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Transport properties of the two-dimensional electron GH3EG) are considered in the presence of a
perpendicular magnetic fielBland of aweaktwo-dimensional2D) periodic potential modulation in the 2DEG
plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding
tight-binding equation shows that each Landau level splits into several subbands when a rational number of
flux quantah/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of
the magnetoresistivity tensqr,,. The relative phase of the oscillations jn, and p,, depends on the
modulation periods involved. For a 2D modulation wittslaort period <100 nm, in addition to the Weiss
oscillations the collisional contribution to the conductivity and consequently the tgnsashow prominent
peaks when one flux quantumehpasses through an integral number of unit cétlsgood agreement with
recent experiments. For periods 300—400 nm long used in early experiments, these peaks occur at fields 10 to
25 times smaller than those of the Weiss oscillations and are not resolved.
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I. INTRODUCTION integral number of unit cellsas was recently observed
experimentally* Here we show that these oscillations result
In the last decade the magnetotransport of the twofrom the interplay between band conduction and collisional
dimensional electron ga@DEG), subjected to periodic po- conduction. A new contribution to the latter opens up as hop-
tential modulations, has attracted considerable experintentalPing between cyclotron orbits which are separated by an in-
and theoreticdl® attention. For one-dimension@D) modu-  tégral multiple of the modulation period and have the same
lations novel oscillations of the magnetoresistivity tenspy position r_elatlve to t_he modulatl_on lattice. ThIS contribution
have been observed, at low magnetic figliglistinctly dif- 1S appreciable only in short—p.erlod superlatt_|ces and accord-
ferent in period and temperature dependence from the usu%ﬂgl_y could not _be resolved in early experiments on long-
Shubnikov—de Haas ones observed at higheFhese novel period superlatnce_s. . .
oscillations reflect the commensurability between two Iengtr}. In the dnext sectllon V\]ie derive thel one-e(:jlehctron elgelnfundc—
scales: the cyclotron diameter at the Fermi leveR.2 lons and eigenvalues for rectangular and hexagonal modu-

. ) lations; we also present the density of states. The analytical
— 2 ’

=2y2mneL®, wheren, is the electron density; the mag- 5,4 nymerical results for the corresponding conductivity or
netic length, anch the period of the potential modulation.

L9 ' resistivity components are presented in Sec. Ill. Numerical
The situation is similar but less clear-cut for 2D modulationsegits are given in Sec. IV and concluding remarks in

from both a theoretic&” and an experimental® point of  ggc. v
view. To date most of the experimental results pertinent to
2D modulation§~° with square or hexagonal symmetry have

indicated strongly that the predict€dine structure of the Il. EIGENVECTORS, EIGENVALUES, AND DENSITY
Landau levels is not resolved. Magnetotransport theories per- OF STATES

tinent to this case are rather limifetfin contrast with those _ ) _

for 1D modulations. We consider a 2DEG, in thex(y) plane, in the presence

Recent observatiofizall for additional theoretical work of a perpendicular magnetic fiell=Bz and of a 2D peri-
since they could not be fully explained by earlier semiclas-odic potential modulatiot) (x,y). The electrons are consid-
sical theorie$. In this paper we develop, along the lines of ered as free particles with an effective mass. In the ab-
Ref. 3, the relevant quantum-mechanical magnetotransposence of the modulation the normalized one-electron
theory of the 2DEG for precisely the case that the fine struceigenfunction, in the gaugeA=(0Bx,0), is given by
ture of the Landau levels is not resolved. Our goal is toe™®yY ¢, (x+x,)/\L,, Where ¢,(x+Xxo) is the well-known
explain recent experimental resdften 2D, short-periodd  harmonic-oscillator function, centered -atx,= —€2ky, and
~1000 A) surface superlattices with mobility in the inter- L, is the sample’s width.
mediate range, i.eu~100 nt/V's. The symmetry of the 2D In the presence of a sinusoidal 1D modulation one can use
modulation is taken to be rectangular or hexagonal. A brieperturbation theo” to evaluate the energy spectrum and
semiclassical account, pertinent to the former symmetry, wasigenfunctions. Alternatively, one can use a tight-binding
reported in Ref. &). New magnetoresistance oscillations arescheme, along the lines of Ref. 10, and look for solutions of
found to occuwhen one flux quantunyé passes through an the  one-electron  Hamiltonian H°%=(p+eA)?/2m*
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+V,cosK,x) that are linear combinations of the unperturbed

(V=0) ones:|<pnky>=EpAp|n,ky+ pG), whereG is a suit-

able wave vector introduced here for convenience and

|n,ky+ pG) is the unperturbed stat&(=2mx/a,, anda, is
the modulation period along). As in Ref. 10 we takes
=K,=2m/a, with a, the modulation period along. The
summation ovep has to be extended to all integewalues
such that —L,/2¢?<k,+pK,<L,/2¢? where L, is the
length. Forp=0 we have the limits fok, as —a,/20°< k?ﬁ
<a,/2¢. Then the tight-binding equatiofn,k,+ pK,|H

- E|<pnky>=0, in which mixing of different Landau levels

is neglected, gives acceptable solutions for the coefficients
Ap asA,=Aqexp(ép). The new states are labeled with the

additional quantum numberé (0<é<2m): |¢nkyg>
=AoZ exp(ép)ink,+pK,). The orthonormality condition
<(,any§|(,0nky§r>:5§§r giVeS §=27TV€2Ky/LX—>kX€2Ky, 14
being an integer, and\0=€(Ky/LX)1’2 by normalization.

The energy spectrum obtained in this way is the same as that

obtained by perturbation theofty.

We will now use this information to obtain the corre-
sponding eigenvectors and eigenvalues for a 2D modulatio

potential.

A. Rectangular symmetry

We assume the following one-electron Hamiltonian:

)

where K ,=27/a, (n=xy); ax and a, are the periods
along thex andy directions, respectively.

In the gauge choseA=(0,Bx,0), the second term of Eq.
(1) is not diagonal irk, and thereforén,k,) is not a conve-

HO=(p+eA)/2m* +V,cog K,x) + V,cogK,y),

nient basis set. But as in the 1D case we can look for solu-

tions of Eq.(1) in the form |<pn'ky>=2pAp|n,ky+ pK,) as
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FIG. 1. Energy spectrum as a function of the wave veckgrs
andk, for n=0,0=1, V,=2V,=1 meV. The modulation wave
vectorskK, andK, are shown by the thick arrows.

Enke=En+VyFn(uy)cosé, (4)

where¢= (2mv/L,)€?K,=€?K kK, . In both cases the unper-
'hurbed Landau levels broaden into bar{dsth a bandwidth
equal to 2V Fn(u)|+Vy[Fa(uy)|] and 2/y|Fn(uy)|, re-
spectively, which oscillate with magnetic fielB and(large
indexn, cf. Refs. 2 and 3. The energy spectrum given by Eg.
(3), plotted in Fig. 1 fom=0, =1, V,=2V,=1 meV, is a
periodic function ofk, and ofk, since §=€2Kykx and X,
=€2ky. Notice that the arguments of the cosines in E3).
can be shifted by Z«a, « integer.

One important consequence of this nonzero bandwidth is
that the mean velocities, and v,, which vanish in the

described above. This choice of eigenfunctions is also sug-

gested by the fact tha¥,cosK,y connects the unperturbed
state|nky) with only the statesn,k,+K,). In this case the
equation(n,k, + pKy|H°—E|<pn'ky>=0, in which mixing of
different Landau levels is neglected, takes the form

VXFn(UX)COSZ’ITpa‘f‘ KXXO)Ap+ %VyFn( uy)(Ap+ 1t Ap—l)
=(E—EnAp, 2

where a:27-r€2/axay, E,=(n+1/2)hw, is the “unper-
turbed” eigenvalue, andv.=|e|B/m* the cyclotron fre-
quency. Furtherf,(u,)=exp(-u,/2)L(u,),L,(u,) is the
Laguerre polynomial andﬂ=€2K2/2.

The solution of Eq.(2) gives the eigenvaluek and the
eigenvector\,. We see immediately that far integer the
equation admits the exponential solutiohs= Ag€'*P, with

absence of modulation, are now finite: frony,
=dEn/hdk, ,u=X,y, we obtain
vx=—(€2KyVy 1) Fo(uy)siné (5)
and
vy= = (€2KVy /1) F(Uy) Sin(KyXo). (6)

Equations(5) and(6) lead to a finite diffusion or band con-
ductivity which is absent when the modulation is not present,
cf. Sec. .

Equation (2) is the same as Harper's equation but the
coefficientsV ,F(u,) depend on the magnetic field. FBr
values other than those pertaining to E8) it has been
shown by Hofstadtéf(® for the case of constant coefficients
and by Claro and Wanniéf(®) for the case that the latter
depend orB (hexagonal modulationthat the energy spec-
trum resulting from the numerical solution of E@), i.e.,E,
shows, wherE is measured in units o¥,F,(u,), a non-
trivial structure: fora=i/j, i,j being integers, each Landau
level is split intoj subbands and Ed2) is periodic with
period]j. Here, in view of the reported experimefitswhich

A, and ¢ given above. This is also the case for those valueglid not indicate that this fine structure of the energy spectrum

of a for which F,(u,) vanishes sinceu,=2m?¢?/aZ
=m(ay/ay)a. In the former case we have
Enke=Ent ViFr(uy)cogKyxo) + VyF(uy)cosé  (3)

and in the latter

was resolved, we will assume that this is indeed the case, i.e.,
in samples of not exceptionally high mobilities, such as those
of Ref. 5, the small gaps mentioned above are closed due to
disorder and justify the assumption below, see Sec. Il C. That
is, we assume that the Landau levels are bands. Now from
the numerical solution of Eq2) we know that the band-
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the correction to the unperturbed eneifgy by the modula-
tion V,cosK,x+V,cosK,y using the classical equations of
motion x(t) = Xq+ RcSin(wet+ @),y(1) =Yg+ RCoswdt+ ¢); Xo
andy, are the classical center coordinatBs,is the cyclo-
tron radius,w.=|€e|B/m*, and ¢ is a phase factor. Without
loss of generality we may take= 0. Then, ifT is the period
of the cyclotron motion, a straightforward evaluation gives

T2
(Uy=(1/T) 7T/2dt[vxcosKXx(t) +VycosK,y(t)]

=V,Jo(KR¢)cosK,Xo+ V, Jo(KyR¢)cosK,yq, (7)

whereJy(x) is the Bessel function of order zero. In the weak
magnetic field limitk ,R.>1, Eq.(7) reduces to Eq(3) for
largen, i.e., for weakB. It is obvious that these three ap-
proximate ways of deriving the energy spectrum do not
“see” its fine structure resulting from an exact numerical
evaluation of the finite difference, E), for a=i/j. There-
fore, they are applicable if the corresponding small gaps are
closed due to disorder.

=
3]
E
ulf.
[43)

FIG. 2. Energy spectrum, obtained from the exact solution of
Eq. (2), in (a) and(c), as a function of the wave vectokg andk, B. Hexagonal symmetry

for n=0. The corresponding approximate spectrum, given by Eq. \ne assume that the Hamiltonian is given by
(3), is shown in(b) and(d). In (a) and (b) we havea=1/2 and«
=2/3, in(c) and(d) a=2/3. The periods,=a,=800 A pertain to

0_ 2 *
the experiment of Ref. 11. H™=(p+eA)“/2m* +VycosK,xcosK,y

+Vy(1+cos Ky)/2. (8)

width corresponding taxr=i/j cannot exceed the value ob-
tained from Eq(3) or Eq. (4). Therefore, for computational For V,=V,=V, this reduces to the model studied experi-
convenience, we will assume that the energy spectrum igentally by Fang and Stiléslf x andy are interchanged the
given by Eqg. (3) and the eigenfunctions bwnkyg energy spectrum, witk,=2=/a and K,=2m/+\/3a, of the
=A02pe‘p§|n,ky+ pKy). corrgsponding tight-binding equation .hag been studied nu-

In Fig. 2 we compare the energy spectrum obtained bynerically, for all values of the magnetic field, by Claro and
exactly solving Eq(2) with the one given by Eq3). We do  Wannier” and has the same structure as that of the square
so because in the conductivity calculations we will use EqSymmetry. Here, in line with the case of rectangular symme-
(3), as an approximation that will be justified, for all mag- try: we assume that the small gaps of the energy spectrum are
netic fields or values of. The exact spectrum far=i/j is ~ closed due to disorder and use again the tight-binding de-
composed of minibands. It's dependence &g, which does ~ Scription of Sec. Il A. Corresponding to E(?) we now ob-
not appear in Eq(2), is obtained by introducing appropriate tain
new basis states, in the manner of Ref. 13, wiky|
<lia, and|k,|</a, restricted in the magnetic Brillouin
zone. As car! k;l(|e seen?/the two spectra are quite different fromz VxFn(UctUy)[COS2Tpat y)Ap.q
each other. The corresponding difference in the density of
states is much weaker if a small broadening is included, see
Sec. Il C below. Forr integer, however, the exact spectrum
and that given by Eq(3) coincide; the result is shown in L
Fig. 1. =(E-En—3VyA,, )

There are two alternativepproximatewvays to obtain Eq. 5 o
(3). First, we take/,~0 and use the corresponding 1D tight- where y=K,£“(ky+K,/2). Whena is integer Eq.(9) has
binding stategn,k, &) to obtain the energy spectrum given the solutionA,=Aqexp(ép) with Ao and¢ given in Sec. I1A
by E,+ V,Fq(Uy,) cos,x). We then use first-order perturba- nd the eigenvalug is given by
tion theory, involving the statejik,£), to evaluate the en- L
ergy correction to this spectrum due to the t osK,y _
for Vy<hw+Vy; the result is identical with tﬁ:?giveg\ by Eoie=Ent EVVJFVXF”(UXJFUV)COSY cosé
Eq. (3). Second, since these new oscillations of the magne- 1
toresistance have been observed in weak magnetic fields and
for weak modulations, we attempt a classical evaluation of * EVVF”MUV)COS %, (10

Y
+cog2mpa—y)Ap_ 1]+ T Fo(4Uy)[Ap. o+ Ap_s]
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where §=€2Kykx. We notice that forkK,=2n/a and K, 0.2
=2m3a, i.e., the usual hexagonal modulation, we have
Fn(ux+uy) =F,(4uy) =F(87?¢%/3a%).

As in the rectangular case, we see that the Landau levels

» 0.1+
have broadened into bands with a bandwidth equal to 8
[2V,|Fq(uxt+uy) +Vy|Fn(4u,)|] that oscillates with mag-
netic field andllarge n. Again the mean velocities, andv,, ;
are finite 0'00
vy=—(Vy 02K, 1h)F(4uy)sin 26— (V, %K, /1) E (meV)
X Fp(Uyg+ U,)COSy COSE, (11) FIG. 3. Density of states vs energy fof=V,=0.5 meV, a,
Y =800 A with a,=800 A anda,=1600 A for the solid and dotted
_ 2 ; P curves, respectively. The dash-dotted curve is the result for a 1D
vy=~ (Vul Kyl R)F (Ut uy)siny sing; (12 modulation along the x direction with the same period and modu-
this has important consequences for transport and will bétion strength as in the 2D case. The magnetic fieldBis
detailed in the next section. =064T.
C. The density of states and (11). The DOS for the hexagonal modulation is not

: . shown since it is similar to the one shown in Fig. 3.
The energy spectra given by EdS) and (10) are quali- In Fig. 4 we compare the DOS obtained from the exact

tatively different from the unmodulated spectrum, given byenergy spectrum with that obtained using E8). In this

E,, and from the corresponding 1D modulation SpeCtrumcomparison we include a level broadening by repladiti)

given byEn+ Fn(ux)gostxo. These differences are also re- i, the definition ofD(E) by #[/(E2+T2). In Fig. 4a) we

flected in the density of state®OS) defined byD(E)  ghoy the influence of the level broadening on the DOS for

=22k, e0(E—Enk o). Fora 2D modulation with rectangular , _ 5/3 ang different values df specified in the caption. As

symmetry, corresponding to EB), the DOS becomes can be seen, the subband structure disappears with increasing
I' and the exact and approximate result approach each other.

2 (2 ) That is, the gaps between the minibands in each Landau level
D(E):Dogo fo d&{[VxFn(uy)] are closed with increasing level broadening. Notice that this
happens for quite small values bf compared to the cyclo-
—[E- En—VyFn(uy)cosg]z}*l’z, (13 tron energy which is about 1 meV in this example. As shown

. ) _in (c), the same behavior of the DOS occurs o+ 1/2.
while for the one with hexagonal symmetry, correspondingNotice also that this closeness between the exact and ap-

to Eq. (10), the DOS is given by proximate DOS occurs despite the drastic difference in the
> 2
_ 2 0.3 0.1
D(E)_DOZ‘O . dé[[Van(ux+ Uy)COS¢] 0=2/3 @ o=l (b)
V 2\ —1/2
— ( E-E,— 7y[1+ Fn(4uy)cos 25]) ] ,
0.2}
(14)
» 5 7 5
where Dy=L,L,/7*¢%. The quantities within the curly Q 0.1
brackets in Eqs(13) and (14) must be positive.
In Fig. 3 we plot the DOS, given by E¢13), for various 01t
values of the parametees, a,,V,, andV, . For compari- 1}
son we also show the DO@ash-dotted curyecorrespond- [ 3
ing to the 1D modulation. The latter exhibits Van Hove sin- / \\
gularities at the edges of each Landau lgeing reflecting 0.%0 05 1 0 - ] 50‘00 T4 s

the 1D nature of the electron motion in this band, singe
#0 whilev,=0, cf. Refs. 2 and 3. This is not the case for
the 2D modulation: the electron motion is two dimensional, rig, 4. (a) Density of states vs energy far=2/3 and energy
since bottv, andv, are different from zero, cf. Eq$5) and  |evel width T=0 (thin curves and T=1 K (thick curves. The

(6). That is, in the 2D case the DOS is finite, see also Refssplig and dotted curves are, respectively, the exact and approximate
4(b). As shown there, the DOS is qualitatively the same asesults. The DOS forr=1 in (b) and @=1/2 in (c) is plotted,

the one shown in Fig. 3 if the periods are the same and thgspectively, for '=1.1 K and '=1.5 K obtained from T
strengths are varied. This can be immediately deduced from (e#./m*)\B/7u. The parameters used are the same as those in
the factorsV,F(uy) andV,F(uy) that appear in Eq3)  Fig. 2.

E (meV) E (meV)
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corresponding energy spectra shown in Fig. 2. In addition, as The resistivity tensop,,, is given in terms of the conduc-
shown in(b), for integera the exact and approximate results tivity tensorp=o"1. We will use the standard expressions

for the DOS are identical.

I1l. TRANSPORT COEFFICIENTS
A. Basic expressions

For weak electric fieldE, i.e., for linear responses, and
weak scattering potentials the conductivity tensgr(w) in

the one-electron approximation has been evaluated in dEt"’}Hdependent of the scattering when the latter is wéak.

in Ref. 3:0,,(0) =09 () +d)(w),u,v=x,y. The con-

Pxx=OyylS,pyy=0xxIS, and py,=—py,=—0y,/S with S

= Oy Oyy ™ OyyOyx -

B. Analytical evaluations

The scattering mechanism enters the conductivity expres-
sions(15) and(16) through the relaxation time(E,) and the
transition rateW,,,, respectively; in contrast, Eq17) is

We assume that the electrons are scattered elastically by

tribution o}, () stems from the diagonal part of the density randomly distributed impurities. This type of scattering is

; g dy dq y_ -d
operator p. In a suitable basm{J#)—Tr(p JJ)=0,E

mv v
whereJ, is the current density analzdy(w) comes from the
i — .d d d
nondiagonal part ofp(p=p°+p"). In general o, (w)

=05 (w) +05%(w), wheres) () indicates diffusive con-

y72%
tributions andof[’y'(w) collisional contributions. For the dif-

fusive contribution we have

2
aiil(0)=ve2§ f(1=f)7(Epuips, (15

dominant at the low temperatures of the reported experi-
ments. Further, we expand the impurity potential in Fourier
components, i.e., U(r—R)=2qUqexdiq-(r—R)], with
U,=27e’ e(q?+k3)*? corresponding to the screened im-
purity potentialU(r)=(e* er)exp(—kg); r and R are the
electron and impurity positions, respectivety= q,x+ qy)},
€ is the dielectric constant, arkd the screening wave vector.
Diffusive contribution For weak modulation potentials,
andVy, which is pertinent to most of the reported experi-
ments, we may usg/>=|n,k,,&) to evaluate the velocity

provided that the scattering is elastic or quasielastic, and fomatrix elements appearing in E@.5); the latter are given by

the collisional one

2
e !
0'21‘1'<0>=m§, (1= f)Wep(aj,—aj)?  (16)

for both elastic {,=f,/) and inelastic {,#f,/) scattering.

W, is the transition rate between the unperturbed one

electron state§() and|{’), Q the volume of the systeng
the electron charges(E,;) the relaxation time, andai
=(¢|r ,|¢) the mean value of the component of the posi-
tion operator when the electron is in state> and has ve-
locity vi=<§|vﬂ|§>. Equation (15) describes transport
through extended states whereas B deals with trans-

port through localized states and is absent in semiclassicébr o,

treatments.
The nondiagonal contributionjl‘“;’,(w) to the conductivity
is given by

2ihe?
oN(w)= a > f1—f)(L vl
#
1—eB(EEy) 1
X{{'v, lim .

17

If we use the identity f (1—f,)exdB(E,—Ey)]=f(1
—fy), Eq. (17) takes the form of the well-known Kubo-
Greenwood formula.

Apart from their use in Ref. 3 for the 1D modulation case,
the above formulas have also been successfully applied to

Egs.(5) and(6) for rectangularsymmetry and by Eqg11)
and(12) for hexagonakymmetry. As for the relaxation time
7(Ep, it is defined by 1HE)=Z,W. (v,~v})lv,.
Though the Landau levels broaden into bands, this definition
fails at the flat-band conditions, wheq=v2=0. For this
reason we estimate it from the lifetime given byr(E,)
?Eg,w%/. In the limit k>q, we obtain 7=7(E;)
~(m€?h?IN,U3)Y?, whereN, is the 2D impurity density
and U,~2me?/eks. However, at weak magnetic fields we
may user as constant and estimate it from the zero-field
mobility u: 7=719=um*/e.

We now use Egs.(5), (6), and (15 with X,
—(Ly/m) 3 dk, and S, (L,/may) [27dé. The result

dif is

AT

hray

dif _

e2
XX F

K§€4V§; e W[ Ly(uy)]?

27 ay/ ) .
xJO dgjo ¢ dkyfnkyg(l—fnkyg)sng. (18)

The componentrd;,f is given by Eq.(18) with x andy inter-
changed, and s?yﬁ replaced by sif(€2Kk,)=sirP(Kxp). In
the limit of vanishingV, Eq. (18) gives the result of a 1D
modulation,c'=0. If we neglect the weak, and§ depen-

dence of the factofnkyg(l— fnkyg) we obtain the simplified
expression

2
air & AT

TN~ T R K§€2v§§n) e W Ln(uy)1?Fa(1—fp).

(19

various situations of electronic transport, such as hopping

conduction**® Aharonov-Bohm effect!® quantum Hall
effect}*© etc.

The corresponding expression fof), is given by Eq.(19)
with x andy interchanged.
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For hexagonal symmetry we usé,=2m/a and K,
=2m/\/3a. The results fooy, and o, are similar to Eq.
(18) and can be easily obtained using E@l) and(12) for
the velocities. The result far(,', corresponding to Eq19),
is given by Eq.(19) with Kivé replaced byK2V?2/2 and that
for %I by
e? BT

dif _ <
O'XX"-”I'T

h #

V2
X —u 2 —
1+N§)e ; [Ln(U)] fn(l fn),
(20)

2\ /2
KyVy

whereu=_872¢?%/3a.

Collisional contribution To evaluate this contribution to
orderV?,
V,, . The procedure for evaluating EQL6) is identical with
that corresponding to
previously’ We have again (¢|x|¢)—(¢'[x[¢")=€*(ky
— k;,); the only new ingredient are the following matrix ele-
ments:

<nky§|Y|nky§>:_§/Ky (21

and
|(nky €@ n"ky&")[>=(nl/n"Hu" e

x[Lp _n(U)]25g,g'+cyqx5ky K =ay:
(22

whereu=€2(qZ+q7)/2 andc,= (%K.
We now use Eqgs(16), (20), and(21), and the standard
expression for the transition rate

Wg,:Eq) U§|(nky§|eiq'r|n’k)’,g’>|2(5(Enky§—En,k;g,).
(23

We use the spectrurg8) and shift the argument of the co-
sines by¢?KK,=2ma, a integer, in thes function as well
as in the factorfnkyg(l—fn,k;gr). Then Eq.(16) takes the

form

2
gea. & PNV
YW h A4da,

2m ay/ )
xfo dgfo €2k foy e

x(1- fn’,ky+Ky+qy ,gfcy(KXJqu))

E J;) duefuun’fn+1[|_2’fn(u)]2
n,n’

X 5(Enky§_En’,ky+Ky+qy,gfcy(KX+qX))- (29

the 1D modulation detailed
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&( Enkyg_ En’,ky+ Ky+ay ,é—Cy(Kx"'qx))
~d6((n—n")hwc+ 2F(uy) V,sinc, (K, —q,/2)
xsinc,(ky+Ky—q,/2)+ 2F(uy)V,

xsincy(Ky—ay/2)sincy(k,+Ky—0a,/2)). (25

The shift by€2KXKy:27ra, « integer, in Eq(25) and in the
factorfnkyg(l— fnrk)’lgr) was made to stress the formal valid-
ity of Egs. (24) and(25) for « integer. If we do not make it,
we must putK,=K,=0 in the sine factors and change
En’,ky+Ky+qy,§—cy(Kx+qx) to En’,ky+qy,§—cyqx wherever it ap-
pears. Forx close to an integer though one can reinstafe

we must use the perturbed wave function to orderyq K, in Egs.(24) and (25) as shown,

We now remark that the largest contribution to the inte-
gral overu in Eq. (24) comes from very small values @f;
andq, due to the factor exp{u) or the factor W/ 7%nuin
the asymptotic expression e Y[L,(u)]?~cos(2\/nu
—ml4)/\J7nu. In addition, for the usual 2D systems we
haveks~10°/m which is much larger than these small values
of g, andqy . With that in mind and in order to reduce the
numerical work, we replace th&function (25) by a Lorent-
zian of widthT" and neglect in it and in the factdrnkyg(l
__fn’,ky+Ky+qy,§fcy(KX+qX)) the terr_nssc_qx or «q,. Alterna-
tively, we may expand th& function in powers ofg, and
gy, then by far the leading contribution comes from the
zero-order term given by E@25) with g,=q,=0. In addi-
tion, we neglect the term? in Uq. Further, from the sum
overn’ we consider only the terms =n andn’=n=*1; the
term n’=n gives the dominant contribution, about 90%.
Then the integral oven can be evaluated and E@4) takes
the form

o0~ %2 % > | 2n+1) f:wdgjoax/ezdky
X[Dppt(n+ 1)Dn‘n+1+nDn’n_1]], (26)
where
D =T e(1=For i ok, ek, ) [ (Eni g
_En/,ky+Ky,§—cny)2+F2]- 27

As a result, when &H’Z/axay:d)(,ltb is an integer, the sec-
ond and third terms in the argument of thdunction in Eq.

(25 vanish and entaih=n’, i.e., the response is strongest
when one flux quantum passes through an integral number of
cellsas observe&!! In this case the factdr(- - -)°+1I'?] in

Eq. (27) becomed 2.

We proceed as follows. For weak magnetic fields involved in A qualitative understanding of the enhancement of the

the problem the Landau-level indexis large and the major
contributions to the sum over come fromn’ values close

collisional conductivity for integerr=®,/® is as follows.
In this case only scattering between the stalgsé) and

n. With the asymptotic expansion of the Laguerre polynomi-|k,+ K, +qy,é+cy(Ky,0y)) is allowed, cf. Eq(24). These

als,e "2 (u)~(ar?nu) ~Ycos(2/nu— =/4), it is an excel-
lent approximation to takd-,(u,)~F,/(u,). Then theéd
function becomes

states correspond to cyclotron orbits separated by a distance
aa, which is a multiple of the lattice period. One example is
shown in Fig. 5 for two orbits that encircle a unit cell. As
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FIG. 5. Scattering between two cyclotron orbits which encircle
one unit cell.

shown, the orbits are in the same relative position with re- ) . ) ) .
spect to the modulation lattice and correspond to electron 00 02 04 06 08 1.0
states of the same energy. Since impurity scattering is an B(T)
elastic process that leads to hopping between states of the
same energy, the hopping between such cyclotron orbits for FIG. 6. Resistivity components,, andp, as a function of the
integer = contributes the most to the conduction and en-magnetic field for fixed V,=0.5 meV and varyiny, . The dotted
hances the collisional conductivity. On the other hand,afor CUrve is the 1D limit obtained witl,=0. The prominent peaks in
not an integer the position of the two orbits involved in the € 2D case are marked by the integral valueref®o/®.
scattering process relative to the modulation lattice changes; 5 21m 2 )
accordingly the enhancement mentioned above is weakene@x— & Ux=Uy=u=8m"(*/3a%, and of course the different

For those values of the magnetic field for whigh(u,) ~ €nergy levelgEa. (10)] that enter the factofy .-
vanishes we use the same wave functions and the spectrum
(4). If the modulation periods are the same, we have IV. NUMERICAL RESULTS
Fn(uy)=Fp(uy)=0, n—n’, and Eq. (26) holds with
Dnn+1—0. If the modulation periods are not equal or if ~ We now present results for the various resistivity compo-
®,/P is not an integer, Eqs25) and (26) hold only ap-  nentsp,,, using the standard expressions given at the end of
proximately. With all that in mind, the assumption that theSec. IllA, and evaluating numerically the conductivities
small gaps are closed due to disorder, and for computationaliven by Eqs(18), (26), and(27). For Figs. 3—7, and 10 we
convenience, we use E@26) as an approximation for all use the parameters of Ref. 11. They are electron dengity
fields. =4.5x10"m?, temperatureT=5.5K or T=1.6 K, a,

For the hexagonal modulation we obtain again Exf) =a,=804 A, and mobilityw=70 n?/V's. The correspond-
but now the energy spectrum is given by Ef§0). Further, ing parameters for Figs. 8 and 9, taken from Ref. 5,rye
a, anduy are replaced by andu=8n2¢?/3a®, respectively.
For 0<% the result is given by Eq26) with a, replaced bya; X 2 =1600A )
u remains the same. - U

The Hall conductivity The evaluation of Eq(17) for o
=0 is readily performed with the stat¢sk,¢) and the en-
ergy levels given by Eq3) or Eq.(10). The only difference
with the previou$ calculation is that a factor efatk,
—k;)/Ky]ﬁgél appears on the right-hand side of EG7) of
Ref. 3 now written agnk,¢|V,[n"kyé"). For rectangular
symmetry we obtaifioy(0)=oy,]

2 5p2
e 2¢ a,/2¢?
Oyx=— 2n+1) | 7 dk
= o 3 ey [
o fnkyg_ fosik ¢ FIG. 7. Resistivity component,, as a function of the magnetic
X f Y , (28)  field B for fixed V,=V,=0.5 meV and different perioda, as in-
0 [L1+ N0 KyXo) + N pyCOSE]? dicated. The solid curves give the total resistivity, the dotted ones

the diffusive contribution, and the dash-dotted ones the collisional
where Anﬂ:VMeiu"lzLﬁjl(Uﬂ)/ﬁwcy #=Xy. We notice  contribution. The thinner curves in pangl) are for the 1D limit
that for Vy=0 we obtain the previous 1D resdiWe also (Vy=0). The prominent peaks in the 2D case are marked by the
remark that Eq(28) is valid for hexagonal symmetry with integral values ofx.
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40 40 -ay=1600A (b
1
20f 20f
3 ) %0 0.5 1.0
z 40f 407 a =6400A ()
=X v Y
20} 20
000510 %0 0L 02 03 04
B(D)
B (T)

FIG. 10. The same as in Fig. 9 but for temperaftirel.6. The

Pyy- diffusive one(dotted curvg the upper panel shows their sum.
_ 5 2 B L «B™“as in Fig. 6 but with the period, being doubled from
=5.1X 1¢ _/m , temperatureT=4.2 K, a%—ay_— 2820 A, panel to panel as indicated. The solid curves give the total
and mobility =140 nf/V's. The relaxation time at zero resistivity, the dashed ones the diffusive contribution, defined

magnetic field,ry, is estimated from the sample mobility as by dif _ dif/s 504 the dotted ones the collisional contri-
To=m* u/e. Then the level width id =(eBNUZ/ «#)? Prun= Ton' S ol col - ,

0 /‘* : 0 bution, defined by, ,=o,,/S. Notice how the prominent
=(eA/m*) yB/mp. peaks move to lower fields with increasiag as explained

~ InFig. 6 we plotp,, andpy, as a function of the magnetic iter Eq.(26); in panel(d) they have disappeared. The 1D
field BWIth V,=0.5 meV for consta_nt-: 7o. As indicated,  |imit shown in panel(d) is obtained withV,=0 and the
the various curves correspond to differ&éfqtand the dotted  itference in theB dependence betwegn,, and p, is re-
one, marked 1D, represents the 1D limit obtained With |ated to that of the corresponding conductivity contributions.
=0. The prominent peaks in the 2D case, marked by th@ype of them ¢! given Eq.(18), is affected drastically by
integral value ofw, result from the collisional contribution to changingV, and/or the perioca, which enters the factor
the conductivity. The smaller peaks, between these values %ﬁnzg the oilhers very weakly. Y

a, correspond to the commensurability or Weiss oscillations. V\/e now look more closely at the experimental results of
Notice how the prominent peaks @i, in the 2D case, Refs. 8 and 5 with the parameter sets specified above. The
remain rather insensitive to changesii: this is so because parameters/, and V, are not known. In Fig. 6 we have
they result from the collisional contnbutmmf,‘; which de-  shown the total resistivity fow,=V,=0.5 meV, constant
pends very weakly oW, through the energy spectrum. The — - |5 Fig. 9 we plot agaifp,, versusB but now we show

apparently drastic difference between the two figures resultge contributionsp®’ and p°' as well. In addition, we take

from the fact thato, , <o, makesS change little andp,y V,=V,=1 meV, and Y~T ~BY2 BecauseUgLf<gcol

J— 1 — H H vy !
=ayy/S while pyy= 0y /S. Upon reducingVy the contribu- 4 jitference in the total resistivity is very small between

tion Ug;f”u\)/li' given by Eq.(18), is affected drastically e two sets of modulation strengths. However, the oscilla-
whereaso, " is not. . _ tion amplitudes irpSS, are higher in the present case gng
In Figs. 7 and 8 we plot agaj,, andp,y as a function of  j,creases more slowly witB as observed.Upon closer in-
the field B with V,=V,=0.5 meV, for the same andI"  gpection we see that the prominent peaks, marked by the
integral values ofy, result entirely from the collisional con-
tribution ¢°'. As can be seen in Fig. 3 of the following
paper! the amplitudes and positions of these peaks agree
well with the experimental results. Notice also how the
Weiss oscillations op%" andpS?', between these peaks, are
in antiphase. These experimental resultsdpy and p,, are
for two orthogonal crystal directiof€11] and[011] taken
from different samples. They have similar structures and the
curves may be fitted theoretically using slightly different po-
tentials. A direct comparison between experimental and the-
oretical results is made in Fig. 9 of the following pajjdor
T=179 but qualitatively the agreement is the same for
FIG. 9. Resistivity component,, as a function of the magnetic *B~ % Notice, however, that the theoretical oscillation am-
field B for fixed V,=V,=1 meV andT=5.5 K. The solid curves Plitudes and the overall value ¢f,, in the lowB region,
give the total resistivity, the dotted ones the diffusive contribution,below a=2, agree less well with the experimental ones than
and the dash-dotted ones the collisional contribution. The prominerthose in the higtB region.
peaks are marked by the integral valuesnaf @y /. In Ref. 11 results are given for temperature 1.6 K and

B(D)
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FIG. 13. The same as in Fig. 9 with the parameters of Ref. 5 and
I/B (I/T) Vy=V,=0.2 meV.
FIG. 11. Resistivity componeng,, as a function of inverse

magnetic field 1. The curves are marked as in Fig. 10. The inset
shows the peak position versudl/

agreement with the experimental 2D results of Ref. 5 is very
good: below approximatelg=0.5 T we have the Weiss os-
cillations and above it the Shubnikov—de Haas ones. One
noticeable feature here is the absence of the prominent peaks
for this case in Fig. 10. As can be seen, lowering the temfogr:ggesgriilv\é?\llizs &zk;hfz'i;g/;)?aﬁfetg Tolidr;ls:r?er
perature makes visible all prominent peaks marked by ar® . Xy - 9

rows for a=1,...,8. Their positions occur at field8 smaller values ofB. For msltance,a—.l occurs atB
—064 032 (’)21 ’0 16. 0.13. 0.11. 0.09 and 008 T and=0.05 T and the corresponding peak is not resolved. The
compare very well with the experimental ones, see Fig. 6 iriigreement is also as good if we Lae= a,=3650 A and

the following papet! To see more clearly the oscillations we otherwise the same parameters pertaining to anothe.r sample.
replot, in Fig. 11, the resistivities in the low-field region of Reference 5 reported results also for 1D modulations. As
Fig. 10 as a function of B. mentioned earlier, we can obtain the 1D limit from the

The temperature dependence of the oscillations is showﬁresent 2D results b.y gon3|der|ng a vanishifig In Fig. 14
in Fig. 12. The solid, dotted, and thin solid curves correspomyl’e ShOVAV the_ 1D limit of the _totalpxx and pyy for a,
to T=5, 10, and 20 K, respectively. As can be seen, these_ 2820 A, Vx=0.5 meV, andV,=0. Although the agree-
B gnent between theory and experiment is very good, it must be
noticed that it is obtained with/,=0.5 meV and notV,
=0.2 meV that we used in Fig. 13. Since the 1D or 2D
modulations are produced by illumination of the samples, we
expect them to have the same strength. If we dse
=0.2 meV we can obtain good agreement if we use a
maller by about a factor of 2 in E¢L8). As stated in Refs.
and 6, this may be an indication that in this very high
mobility samples the fine structure of the energy spectrum,

otherwise the same parameters. We show the calcutgted

and persist al =20 K. However, their damping witf is
weaker than the observed oHe.

In Fig. 13 we plotp,, in the manner of Fig. 9 but for the
parameters of Ref. 5 involving the much longer periags
=a,=2820 A. The modulation strengths ar¥,=V,
=0.2 meV and very close to those used in Refs. 5 and 6. Th

40 which the present theory neglects, is partially resolved. How-
301 ever, the experimental data were takenTat4.2 K and, as
a r no such fine structure has been observed above millikelvin
:i:- 20 i temperatures, alternative  explanations have been
10k proposed:!!
20} . b
2 10}
OQX L
0 ~
’ g
20+ a
a .
=, 10
'UCLK X
0 0 1 1 1 1
0.0 0.0 0.2 04 0.6 0.8 1.0
B(T)
FIG. 12. Resistivity componeni,, as a function of the mag- FIG. 14. The 1D resistivity componept,,, as a function of the
netic fieldB. The solid, dotted, and thin solid curves correspond tomagnetic fieldB obtained witha,=2820 A, V,=0.5 meV, and
T=5, 10, and 20 K, respectively. V,=0.
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800 depend very weakly on the value of the modulation strengths
V, andV,. Upon increasing the period along one direction
we showed how they move to lower fields. Accordingly, for
periods between 3000 A and 4000 A these peaks occur at
much smaller magnetic fields and are not resof/athe
agreement between our results and the experimental ones, as

% 0 presented in Ref. 8 and detailed in the preceding pHpier,
= good for the peak positions at all fields. The oscillation am-
200k plitudes agree well at relatively high fields but less well at
low fields. As shown in Fig. 12, these oscillations are quite
robust with respect to the temperature but their damping with
%'0 oS v 0s o3 To temperature is weak_er Fhan the observeq one.
Between the oscillations fox=®,/d integer we have
B(M the Weiss oscillations. The relative phase between those of

pxx and those op,, depends on the values of the modulation
strengths, cf. Fig. 6 in which the period is the same for all
curves, and of the modulation periods, cf. Figs. 4 and 5 in
which the modulation strengths are the same for all panels.
We notice that a¥/, becomes smaller and smaller thep,
éhe oscillations resemble more closely those corresponding
fo 1D weak modulations® cf. Fig. 6. The results for the
| latter can be extracted from the present 2D ones if we take
the modulation strength along one direction to be zero.
The relative phase between, andp,, for 1D and 2D
modulations depends strongly on the ratio of the modulation
V. CONCLUDING REMARKS strengthsV, andV, . Since one resistivity component van-

We presented a theory of magnetotransport in 2D super'-SheS for 1D mo_dulatmns, this conc_lu_5|on could not be
lattices using the energy spectrum and wave functions thd€ached by studying only the latter. Similar results were re-
result from the tight-binding difference equation when thePOrted in Ref. 6.
parametewr=®,/d is an integer. As emphasized in the text
and supported with the results for the DOS shown in Fig. 4,
the description holds approximately for all fields if we as-  This work was supported by the Canadian NSERC Grant
sume that the small gaps in the energy spectrum are closefb. OGP0121756, the Belgian Interuniversity Attraction
due to disorder. The reasonable-to-good agreement with theoles (IJUAP), the Flemish Concerted ActiofGOA) Pro-
experimental results strongly supports this assumption. gram, and the EU-CERION program. We also thank A. Long

As detailed in the text, the prominent peaks, fer and J. H. Davies for stimulating discussions and important
=®,/® integer, result from the collisional contribution to clarifications concerning the experimental results of the fol-

the conductivitycr§§', require sufficientlyshortperiods, and  lowing paper.

FIG. 15. The Hall resistivityp,, vs magnetic field with the
parameters of Fig. 9. The inset shows the derivatipg,/dB vs B.

Finally, in Fig. 15 we show the Hall resistivity,, for the
parameters of Fig. 9. As in the case of 1D modulations, i
exhibits very weak oscillations. They are better seen in th
inset which shows the derivativep,,/dB versusB. The
triangles on thex axis mark the positions of the integra
values ofa for which enhanced oscillations are observed.
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