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Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period
surface superlattices
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Transport properties of the two-dimensional electron gas~2DEG! are considered in the presence of a
perpendicular magnetic fieldB and of aweaktwo-dimensional~2D! periodic potential modulation in the 2DEG
plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding
tight-binding equation shows that each Landau level splits into several subbands when a rational number of
flux quantah/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of
the magnetoresistivity tensorrmn . The relative phase of the oscillations inrxx and ryy depends on the
modulation periods involved. For a 2D modulation with ashort period <100 nm, in addition to the Weiss
oscillations the collisional contribution to the conductivity and consequently the tensorrmn show prominent
peaks when one flux quantum h/e passes through an integral number of unit cellsin good agreement with
recent experiments. For periods 300–400 nm long used in early experiments, these peaks occur at fields 10 to
25 times smaller than those of the Weiss oscillations and are not resolved.

DOI: 10.1103/PhysRevB.69.035331 PACS number~s!: 73.20.At, 73.21.2b, 73.61.2r
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I. INTRODUCTION

In the last decade the magnetotransport of the tw
dimensional electron gas~2DEG!, subjected to periodic po
tential modulations, has attracted considerable experime1

and theoretical2,3 attention. For one-dimensional~1D! modu-
lations novel oscillations of the magnetoresistivity tensorrmn

have been observed, at low magnetic fieldsB, distinctly dif-
ferent in period and temperature dependence from the u
Shubnikov–de Haas ones observed at higherB. These novel
oscillations reflect the commensurability between two len
scales: the cyclotron diameter at the Fermi level 2Rc

52A2pne,2, wherene is the electron density,, the mag-
netic length, anda the period of the potential modulation
The situation is similar but less clear-cut for 2D modulatio
from both a theoretical4–7 and an experimental7–9 point of
view. To date most of the experimental results pertinen
2D modulations7–9 with square or hexagonal symmetry ha
indicated strongly that the predicted10 fine structure of the
Landau levels is not resolved. Magnetotransport theories
tinent to this case are rather limited4,7,8 in contrast with those
for 1D modulations.

Recent observations9 call for additional theoretical work
since they could not be fully explained by earlier semicl
sical theories.4 In this paper we develop, along the lines
Ref. 3, the relevant quantum-mechanical magnetotrans
theory of the 2DEG for precisely the case that the fine str
ture of the Landau levels is not resolved. Our goal is
explain recent experimental results11 on 2D, short-period (a
;1000 Å) surface superlattices with mobilitym in the inter-
mediate range, i.e.,m;100 m2/V s. The symmetry of the 2D
modulation is taken to be rectangular or hexagonal. A b
semiclassical account, pertinent to the former symmetry,
reported in Ref. 4~b!. New magnetoresistance oscillations a
found to occurwhen one flux quantum h/e passes through an
0163-1829/2004/69~3!/035331~11!/$22.50 69 0353
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integral number of unit cellsas was recently observe
experimentally.11 Here we show that these oscillations res
from the interplay between band conduction and collisio
conduction. A new contribution to the latter opens up as h
ping between cyclotron orbits which are separated by an
tegral multiple of the modulation period and have the sa
position relative to the modulation lattice. This contributio
is appreciable only in short-period superlattices and acco
ingly could not be resolved in early experiments on lon
period superlattices.

In the next section we derive the one-electron eigenfu
tions and eigenvalues for rectangular and hexagonal mo
lations; we also present the density of states. The analy
and numerical results for the corresponding conductivity
resistivity components are presented in Sec. III. Numer
results are given in Sec. IV and concluding remarks
Sec. V.

II. EIGENVECTORS, EIGENVALUES, AND DENSITY
OF STATES

We consider a 2DEG, in the (x,y) plane, in the presence
of a perpendicular magnetic fieldB5Bẑ and of a 2D peri-
odic potential modulationU(x,y). The electrons are consid
ered as free particles with an effective massm* . In the ab-
sence of the modulation the normalized one-elect
eigenfunction, in the gaugeA5(0,Bx,0), is given by
eikyyfn(x1x0)/ALy, where fn(x1x0) is the well-known
harmonic-oscillator function, centered at2x052,2ky , and
Ly is the sample’s width.

In the presence of a sinusoidal 1D modulation one can
perturbation theory2,3 to evaluate the energy spectrum a
eigenfunctions. Alternatively, one can use a tight-bindi
scheme, along the lines of Ref. 10, and look for solutions
the one-electron Hamiltonian H05(p1eA)2/2m*
©2004 The American Physical Society31-1
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1Vxcos(Kxx) that are linear combinations of the unperturb
(Vx50) ones:uwnky

&5(pApun,ky1pG&, whereG is a suit-
able wave vector introduced here for convenience
un,ky1pG& is the unperturbed state (Kx52p/ax , andax is
the modulation period alongx). As in Ref. 10 we takeG
[Ky52p/ay with ay the modulation period alongy. The
summation overp has to be extended to all integerp values
such that 2Lx/2,2<ky1pKy<Lx/2,2, where Lx is the
length. Forp50 we have the limits forky as2ax/2,2<ky
<ax/2,2. Then the tight-binding equation̂n,ky1pKyuH0

2Euwnky
&50, in which mixing of different Landau levelsn

is neglected, gives acceptable solutions for the coefficie
Ap as Ap5A0exp(ijp). The new states are labeled with th
additional quantum numberj (0<j<2p): ucnkyj&
5A0(pexp(ijp)un,ky1pKy&. The orthonormality condition
^wnkyjuwnkyj8&5djj8 gives j52pn,2Ky /Lx→kx,2Ky , n

being an integer, andA05,(Ky /Lx)
1/2 by normalization.

The energy spectrum obtained in this way is the same as
obtained by perturbation theory.2,3

We will now use this information to obtain the corre
sponding eigenvectors and eigenvalues for a 2D modula
potential.

A. Rectangular symmetry

We assume the following one-electron Hamiltonian:

H05~p1eA!/2m* 1Vxcos~Kxx!1Vycos~Kyy!, ~1!

where Km52p/am(m5x,y); ax and ay are the periods
along thex andy directions, respectively.

In the gauge chosen,A5(0,Bx,0), the second term of Eq
~1! is not diagonal inky and thereforeun,ky& is not a conve-
nient basis set. But as in the 1D case we can look for s
tions of Eq. ~1! in the form uwn,ky

&5(pApun,ky1pKy& as
described above. This choice of eigenfunctions is also s
gested by the fact thatVycosKyy connects the unperturbe
stateunky& with only the statesun,ky6Ky&. In this case the
equation^n,ky1pKyuH02Euwn,ky

&50, in which mixing of
different Landau levels is neglected, takes the form

VxFn~ux!cos~2ppa1Kxx0!Ap1 1
2 VyFn~uy!~Ap111Ap21!

5~E2En!Ap , ~2!

where a52p,2/axay , En5(n11/2)\vc is the ‘‘unper-
turbed’’ eigenvalue, andvc5ueuB/m* the cyclotron fre-
quency. Further,Fn(um)5exp(2um/2)Ln(um),Ln(um) is the
Laguerre polynomial andum5,2Km

2 /2.
The solution of Eq.~2! gives the eigenvaluesE and the

eigenvectorsAp . We see immediately that fora integer the
equation admits the exponential solutionsAp5A0ei jp, with
A0 andj given above. This is also the case for those val
of a for which Fn(ux) vanishes sinceux52p2,2/ax

2

5p(ay /ax)a. In the former case we have

Enkj5En1VxFn~ux!cos~Kxx0!1VyFn~uy!cosj ~3!

and in the latter
03533
d

ts

at

n

u-

g-

s

Enkj5En1VyFn~uy!cosj, ~4!

wherej5(2pn/Lx),2Ky[,2Kykx . In both cases the unper
turbed Landau levels broaden into bands„with a bandwidth
equal to 2@VxuFn(ux)u1VyuFn(uy)u# and 2VyuFn(uy)u, re-
spectively…, which oscillate with magnetic fieldB and~large!
indexn, cf. Refs. 2 and 3. The energy spectrum given by E
~3!, plotted in Fig. 1 forn50, a51, Vx52Vy51 meV, is a
periodic function ofkx and of ky since j5,2Kykx and x0
5,2ky . Notice that the arguments of the cosines in Eq.~3!
can be shifted by 2pa, a integer.

One important consequence of this nonzero bandwidt
that the mean velocitiesvx and vy , which vanish in the
absence of modulation, are now finite: fromvm
5dEnkj /\dkm ,m5x,y, we obtain

vx52~,2KyVy /\!Fn~uy!sinj ~5!

and

vy52~,2KxVx /\!Fn~ux!sin~Kxx0!. ~6!

Equations~5! and ~6! lead to a finite diffusion or band con
ductivity which is absent when the modulation is not prese
cf. Sec. II.

Equation ~2! is the same as Harper’s equation but t
coefficientsVmFn(um) depend on the magnetic field. ForB
values other than those pertaining to Eq.~3! it has been
shown by Hofstadter12(a) for the case of constant coefficien
and by Claro and Wannier,12(b) for the case that the latte
depend onB ~hexagonal modulation!, that the energy spec
trum resulting from the numerical solution of Eq.~2!, i.e.,E,
shows, whenE is measured in units ofVmFn(um), a non-
trivial structure: fora5 i / j , i , j being integers, each Landa
level is split into j subbands and Eq.~2! is periodic with
period j. Here, in view of the reported experiments7–9 which
did not indicate that this fine structure of the energy spectr
was resolved, we will assume that this is indeed the case,
in samples of not exceptionally high mobilities, such as tho
of Ref. 5, the small gaps mentioned above are closed du
disorder and justify the assumption below, see Sec. II C. T
is, we assume that the Landau levels are bands. Now f
the numerical solution of Eq.~2! we know that the band-

FIG. 1. Energy spectrum as a function of the wave vectorskx

and ky for n50,a51, Vx52Vy51 meV. The modulation wave
vectorsKx andKy are shown by the thick arrows.
1-2
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width corresponding toa5 i / j cannot exceed the value ob
tained from Eq.~3! or Eq. ~4!. Therefore, for computationa
convenience, we will assume that the energy spectrum
given by Eq. ~3! and the eigenfunctions byucnkyj&
5A0(peipjun,ky1pKy&.

In Fig. 2 we compare the energy spectrum obtained
exactly solving Eq.~2! with the one given by Eq.~3!. We do
so because in the conductivity calculations we will use E
~3!, as an approximation that will be justified, for all ma
netic fields or values ofa. The exact spectrum fora5 i / j is
composed ofj minibands. It’s dependence onkx , which does
not appear in Eq.~2!, is obtained by introducing appropriat
new basis states, in the manner of Ref. 13, withukxu
<p/ iax and ukyu<p/ay restricted in the magnetic Brillouin
zone. As can be seen, the two spectra are quite different f
each other. The corresponding difference in the density
states is much weaker if a small broadening is included,
Sec. II C below. Fora integer, however, the exact spectru
and that given by Eq.~3! coincide; the result is shown in
Fig. 1.

There are two alternative,approximateways to obtain Eq.
~3!. First, we takeVy'0 and use the corresponding 1D tigh
binding statesun,ky ,j& to obtain the energy spectrum give
by En1VxFn(ux)cos(Kxx0). We then use first-order perturba
tion theory, involving the statesunkyj&, to evaluate the en
ergy correction to this spectrum due to the termVycosKyy
for Vy!\vc1Vx ; the result is identical with that given b
Eq. ~3!. Second, since these new oscillations of the mag
toresistance have been observed in weak magnetic fields
for weak modulations, we attempt a classical evaluation

FIG. 2. Energy spectrum, obtained from the exact solution
Eq. ~2!, in ~a! and ~c!, as a function of the wave vectorskx andky

for n50. The corresponding approximate spectrum, given by
~3!, is shown in~b! and ~d!. In ~a! and ~b! we havea51/2 anda
52/3, in ~c! and~d! a52/3. The periodsax5ay5800 Å pertain to
the experiment of Ref. 11.
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the correction to the unperturbed energyEn by the modula-
tion VxcosKxx1VycosKyy using the classical equations o
motion x(t)5x01Rcsin(vct1w),y(t)5y01Rccos(vct1w); x0
and y0 are the classical center coordinates,Rc is the cyclo-
tron radius,vc5ueuB/m* , andw is a phase factor. Withou
loss of generality we may takew50. Then, ifT is the period
of the cyclotron motion, a straightforward evaluation give

^U&5~1/T!E
2T/2

T/2

dt@VxcosKxx~ t !1VycosKyy~ t !#

5VxJ0~KxRc!cosKxx01VyJ0~KyRc!cosKyy0 , ~7!

whereJ0(x) is the Bessel function of order zero. In the we
magnetic field limitKmRc@1, Eq.~7! reduces to Eq.~3! for
large n, i.e., for weakB. It is obvious that these three ap
proximate ways of deriving the energy spectrum do n
‘‘see’’ its fine structure resulting from an exact numeric
evaluation of the finite difference, Eq.~2!, for a5 i / j . There-
fore, they are applicable if the corresponding small gaps
closed due to disorder.

B. Hexagonal symmetry

We assume that the Hamiltonian is given by

H05~p1eA!2/2m* 1VxcosKxxcosKyy

1Vy~11cos 2Kyy!/2. ~8!

For Vx5Vy5V0 this reduces to the model studied expe
mentally by Fang and Stiles.7 If x andy are interchanged the
energy spectrum, withKy52p/a andKx52p/A3a, of the
corresponding tight-binding equation has been studied
merically, for all values of the magnetic field, by Claro an
Wannier12 and has the same structure as that of the squ
symmetry. Here, in line with the case of rectangular symm
try, we assume that the small gaps of the energy spectrum
closed due to disorder and use again the tight-binding
scription of Sec. II A. Corresponding to Eq.~2! we now ob-
tain

1

2
VxFn~ux1uy!@cos~2ppa1g!Ap11

1cos~2ppa2g!Ap21#1
Vy

4
Fn~4uy!@Ap121Ap22#

5~E2En2 1
2 Vy!Ap , ~9!

whereg5Kx,2(ky1Ky/2). Whena is integer Eq.~9! has
the solutionAp5A0exp(ijp) with A0 andj given in Sec. II A
and the eigenvalueE is given by

Enkj5En1
1

2
Vy1VxFn~ux1uy!cosg cosj

1
1

2
VyFn~4uy!cos 2j, ~10!

f

.

1-3
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where j5,2Kykx . We notice that forKx52p/a and Ky

52pA3a, i.e., the usual hexagonal modulation, we ha
Fn(ux1uy)5Fn(4uy)5Fn(8p2,2/3a2).

As in the rectangular case, we see that the Landau le
have broadened into bands with a bandwidth equal
@2VxuFn(ux1uy)1VyuFn(4uy)u# that oscillates with mag-
netic field and~large! n. Again the mean velocitiesvx andvy
are finite

vx52~Vy,2Ky /\!Fn~4uy!sin 2j2~Vx,2Ky /\!

3Fn~ux1uy!cosg cosj, ~11!

vy52~Vx,2Kx /\!Fn~ux1uy!sing sinj; ~12!

this has important consequences for transport and will
detailed in the next section.

C. The density of states

The energy spectra given by Eqs.~3! and ~10! are quali-
tatively different from the unmodulated spectrum, given
En , and from the corresponding 1D modulation spectru
given byEn1Fn(ux)cosKxx0. These differences are also r
flected in the density of states~DOS! defined by D(E)
52(nkyjd(E2Enkyj). For a 2D modulation with rectangula
symmetry, corresponding to Eq.~3!, the DOS becomes

D~E!5D0(
n50

` E
0

2p

dj$@VxFn~ux!#
2

2@E2En2VyFn~uy!cosj#2%21/2, ~13!

while for the one with hexagonal symmetry, correspond
to Eq. ~10!, the DOS is given by

D~E!5D0(
n50

` E
0

2p

djH @VxFn~ux1uy!cosj#2

2S E2En2
Vy

2
@11Fn~4uy!cos 2j# D 2J 21/2

,

~14!

where D05LyLx /p3,2. The quantities within the curly
brackets in Eqs.~13! and ~14! must be positive.

In Fig. 3 we plot the DOS, given by Eq.~13!, for various
values of the parametersax , ay ,Vx , andVy . For compari-
son we also show the DOS~dash-dotted curve! correspond-
ing to the 1D modulation. The latter exhibits Van Hove s
gularities at the edges of each Landau level~band! reflecting
the 1D nature of the electron motion in this band, sincevx
Þ0 while vy50, cf. Refs. 2 and 3. This is not the case f
the 2D modulation: the electron motion is two dimension
since bothvx andvy are different from zero, cf. Eqs.~5! and
~6!. That is, in the 2D case the DOS is finite, see also R
4~b!. As shown there, the DOS is qualitatively the same
the one shown in Fig. 3 if the periods are the same and
strengths are varied. This can be immediately deduced f
the factorsVxFn(ux) and VyFn(uy) that appear in Eqs.~3!
03533
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and ~11!. The DOS for the hexagonal modulation is n
shown since it is similar to the one shown in Fig. 3.

In Fig. 4 we compare the DOS obtained from the ex
energy spectrum with that obtained using Eq.~3!. In this
comparison we include a level broadening by replacingd(E)
in the definition ofD(E) by pG/(E21G2). In Fig. 4~a! we
show the influence of the level broadening on the DOS
a52/3 and different values ofG specified in the caption. As
can be seen, the subband structure disappears with incre
G and the exact and approximate result approach each o
That is, the gaps between the minibands in each Landau l
are closed with increasing level broadening. Notice that t
happens for quite small values ofG compared to the cyclo-
tron energy which is about 1 meV in this example. As sho
in ~c!, the same behavior of the DOS occurs fora51/2.
Notice also that this closeness between the exact and
proximate DOS occurs despite the drastic difference in

FIG. 3. Density of states vs energy forVx5Vy50.5 meV, ax

5800 Å with ay5800 Å anday51600 Å for the solid and dotted
curves, respectively. The dash-dotted curve is the result for a
modulation along the x direction with the same period and mo
lation strength as in the 2D case. The magnetic field isB
50.64 T.

FIG. 4. ~a! Density of states vs energy fora52/3 and energy
level width G50 ~thin curves! and G51 K ~thick curves!. The
solid and dotted curves are, respectively, the exact and approxi
results. The DOS fora51 in ~b! and a51/2 in ~c! is plotted,
respectively, for G51.1 K and G51.5 K obtained from G
5(e\/m* )AB/pm. The parameters used are the same as thos
Fig. 2.
1-4
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corresponding energy spectra shown in Fig. 2. In addition
shown in~b!, for integera the exact and approximate resu
for the DOS are identical.

III. TRANSPORT COEFFICIENTS

A. Basic expressions

For weak electric fieldsE, i.e., for linear responses, an
weak scattering potentials the conductivity tensorsmn(v) in
the one-electron approximation has been evaluated in d
in Ref. 3: smn(v)5smn

d (v)1smn
nd(v),m,n5x,y. The con-

tribution smn
d (v) stems from the diagonal part of the dens

operator r. In a suitable basiŝ Jm
d &5Tr(rdJm)5smn

d En ,
whereJm is the current density andsmn

nd(v) comes from the
nondiagonal part ofr(r5rd1rnd). In general smn

d (v)
5smn

di f(v)1smn
col(v), wheresmn

di f(v) indicates diffusive con-
tributions andsmn

col(v) collisional contributions. For the dif-
fusive contribution we have

smn
di f~0!5

be2

V (
z

f z~12 f z!t~Ez!vm
z vn

z , ~15!

provided that the scattering is elastic or quasielastic, and
the collisional one

smn
col~0!5

e2

2V(
zz8

f z~12 f z8!Wzz8~am
z 2am

z8!2, ~16!

for both elastic (f z5 f z8) and inelastic (f zÞ f z8) scattering.
Wzz8 is the transition rate between the unperturbed o
electron statesuz& and uz8&, V the volume of the system,e
the electron charge,t(Ez) the relaxation time, andam

z

5^zur muz& the mean value of them component of the posi
tion operator when the electron is in stateuz. and has ve-
locity vm

z 5,zuvmuz.. Equation ~15! describes transpor
through extended states whereas Eq.~16! deals with trans-
port through localized states and is absent in semiclass
treatments.

The nondiagonal contributionsmn
nd(v) to the conductivity

is given by

smn
nd~v!5

2i\e2

V (
zÞz8

f z~12 f z8!^zuvmuz8&

3^z8uvnuz&
12eb(Ez2Ez8)

Ez2Ez8

lim
e→0

1

Ez2Ez81\v1 i e
.

~17!

If we use the identity f z(12 f z8)exp@b(Ez2Ez8)#5fz8(1
2fz), Eq. ~17! takes the form of the well-known Kubo
Greenwood formula.

Apart from their use in Ref. 3 for the 1D modulation cas
the above formulas have also been successfully applie
various situations of electronic transport, such as hopp
conduction,14(a) Aharonov-Bohm effect,14(b) quantum Hall
effect,14(c) etc.
03533
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The resistivity tensorrmn is given in terms of the conduc
tivity tensor r5s21. We will use the standard expression
rxx5syy /S,ryy5sxx /S, and ryx52rxy52syx /S with S
5sxxsyy2sxysyx .

B. Analytical evaluations

The scattering mechanism enters the conductivity exp
sions~15! and~16! through the relaxation timet(Ez) and the
transition rateWzz8 , respectively; in contrast, Eq.~17! is
independent of the scattering when the latter is weak.14

We assume that the electrons are scattered elasticall
randomly distributed impurities. This type of scattering
dominant at the low temperatures of the reported exp
ments. Further, we expand the impurity potential in Four
components, i.e.,U(r2R)5(qUqexp@iq•(r2R)#, with
Uq52pe2/e(q21ks

2)1/2 corresponding to the screened im
purity potentialU(r )5(e2/er )exp(2ksr); r and R are the
electron and impurity positions, respectively,q5qxx̂1qyŷ,
e is the dielectric constant, andks the screening wave vecto

Diffusive contribution. For weak modulation potentialsVx
and Vy , which is pertinent to most of the reported expe
ments, we may useuz.5un,ky ,j& to evaluate the velocity
matrix elements appearing in Eq.~15!; the latter are given by
Eqs.~5! and ~6! for rectangularsymmetry and by Eqs.~11!
and~12! for hexagonalsymmetry. As for the relaxation time
t(Ez), it is defined by 1/t(Ez)5(z8Wzz8(vz2vz8)/vz .
Though the Landau levels broaden into bands, this defini
fails at the flat-band conditions, whenvz5vz850. For this
reason we estimate it from the lifetime given by 1/t(Ez)
5(z8Wzz8 . In the limit ks@q, we obtain t5t(Ez)
'(p,2\2/NIU0

2)1/2, where NI is the 2D impurity density
and U0'2pe2/eks . However, at weak magnetic fields w
may uset as constant and estimate it from the zero-fie
mobility m: t5t05mm* /e.

We now use Eqs. ~5!, ~6!, and ~15! with (k

→(Ly /p)*0
ax/2,2

dky and (j→(Lx /pax)*0
2pdj. The result

for sxx
di f is

sxx
di f'

e2

h

bt

\pax
Ky

2,4Vy
2(

n
e2uy@Ln~uy!#2

3E
0

2p

djE
0

ax /

,2dkyf nkyj~12 f nkyj!sin2j. ~18!

The componentsyy
di f is given by Eq.~18! with x andy inter-

changed, and sin2j replaced by sin2(,2Kxky)5sin2(Kxx0). In
the limit of vanishingVy Eq. ~18! gives the result of a 1D
modulation,sxx

di f50. If we neglect the weakky andj depen-
dence of the factorf nkyj(12 f nkyj) we obtain the simplified
expression

sxx
di f'

e2

h

bt

\
Ky

2,2Vy
2(

n
e2uy@Ln~uy!#2f n~12 f n!.

~19!

The corresponding expression forsyy
di f is given by Eq.~19!

with x andy interchanged.
1-5
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For hexagonal symmetry we useKx52p/a and Ky

52p/A3a. The results forsxx
di f andsyy

di f are similar to Eq.
~18! and can be easily obtained using Eqs.~11! and~12! for
the velocities. The result forsyy

di f , corresponding to Eq.~19!,
is given by Eq.~19! with Ky

2Vy
2 replaced byKx

2Vx
2/2 and that

for sxx
di f by

sxx
di f'p

e2

h

bt

\
Ky

2Vy
2S 11

Vx
2

2Vy
2D e2u(

n
@Ln~u!#2f n~12 f n!,

~20!

whereu58p2,2/3a2.
Collisional contribution. To evaluate this contribution to

orderVm
2 we must use the perturbed wave function to ord

Vm . The procedure for evaluating Eq.~16! is identical with
that corresponding to the 1D modulation detail
previously.3 We have again ^zuxuz&2^z8uxuz8&5,2(ky

2ky8); the only new ingredient are the following matrix el
ments:

^nkyjuyunkyj&52j/Ky ~21!

and

u^nkyjueiq•run8ky8j8&u25~n!/n8! !un82ne2u

3@Ln
n82n~u!#2dj,j81cyqx

dky ,k
y82qy

,

~22!

whereu5,2(qx
21qy

2)/2 andcy5,2Ky .
We now use Eqs.~16!, ~20!, and ~21!, and the standard

expression for the transition rate

Wzz85(
q

Uq
2u^nkyjueiq•run8ky8j8&u2d~Enkyj2En8k

y8j8!.

~23!

We use the spectrum~3! and shift the argument of the co
sines by,2KxKy52pa, a integer, in thed function as well
as in the factorf nkyj(12 f n8k

y8j8). Then Eq.~16! takes the

form

syy
col'

e2

h

bNIU0
2

4ax
(
n,n8

E
0

`

due2uun82n11@Ln
n82n~u!#2

3E
0

2p

djE
0

ax /

,2dkyf nkyj

3~12 f n8,ky1Ky1qy ,j2cy(Kx1qx)!

3d~Enkyj2En8,ky1Ky1qy ,j2cy(Kx1qx)!. ~24!

We proceed as follows. For weak magnetic fields involved
the problem the Landau-level indexn is large and the majo
contributions to the sum overn8 come fromn8 values close
n. With the asymptotic expansion of the Laguerre polynom
als,e2u/2Ln(u)'(p2nu)21/4cos(2Anu2p/4), it is an excel-
lent approximation to takeFn(um)'Fn8(um). Then thed
function becomes
03533
r

n

-

d~Enkyj2En8,ky1Ky1qy ,j2cy(Kx1qx)!

'd„~n2n8!\vc12Fn~ux!Vxsincx~Ky2qy/2!

3sincx~ky1Ky2qy/2!12Fn~uy!Vy

3sincy~Kx2qx/2!sincy~kx1Kx2qx/2!…. ~25!

The shift by,2KxKy52pa, a integer, in Eq.~25! and in the
factor f nkyj(12 f n8k

y8j8) was made to stress the formal valid

ity of Eqs. ~24! and~25! for a integer. If we do not make it,
we must putKx5Ky50 in the sine factors and chang
En8,ky1Ky1qy ,j2cy(Kx1qx) to En8,ky1qy ,j2cyqx

wherever it ap-

pears. Fora close to an integer though one can reinstateKx
andKy in Eqs.~24! and ~25! as shown.

We now remark that the largest contribution to the in
gral overu in Eq. ~24! comes from very small values ofqx

and qy due to the factor exp(2u) or the factor 1/Ap2nu in
the asymptotic expression e2u@Ln(u)#2'cos2(2Anu
2p/4)/Ap2nu. In addition, for the usual 2D systems w
haveks'108/m which is much larger than these small valu
of qx andqy . With that in mind and in order to reduce th
numerical work, we replace thed function ~25! by a Lorent-
zian of width G and neglect in it and in the factorf nkyj(1

2 f n8,ky1Ky1qy ,j2cy(Kx1qx)) the terms}qx or }qy . Alterna-

tively, we may expand thed function in powers ofqx and
qy ; then by far the leading contribution comes from t
zero-order term given by Eq.~25! with qx5qy50. In addi-
tion, we neglect the termq2 in Uq . Further, from the sum
overn8 we consider only the termsn85n andn85n61; the
term n85n gives the dominant contribution, about 90%
Then the integral overu can be evaluated and Eq.~24! takes
the form

syy
col'

e2

h

bNIU0
2G

2p2ax
(

n
H ~2n11!E

0

2p

djE
0

ax /,2

dky

3@Dn,n1~n11!Dn,n111nDn,n21#J , ~26!

where

Dn,n85 f nkyj~12 f n8,ky1Ky ,j2cyKx
!/@~Enkyj

2En8,ky1Ky ,j2cyKx
!21G2#. ~27!

As a result, when 2p,2/axay5F0 /F is an integer, the sec
ond and third terms in the argument of thed function in Eq.
~25! vanish and entailn5n8, i.e., the response is stronges
when one flux quantum passes through an integral numbe
cells as observed.8,11 In this case the factor@(•••)21G2# in
Eq. ~27! becomesG2.

A qualitative understanding of the enhancement of
collisional conductivity for integera5F0 /F is as follows.
In this case only scattering between the statesuky ,j& and
uky1Ky1qy ,j1cy(Kx ,qx)& is allowed, cf. Eq.~24!. These
states correspond to cyclotron orbits separated by a dist
aax which is a multiple of the lattice period. One example
shown in Fig. 5 for two orbits that encircle a unit cell. A
1-6
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shown, the orbits are in the same relative position with
spect to the modulation lattice and correspond to elec
states of the same energy. Since impurity scattering is
elastic process that leads to hopping between states o
same energy, the hopping between such cyclotron orbits
integer a contributes the most to the conduction and e
hances the collisional conductivity. On the other hand, foa
not an integer the position of the two orbits involved in t
scattering process relative to the modulation lattice chan
accordingly the enhancement mentioned above is weake

For those values of the magnetic field for whichFn(ux)
vanishes we use the same wave functions and the spec
~4!. If the modulation periods are the same, we ha
Fn(ux)5Fn(uy)50, n→n8, and Eq. ~26! holds with
Dn,n61→0. If the modulation periods are not equal or
F0 /F is not an integer, Eqs.~25! and ~26! hold only ap-
proximately. With all that in mind, the assumption that t
small gaps are closed due to disorder, and for computati
convenience, we use Eq.~26! as an approximation for al
fields.

For the hexagonal modulation we obtain again Eq.~26!
but now the energy spectrum is given by Eq.~10!. Further,
ax anduy are replaced bya andu58n2,2/3a2, respectively.
Forsxx

col the result is given by Eq.~26! with ax replaced bya;
u remains the same.

The Hall conductivity. The evaluation of Eq.~17! for v
50 is readily performed with the statesunkyj& and the en-
ergy levels given by Eq.~3! or Eq. ~10!. The only difference
with the previous3 calculation is that a factor exp@i(ky

2ky8)/Ky#dj,j8 appears on the right-hand side of Eq.~17! of
Ref. 3 now written aŝ nkyjuVmun8ky8j8&. For rectangular
symmetry we obtain@syx(0)[syx#

syx5
e2

h

2,2

pax
(

n
~2n11!E

0

ax/2,2

dky

3E
0

2p

dj
f nkyj2 f n11,kyj

@11lnxcos~Kxx0!1lnycosj#2
, ~28!

where lnm5Vme2um/2Ln11
21 (um)/\vc , m5x,y. We notice

that for Vy50 we obtain the previous 1D result.3 We also
remark that Eq.~28! is valid for hexagonal symmetry with

FIG. 5. Scattering between two cyclotron orbits which encir
one unit cell.
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ax→a, ux5uy5u58p2,2/3a2, and of course the differen
energy levels@Eq. ~10!# that enter the factorf nkyj .

IV. NUMERICAL RESULTS

We now present results for the various resistivity comp
nentsrmn using the standard expressions given at the end
Sec. III A, and evaluating numerically the conductivitie
given by Eqs.~18!, ~26!, and~27!. For Figs. 3–7, and 10 we
use the parameters of Ref. 11. They are electron densitns
54.531015/m2, temperatureT55.5 K or T51.6 K, ax
5ay5804 Å, and mobilitym570 m2/V s. The correspond-
ing parameters for Figs. 8 and 9, taken from Ref. 5, arens

FIG. 6. Resistivity componentsrxx andryy as a function of the
magnetic fieldB for fixedVx50.5 meV and varyingVy . The dotted
curve is the 1D limit obtained withVy50. The prominent peaks in
the 2D case are marked by the integral value ofa5F0 /F.

FIG. 7. Resistivity componentrxx as a function of the magnetic
field B for fixed Vx5Vy50.5 meV and different periodsay as in-
dicated. The solid curves give the total resistivity, the dotted o
the diffusive contribution, and the dash-dotted ones the collisio
contribution. The thinner curves in panel~d! are for the 1D limit
(Vy50). The prominent peaks in the 2D case are marked by
integral values ofa.
1-7



s

c

th

s
ns

e
u

otal
ed

ri-

D

s.

of
The

en
lla-

the
-
g
ree

he
re

the
o-
he-

-

an

nd

en

c

on
e

X. F. WANG, P. VASILOPOULOS, AND F. M. PEETERS PHYSICAL REVIEW B69, 035331 ~2004!
55.131015/m2, temperatureT54.2 K, ax5ay52820 Å,
and mobility m5140 m2/V s. The relaxation time at zero
magnetic field,t0, is estimated from the sample mobility a
t05m* m/e. Then the level width isG5(eBNIU0

2/p\)1/2

5(e\/m* )AB/pm.
In Fig. 6 we plotrxx andryy as a function of the magneti

field B with Vx50.5 meV for constantt5t0. As indicated,
the various curves correspond to differentVy and the dotted
one, marked 1D, represents the 1D limit obtained withVy
50. The prominent peaks in the 2D case, marked by
integral value ofa, result from the collisional contribution to
the conductivity. The smaller peaks, between these value
a, correspond to the commensurability or Weiss oscillatio
Notice how the prominent peaks ofrxx , in the 2D case,
remain rather insensitive to changes inVy : this is so because
they result from the collisional contributionsyy

col which de-
pends very weakly onVy through the energy spectrum. Th
apparently drastic difference between the two figures res
from the fact thatsmm!sxy makesS change little andrxx
5syy /S while ryy5sxx /S. Upon reducingVy the contribu-
tion sxx

di f;Vy
2 , given by Eq. ~18!, is affected drastically

whereassyy
col is not.

In Figs. 7 and 8 we plot againrxx andryy as a function of
the field B with Vx5Vy50.5 meV, for the samet and G

FIG. 8. The same as in Fig. 7 but for the resistivity compon
ryy .

FIG. 9. Resistivity componentrxx as a function of the magneti
field B for fixed Vx5Vy51 meV andT55.5 K. The solid curves
give the total resistivity, the dotted ones the diffusive contributi
and the dash-dotted ones the collisional contribution. The promin
peaks are marked by the integral values ofa5F0 /F.
03533
e

of
.

lts

}B1/2 as in Fig. 6 but with the perioday being doubled from
panel to panel as indicated. The solid curves give the t
resistivity, the dashed ones the diffusive contribution, defin
by rmm

di f 5snn
di f /S, and the dotted ones the collisional cont

bution, defined byrmm
col5snn

col/S. Notice how the prominent
peaks move to lower fields with increasingay as explained
after Eq.~26!; in panel ~d! they have disappeared. The 1
limit shown in panel~d! is obtained withVy50 and the
difference in theB dependence betweenrxx and ryy is re-
lated to that of the corresponding conductivity contribution
One of them,sxx

di f given Eq.~18!, is affected drastically by
changingVy and/or the perioday which enters the factor
sin2j, the others very weakly.

We now look more closely at the experimental results
Refs. 8 and 5 with the parameter sets specified above.
parametersVx and Vy are not known. In Fig. 6 we have
shown the total resistivity forVx5Vy50.5 meV, constantt
5t0. In Fig. 9 we plot againrxx versusB but now we show
the contributionsrxx

di f andrxx
col as well. In addition, we take

Vx5Vy51 meV, and 1/t;G;B1/2. Becausesnn
di f!snn

col ,
the difference in the total resistivity is very small betwe
the two sets of modulation strengths. However, the osci
tion amplitudes inrmm

col are higher in the present case andrxx

increases more slowly withB as observed.8 Upon closer in-
spection we see that the prominent peaks, marked by
integral values ofa, result entirely from the collisional con
tribution snn

col . As can be seen in Fig. 3 of the followin
paper,11 the amplitudes and positions of these peaks ag
well with the experimental results. Notice also how t
Weiss oscillations ofrxx

di f andrxx
col , between these peaks, a

in antiphase. These experimental results forryy andrxx are
for two orthogonal crystal directions@011# and @011̄# taken
from different samples. They have similar structures and
curves may be fitted theoretically using slightly different p
tentials. A direct comparison between experimental and t
oretical results is made in Fig. 9 of the following paper11 for
t5t0 but qualitatively the agreement is the same fort
}B21/2. Notice, however, that the theoretical oscillation am
plitudes and the overall value ofrxx in the low-B region,
belowa52, agree less well with the experimental ones th
those in the high-B region.

In Ref. 11 results are given for temperature 1.6 K a

t

,
nt

FIG. 10. The same as in Fig. 9 but for temperatureT51.6. The
lower panel shows the collisional contribution~solid curve! and the
diffusive one~dotted curve!; the upper panel shows their sum.
1-8
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otherwise the same parameters. We show the calculatedrxx
for this case in Fig. 10. As can be seen, lowering the te
perature makes visible all prominent peaks marked by
rows for a51, . . . ,8. Their positions occur at fieldsB
50.64, 0.32, 0.21, 0.16, 0.13, 0.11, 0.09, and 0.08 T
compare very well with the experimental ones, see Fig. 6
the following paper.11 To see more clearly the oscillations w
replot, in Fig. 11, the resistivities in the low-field region
Fig. 10 as a function of 1/B.

The temperature dependence of the oscillations is sh
in Fig. 12. The solid, dotted, and thin solid curves correspo
to T55, 10, and 20 K, respectively. As can be seen, th
new oscillations are more robust than the Weiss oscillati
and persist atT520 K. However, their damping withT is
weaker than the observed one.11

In Fig. 13 we plotrxx in the manner of Fig. 9 but for the
parameters of Ref. 5 involving the much longer periodsax
5ay52820 Å. The modulation strengths areVx5Vy
50.2 meV and very close to those used in Refs. 5 and 6.

FIG. 11. Resistivity componentrxx as a function of inverse
magnetic field 1/B. The curves are marked as in Fig. 10. The in
shows the peak position versus 1/B.

FIG. 12. Resistivity componentrxx as a function of the mag
netic fieldB. The solid, dotted, and thin solid curves correspond
T55, 10, and 20 K, respectively.
03533
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agreement with the experimental 2D results of Ref. 5 is v
good: below approximatelyB50.5 T we have the Weiss os
cillations and above it the Shubnikov–de Haas ones. O
noticeable feature here is the absence of the prominent p
for integral values ofa. This is so because the much long
periods involved makea52p,2/axay integer for much
smaller values ofB. For instance,a51 occurs at B
50.05 T and the corresponding peak is not resolved. T
agreement is also as good if we useax5ay53650 Å and
otherwise the same parameters pertaining to another sam

Reference 5 reported results also for 1D modulations.
mentioned earlier, we can obtain the 1D limit from th
present 2D results by considering a vanishingVy . In Fig. 14
we show the 1D limit of the totalrxx and ryy for ax
52820 Å, Vx50.5 meV, andVy50. Although the agree-
ment between theory and experiment is very good, it mus
noticed that it is obtained withVx50.5 meV and notVx
50.2 meV that we used in Fig. 13. Since the 1D or 2
modulations are produced by illumination of the samples,
expect them to have the same strength. If we useVx
50.2 meV we can obtain good agreement if we use at
smaller by about a factor of 2 in Eq.~18!. As stated in Refs.
5 and 6, this may be an indication that in this very hi
mobility samples the fine structure of the energy spectru
which the present theory neglects, is partially resolved. Ho
ever, the experimental data were taken atT54.2 K and, as
no such fine structure has been observed above millike
temperatures, alternative explanations have b
proposed.4,11

t

FIG. 13. The same as in Fig. 9 with the parameters of Ref. 5
Vx5Vy50.2 meV.

FIG. 14. The 1D resistivity componentrmm as a function of the
magnetic fieldB obtained withax52820 Å, Vx50.5 meV, and
Vy50.
1-9
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Finally, in Fig. 15 we show the Hall resistivityryx for the
parameters of Fig. 9. As in the case of 1D modulations
exhibits very weak oscillations. They are better seen in
inset which shows the derivativedryx /dB versusB. The
triangles on thex axis mark the positions of the integra
values ofa for which enhanced oscillations are observed

V. CONCLUDING REMARKS

We presented a theory of magnetotransport in 2D su
lattices using the energy spectrum and wave functions
result from the tight-binding difference equation when t
parametera5F0 /F is an integer. As emphasized in the te
and supported with the results for the DOS shown in Fig
the description holds approximately for all fields if we a
sume that the small gaps in the energy spectrum are cl
due to disorder. The reasonable-to-good agreement with
experimental results strongly supports this assumption.

As detailed in the text, the prominent peaks, fora
5F0/F integer, result from the collisional contribution t
the conductivitysyy

col , require sufficientlyshort periods, and

FIG. 15. The Hall resistivityryx vs magnetic fieldB with the
parameters of Fig. 9. The inset shows the derivativedryx /dB vs B.
s.
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depend very weakly on the value of the modulation streng
Vx andVy . Upon increasing the period along one directi
we showed how they move to lower fields. Accordingly, f
periods between 3000 Å and 4000 Å these peaks occu
much smaller magnetic fields and are not resolved.5 The
agreement between our results and the experimental one
presented in Ref. 8 and detailed in the preceding paper,11 is
good for the peak positions at all fields. The oscillation a
plitudes agree well at relatively high fields but less well
low fields. As shown in Fig. 12, these oscillations are qu
robust with respect to the temperature but their damping w
temperature is weaker than the observed one.

Between the oscillations fora5F0 /F integer we have
the Weiss oscillations. The relative phase between thos
rxx and those ofryy depends on the values of the modulati
strengths, cf. Fig. 6 in which the period is the same for
curves, and of the modulation periods, cf. Figs. 4 and 5
which the modulation strengths are the same for all pan
We notice that asVy becomes smaller and smaller thanVx ,
the oscillations resemble more closely those correspond
to 1D weak modulations,15 cf. Fig. 6. The results for the
latter can be extracted from the present 2D ones if we t
the modulation strength along one direction to be zero.

The relative phase betweenrxx and ryy for 1D and 2D
modulations depends strongly on the ratio of the modulat
strengthsVx and Vy . Since one resistivity component van
ishes for 1D modulations, this conclusion could not
reached by studying only the latter. Similar results were
ported in Ref. 6.

ACKNOWLEDGMENTS

This work was supported by the Canadian NSERC Gr
No. OGP0121756, the Belgian Interuniversity Attractio
Poles ~IUAP!, the Flemish Concerted Action~GOA! Pro-
gram, and the EU-CERION program. We also thank A. Lo
and J. H. Davies for stimulating discussions and import
clarifications concerning the experimental results of the f
lowing paper.
H.
, J.
,

as,

g,

,
h-
1D. Weiss, K. von Klitzing, K. Plog, and G. Weimann, Europhy
Lett. 8, 179 ~1989!; R.W. Winkler, J.P. Kotthaus, and K. Ploog
Phys. Rev. Lett.62, 1177~1989!.

2R.R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Rev. Le
62, 1173 ~1989!; C.W.J. Beenakker,ibid. 62, 2020 ~1989!; P.
Vasilopoulos and F.M. Peeters,ibid. 63, 2120~1989!; H.L. Cui,
V. Fessatidis, and N. Horing,ibid. 63, 2598~1989!; P. Streda and
A.H. MacDonald, Phys. Rev. B41, 11 892~1990!; C. Zhang and
R.R. Gerhardts,ibid. 41, 12 850 ~1990!; F.M. Peeters and P
Vasilopoulos,ibid. 42, 5899~1990!.

3F.M. Peeters and P. Vasilopoulos, Phys. Rev. B46, 4667~1992!.
4~a! D.E. Grant, A.R. Long, and J.H. Davies, Phys. Rev. B61, 13

127 ~2000!; ~b! F. M. Peeters and P. Vasilopoulos,Proceedings
of the 20th International Conference on the Physics of Semic
ductors, edited by E. M. Anastassakis and J. D. Joannopou
~World Scientific, Singapore, 1990!, Vol. 2, p. 1589.

5R.R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev. B43, 5192
~1991!.
.

n-
s

6D. Pfannkuche and R.R. Gerhardts, Phys. Rev. B46, 12 606
~1992!.

7E.S. Alves, P.H. Beton, M. Henini, L. Eaves, P.C. Main, O.
Hughes, G.A. Toombs, S.P. Beaumont, and C.D.W. Wilkinson
Phys.: Condens. Matter1, 8257~1989!; H. Fang and P.J. Stiles
Phys. Rev. B41, 10 171 ~1990!; A. Toriumi, K. Ismail, M.
Burkhardt, D.A. Antoniadis, and Henry I. Smith,ibid. 41, 12346
~1990!.

8S. Chowdhury, A. R. Long, J. H. Davies, K. Lister, and E. Skur
Proceedings of EP2DS-14, p. 583~2001!.

9S. Chowdhury, C.J. Emeleus, B. Milton, E. Skuras, A.R. Lon
J.H. Davies, G. Pennelli, and C.R. Stanley, Phys. Rev. B62,
R4821 ~2000!; P. Rotter, M. Suhrke, and U. Ro¨ssler, ibid. 54,
4452~1996!; C. Albrecht, J.H. Smet, D. Weiss, K. von Klitzing
R. Hennig, M. Suhrke, U. Rossler, V. Umansky, and H. Sc
weizer, Phys. Rev. Lett.86, 147 ~2001!.

10J. Labbe´, Phys. Rev. B35, 1373~1987!.
1-10



G
t
ing
er,

,

INVERSE FLUX QUANTUM PERIODICITY OF . . . PHYSICAL REVIEW B 69, 035331 ~2004!
11S. Chowdhury, A. R. Long, E. Skuras, J.H. Davies, K.Lister,
Pennelli, and C.R. Stanley, preceding paper, Phys. Rev. B69,
035330~2004!.

12~a! D.R. Hofstadter, Phys. Rev. B14, 2239~1976!; ~b! F.H. Claro
and G.H. Wannier,ibid. 19, 6068~1979!.
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