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Topological confinement in trilayer graphene
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We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in
trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support
two different branches of localized states for the case of bilayer graphene, and show similarities to the surface
states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different
unidimensional branches of states in each valley that are confined to the kink interface. They have the property
E(ky) = −E(−ky) when belonging to the same valley and EK (ky) = −EK ′ (−ky). A kink-antikink potential
profile opens a gap in the spectrum of these one-dimensional states.

DOI: 10.1103/PhysRevB.89.035420 PACS number(s): 73.21.Hb, 71.10.Pm, 81.05.ue

I. INTRODUCTION

Graphene, a single atomic layer of hexagonal carbon, has
been the focus of intense research, since the discovery of
methods for its production [1,2]. This effort has also led to a
growing interest in the study of few-layer graphene, in partic-
ular of bilayer and trilayer graphene. The important features
of few-layer graphene arise from the coupling between the
layers, which can considerably change the band structure of the
system. In the case of bilayer graphene (BLG), the spectrum
has been found to develop a gap if an asymmetry between the
upper and lower layers is introduced. This asymmetry can be
produced by doping and also by external gates which create an
electric field perpendicular to the plane of the sample [3]. Thus,
BLG can be pictured as a semiconductor with a tunable gap,
which is a property that can be exploited for the development
of devices, such as quantum dots [4], and quantum rings [5].
One feature of such gaps is that they do not depend on the sign
of the bias, but only on its strength. Using this fact, Martin
et al. [6] proposed a setup in which the interface between two
regions with electric fields of the same magnitude but opposite
direction allows the confinement of midgap states which
propagate along the interface between the two regions [7] [see
Fig. 1(b)]. The existence of these confined states is related to
the discontinuous change in topological charge between the
two regions [8,9], which can also be induced by an interlayer
stacking reversal [10]. A similar mechanism is responsible
for the existence of gapless surface states on topological
insulators. Thus, this particular kind of potential profile
creates a one-dimensional conducting channel in an otherwise
semiconducting medium. Furthermore, the current in these
channels is predicted to be valley polarized, i.e., electrons
with different valley index propagate in opposite directions.

In comparison with single layer and bilayer graphene,
trilayer graphene (TLG) introduces a new aspect, namely its
spectrum depends strongly on the type of stacking of the layers.
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The two most important stacking orders are the rhombohedral
or ABC stacking, and the Bernal or ABA stacking. In the
absence of bias, the electronic spectrum at low energies for the
ABA case can be approximately understood as a superposition
of the dispersion curves of single layer and bilayer graphene,
viz. a band with linear dispersion (ω ∝ k) and a gapless
parabolic band (ω ∝ k2). For the ABC case, on the other hand,
for energies close to the Dirac point, the spectrum shows a k3

dependence at low momenta [11]. In addition, in the presence
of bias, the spectrum of ABA TLG has been shown to develop a
small overlap between the valence and the conductance bands
at low momenta, whereas for ABC TLG the presence of bias
induces an energy gap [12–15]. Thus, in analogy with the
prediction of topological confined states in bilayer graphene,
it will be interesting to investigate whether the presence of a
kink potential can also cause the appearance of midgap states
in TLG, and whether the number of such states is now larger.
Therefore, in this work we investigate the spectrum of TLG
with a potential profile that displays a sharp inversion along
one direction. Such potential kinks can be created by the use
of split gates defined on the surface of the sample using, e.g.,
lithographic techniques.

The paper is organized as follows: Sec. II gives a description
of the model. In Sec. III we show and discuss the analytical
and numerical results. A summary and our conclusions are
presented in Sec. IV.

II. ABC STACKING: SPECTRUM

We consider the case of ABC-stacked TLG which, within a
nearest-neighbor continuum approach can be described by the
Hamiltonian

Hν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1 vF π † γ1 0 0 0

vF π U1 0 0 0 0

γ1 0 U2 vF π 0 0

0 0 vF π † U2 0 γ1

0 0 0 0 U3 vF π †

0 0 0 γ1 vF π U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)
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FIG. 1. (Color online) (a) Diagrammatic scheme of couplings in
graphene trilayers for ABC stacking. (b) Example of potential profile
applied to the bottom and upper layers that support chiral bound
states. (c) TLG spectrum with no bias (black) and with bias (red),
where U2 = 0, U1 = −U3 = 100 meV.

whose eigenstates are defined by the six components spinor
� = [ψA1 ψB1 ψB2 ψA2 ψA3 ψB3 ]T , and ν = 1 (−1) for K

(K ′) valley. In the above Hamiltonian π ≡ px + νipy , π † ≡
px − νipy , vF = 3aγ0/(2�) is the Fermi velocity in terms of
the in-plane nearest neighbor hopping γ0 = 3.12 eV, and the
carbon-carbon distance a = 1.42 Å. U1,2,3 is the potential in
each layer, and γ1 = 0.4 eV is the nearest neighbor coupling
term between adjacent layers. In this model, the electron states
in TLG are obtained by solving the following six coupled
differential equations:

A+φB1 + iγ ′
1φB2 = i(ε − u1)φA1, (2a)

A−φA1 = i(ε − u1)φB1 , (2b)

A−φA2 + iγ ′
1φA1 = i(ε − u2)φB2 , (2c)

A+φB2 + iγ ′
1φB3 = i(ε − u2)φA2, (2d)

A+φB3 = i(ε − u3)φA3, (2e)

A−φA3 + iγ ′
1φA2 = i(ε − u3)φB3 , (2f)

where we have used ψA(B)j (x,y) = eikyyφA(B)j (x), since
[py,Hν] = 0 for Uj constant in the y direction, and defined
γ ′

1 = γ1/�vF , ε = E/�vF , uj = Uj/�vF , and A± = d
dx

± ky .
Assuming that the gate potentials Uj are constant we as-

sume plane wave solutions which result in the six components
spinor

φA1 =
3∑

j=1

(Aje
ikj x + Bje

−ikj x), (3a)

φB1 =
3∑

j=1

1

δ1
(gjAje

ikj x − fjBje
−ikj x), (3b)

φB2 =
3∑

j=1

pj

γ ′
1δ1

(Aje
ikj x + Bje

−ikj x), (3c)

φA2 =
3∑

j=1

rj

γ ′
1δ1

(
Aj

gj

eikj x − Bj

fj

e−ikj x

)
, (3d)

φA3 =
3∑

j=1

sj

γ ′
1

2
δ1δ3

(
fj

gj

Aje
ikj x + gj

fj

Bje
−ikj x

)
, (3e)

φB3 =
3∑

j=1

sj

γ ′
1

2
δ1

(
Aj

gj

eikj x − Bj

fj

e−ikj x

)
, (3f)

where δj = ε − uj , gj = kj + iky , fj = kj − iky , pj =
δ1

2 − (kj
2 + ky

2), qj = δ2
2 − (kj

2 + ky
2), rj = δ2pj − γ ′

1
2
δ1,

sj = pjqj − γ ′
1

2
δ1δ2. The wave vectors kj are the solutions of

the cubic equation:(
kj

2 + ky
2
)3 − b

(
kj

2 + ky
2
)2 + c

(
kj

2 + ky
2
) − d = 0, (4)

with

b = δ1
2 + δ2

2 + δ3
2, (5a)

c = δ1
2δ2

2 + δ1
2δ3

2 + δ2
2δ3

2 − γ ′
1

2
δ2(δ1 + δ3), (5b)

d = (δ1δ2δ3)2 − γ ′
1

2
δ1δ2δ3(δ1 + δ3) + γ ′

1
4
δ1δ3. (5c)

III. KINK POTENTIAL PROFILE

Let us now consider the sharp kink potential [see Fig. 1 (b)]
applied to the layers, where we take U2 = 0 and

U1 = −U3 =
{

U0, x < 0 (region I)

−U0, x > 0 (region II).
(6)

From now on, we will refer to a kink every time the electric po-
larization on the layers changes in a way that makes the electric
field flip from −E ẑ to E ẑ, and we call antikink when the electric
field flips fromE ẑ to −E ẑ. This kind of bias between the bottom
and top layers opens a gap in the electronic spectrum [16]
as shown by the red curves in Fig. 1(c). We are interested
in solutions that describe localized states along the domain
wall that separates the different regions of the potential. It can
be numerically checked that inside the energy gap, we have
three types of regions [see Fig. 1(c)]: Inside region i we have
k1 = iβ1, k2 = α2 + iβ2, and k3 = α2 − iβ2 with αj ,βj > 0,
then in order to have a well-behaved wave function we need
to set AI

1 = AI
2 = BI

3 = BII
1 = BII

2 = AII
3 = 0, where I (II )

stands for x < 0 (x > 0); in region ii we have k1 = iβ1,
k2 = iβ2 and k3 = iβ3, and therefore in this region we have to
set AI

1 = AI
2 = AI

3 = BII
1 = BII

2 = BII
3 = 0; in region iii of

the spectrum, we find two real wave vectors, and therefore no
confined states are obtained in this region. In order to avoid any
misunderstanding, we emphasize that the curves in Fig. 1(c)
correspond to a cross section, with kx = 0, of the actual
spectrum E(kx,ky). Since the minimum of the conduction band
and the maximum of the valence band occur at kx = 0, Fig. 1(c)
help us to visualize the range of the energy gap, identified by
the region i in the figure. Furthermore, due to the peculiar
“mexican hat” shape of the spectrum in the biased case (red
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FIG. 2. (Color online) (a) The blue curves are the electronic states for the K valley that are localized at sharp kink for U0 = 100 meV,
while the black curves delimit the cross-hatched free particle regions. (b) The group velocity for the energy branches which are indicated by
the numbers (1), (2), and (3) in panel (a).

curves), the region iii, just below the “mexican hat,” supports
propagating states for nonzero kx , which explains the fact that
no confined states can be found in that region.

Apart from the single kink potential, another profile of
interest is the one that consists of a sequence of kinks and
antikinks. In the general case, where the potential profile is a
sequence of kinks and antikinks, we have to rely on a numerical
approach. The transfer matrix method relates the wave function
coefficients in the first and last potential regions n as follows⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

An
1

Bn
1

An
2

Bn
2

An
3

Bn
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
1

B1
1

A1
2

B1
2

A1
3

B1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where N is called the transfer matrix. By applying the
previously discussed localization conditions, some of the
coefficients in Eq. (7) will be zero, so that Eq. (7) can be
rearranged into a determinantal equation, and the energies of
the confined states can be found by solving

detM = 0, (8)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 N12 0 N14 N15 0

0 N22 0 N24 N25 0

0 N32 −1 N34 N35 0

0 N42 0 N44 N45 0

0 N52 0 N54 N55 0

0 N62 0 N64 N65 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

for region i of the spectrum and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 N12 0 N14 0 N16

0 N22 0 N24 0 N26

0 N32 −1 N34 0 N36

0 N42 0 N44 0 N46

0 N52 0 N54 −1 N56

0 N62 0 N64 0 N66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

for region ii, where Nij are the elements of the transfer matrix,
which can be easily derived.

IV. NUMERICAL RESULTS

The three blue curves in Fig. 2(a) are the topological states
that are confined at the kink interface for U0 = 100 meV,
while the black curves delimit the cross-hatched free particle
regions. The dispersion of these one-dimensional electronic
states in ABC TLG are all chiral states propagating with
a positive group velocity along the kink direction and are
related to those previously found in BLG systems [6,7],
except for the appearance of a new energy branch crossing at
(ky = 0,E = 0), and for the fact that in these previous works
the authors considered a simplified two-band Hamiltonian,
where the Mexican hat feature is absent from the spectrum. For
an antikink profile, the spectrum is simply a mirror reflection
with respect to ky = 0, i.e., all the states have now a negative
group velocity along the y direction. In order to obtain the
spectrum for electrons in the K ′ valley, one can repeat the same
symmetry operation, i.e., a kink in the K valley corresponds to
an antikink in the K ′ valley, and vice versa. The right panel of
Fig. 2 shows the group velocity for the three energy branches
appearing in (a), which show a very distinct behavior from the
velocities of the topological states in BLG [7]. This, together
with the number of branches, are clear qualitative differences
between the topological states in BLG and TLG.

Figures 3(a)–3(e) present the moduli squared of the spinor
components and the corresponding probability density for
those states with zero energy marked in Fig. 2(a) by symbols.
Notice that Eqs. (2) are invariant under the transformation
(ky,E) → (−ky, − E), φB1 → iφA3 , φB2 → iφA2 , and φB3 →
iφA1 , which implies the same probability density for the states
(−ky,0) and (ky,0), marked in Fig. 2(a) by the solid and open
circles. In addition, it can be also concluded that φB1 = iφA3 ,
φB2 = iφA2 , and φB3 = iφA1 when ky = 0 and E = 0.

Figures 4(a) and 4(b) display the spectrum for a kink-
antikink structure separated by w = 50 nm and w = 10 nm,
respectively. When the kink-antikink are far apart from each
other, as in panel (a), the spectrum is a superposition of
independent kink and antikink states, since the wave functions
of such states are well localized around the domain walls
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FIG. 3. (Color online) Probability density of the different spinor components for the zero energy states marked in Fig. 2(a) by symbols.

and do not interact. As the antikink approaches the kink, the
states localized around these two structures start to overlap and

change the spectrum, opening an energy gap and removing the
E = 0 states, as shown in panel (b).
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FIG. 4. (Color online) Energy spectrum around the K valley for a kink-antikink potential profile with (a) w = 50 nm and (b) w = 10 nm
separation between the kink and the antikink.
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V. CONCLUSIONS

In summary, we obtained the spectrum of localized states
in trilayer graphene that arise due to the presence of potential
kinks and antikinks, i.e., regions in which the perpendicular
electric field applied to the structure changes sign. Similar
to the case of bilayer graphene, the presence of such kinks
causes the appearance of midgap states, in which the direction
of propagation is valley polarized. However, in the case of
ABC-stacked trilayer graphene, three topological states are
found in the case of a single kink, whereas for bilayers only
two states were obtained. Apart from the number of states,
the dependence of the carrier velocities of those topological
states on the momentum constitute another signature, helping
to distinguish between BL and TLG. For potentials presenting
a kink-antikink, the overlap between the states leads to the
appearance of anticrossings in the spectrum, in turn creating
four bands of localized states along the kink and/or antikink.

Electronic transport measurements should be able to ex-
perimentally detect these states. In the presence of such a
kink potential, transport will be very anisotropic when the
Fermi energy is localized in the energy gap. Along the kink
direction, electronic transport will be quasiballistic while in
the direction perpendicular to the kink no current will flow.
However, in the presence of inhomogeneities, we expect
transport as characterized by variable range hopping when
the Fermi energy is this energy region.
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