toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
  Year (down) 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610779200008 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176585 Serial 6719  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: