-
fective masses. Our formalism provides high computational
efficiency, while providing good accuracy in regimes of strong

correlations and finite temperatures where other methods fail
or become prohibitive.
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