toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 23 Pages (down) 235433,1-235433,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262245400119 Publication Date 2008-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76006 Serial 3613  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages (down) 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author Čukarić, N.; Arsoski, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole states in nanocups in a magnetic field Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 23 Pages (down) 235425-235425,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic-field dependence of the hole states in a nanocup, which is composed of a ring (the nanocup rim) that surrounds a disk (the nanocup bottom), is obtained within the Luttinger-Kohn model for the unstrained GaAs/(Al,Ga) As and the strained (In,Ga) As/GaAs systems. Aharonov-Bohm oscillations due to angular momentum transitions of the hole ground state appear with periods that vary with the thickness of the disk. The strain in the (In, Ga) As/GaAs nanocup is sensitive to the disk thickness and favors the spatial localization of the heavy holes inside the disk. Therefore, the angular momentum transitions between the valence-band states disappear for much thinner disks than in the case of the unstrained GaAs/(Al, Ga) As nanocups. In both systems, the oscillations in the energy of the hole ground state are found to disappear for thinner inner layer than in the electron ground-state energy. This is due to the different confining potentials and the mixing between the heavy- and light-hole states. As a consequence, magnetization of the single hole is found to strongly depend on the bottom thickness of the strained (In, Ga) As/GaAs nanocup. Furthermore, we found that the strain can lead to a spatial separation of the electron and the hole, as in type-II band alignment, which is advantageous for the appearance of the excitonic Aharonov-Bohm effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305116700005 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors thank B. Partoens for useful discussions. This work was supported by the EU NoE: SANDiE, the Ministry of Education and Science of Serbia, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98906 Serial 1477  
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 235424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394546100005 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141978 Serial 4557  
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M. url  doi
openurl 
  Title Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 23 Pages (down) 235423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of silicene's strong spin-orbit interaction and of an external electric field E-z on the transport coefficients are investigated in the presence of a perpendicular magnetic field B. For finite E-z the spin and valley degeneracy of the Landau levels is lifted and leads to additional plateaus in the Hall conductivity, at half-integer values of 4e(2)/h, due to spin intra-Landau-level transitions that are absent in graphene. These plateaus are more sensitive to disorder and thermal broadening than the main plateaus, occurring at integral values of 4e(2)/h, when the Fermi level passes through the Landau levels. We also evaluate the Hall and longitudinal resistivities and critically contrast the results with those for graphene on a substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346377400004 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122771 Serial 1678  
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages (down) 235422-235422,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286768800007 Publication Date 2010-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88909 Serial 1717  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages (down) 235421,1-235421,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278710800003 Publication Date 2010-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83093 Serial 2259  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G. url  doi
openurl 
  Title Measuring the corrugation amplitude of suspended and supported graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 23 Pages (down) 235417-235417,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale corrugation is a fundamental property of graphene arising from its low-dimensional nature. It places a fundamental limit to the conductivity of graphene and influences its properties. However the degree of the influence of the corrugation has not been well established because of the little knowledge about its spectrum in suspended graphene. We present a transmission electron microscopy technique that enables us to measure the average corrugation height and length. We applied the technique also to measure the temperature dependence of the corrugation. The difference in corrugation between suspended and supported graphene has been illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297764700003 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93629 Serial 1971  
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M. url  doi
openurl 
  Title Quantum transport in graphene Hall bars: Effects of vacancy disorder Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages (down) 235413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the energies of these localized states, the electron current flows around the monovacancies and, as we show, it can follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor hopping term. Our results are also compared with the situation when double vacancies are present in the system. Double vacancies also induce localized states, but their energy and magnetic field dependencies are different. Their localization energy scales linearly with the magnetic field, and their localization length appears not to depend on the field strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389574200005 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:140237 Serial 4459  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Peeters, F.M. url  doi
openurl 
  Title Tuning of energy levels and optical properties of graphene quantum dots Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages (down) 235411,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000257289500101 Publication Date 2008-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 228 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69638 Serial 3750  
Permanent link to this record
 

 
Author Resta, V.; Afonso, C.N.; Piscopiello, E.; Van Tendeloo, G. url  doi
openurl 
  Title Role of substrate on nucleation and morphology of gold nanoparticles produced by pulsed laser deposition Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages (down) 235409,1-235409,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work compares the morphology of gold nanoparticles (NPs) produced at room temperature on single-crystalline (MgO nanocubes and plates) and amorphous (carbon/glass plates) substrates by pulsed laser deposition (PLD). The results show that similar deposition and nucleation rates (>5×1013 cm−2 s−1) are achieved irrespective of the nature of the substrate. Instead, the shape of NPs is substrate dependent, i.e., quasispheres and faceted NPs in amorphous and single-crystalline substrates, respectively. The shape of the latter is octahedral for small NPs and truncated octahedral for large ones, with the degree of truncation being well explained using the Wulff-Kaichew theorem. Furthermore, epitaxial growth at room temperature is demonstrated for single-crystalline substrate. The large fraction of ions having energies higher than 200 eV and the large flux of species arriving to the substrate (1016 at. cm−2 s−1) involved in the PLD process are, respectively, found to be responsible for the high nucleation rates and epitaxial growth at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500116 Publication Date 2009-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77692 Serial 2922  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Kronig-Penney model on bilayer graphene : spectrum and transmission periodic in the strength of the barriers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages (down) 235408-235408,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286766900008 Publication Date 2010-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 34 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88910 Serial 1768  
Permanent link to this record
 

 
Author Wozniak, T.; Faria, P.E., Jr.; Seifert, G.; Chaves, A.; Kunstmann, J. url  doi
openurl 
  Title Exciton g factors of van der Waals heterostructures from first-principles calculations Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 23 Pages (down) 235408-235411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows us to assign measured g factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537315100009 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170219 Serial 7944  
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M. url  doi
openurl 
  Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 23 Pages (down) 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595856100004 Publication Date 2020-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:175051 Serial 6695  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 23 Pages (down) 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657129800006 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179109 Serial 6996  
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zeng, Z.; Lu, T.C.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport conductivities in monolayer graphene Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 23 Pages (down) 235402,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000257289500092 Publication Date 2008-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69637 Serial 2771  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Excitonic complexes in anisotropic atomically thin two-dimensional materials : black phosphorus and TiS3 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages (down) 235401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of anisotropy in the energy spectrum on the binding energy and structural properties of excitons, trions, and biexcitons is investigated. To this end we employ the stochastic variational method with a correlated Gaussian basis. We present results for the binding energy of different excitonic complexes in black phosphorus (bP) and TiS3 and compare them with recent results in the literature when available, for which we find good agreement. The binding energies of excitonic complexes in bP are larger than those in TiS3. We calculate the different average interparticle distances in bP and TiS3 and show that excitonic complexes in bP are strongly anisotropic whereas in TiS3 they are almost isotropic, even though the constituent particles have an anisotropic energy spectrum. This is also confirmed by the correlation functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452003400009 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:156247 Serial 5211  
Permanent link to this record
 

 
Author Mlinar, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole and exciton energy levels in InP/InxGa1-xP quantum dot molecules: influence of geometry and magnetic field dependence Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 23 Pages (down) 235336,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696600104 Publication Date 2006-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59708 Serial 1474  
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Adamowski, J. url  doi
openurl 
  Title In-plane magnetic-field-induced Wigner crystallization in a two-electron quantum dot Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages (down) 235335,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000226112100114 Publication Date 2004-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69400 Serial 1574  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Effect of strain on the magnetoexciton ground state in InP/GaxIn1-xP quantum disks Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 67 Issue 23 Pages (down) 235325,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000184040700063 Publication Date 2003-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:62432 Serial 837  
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. url  doi
openurl 
  Title Dielectric mismatch effect on the exciton states in cylindrical nanowires Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 23 Pages (down) 235321,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243195700080 Publication Date 2006-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:62178 Serial 693  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Magnetoexciton in vertically coupled InP/GaInP quantum disks: effect of strain on the exciton ground state Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages (down) 235320,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000222531400073 Publication Date 2004-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:62434 Serial 1917  
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M. url  doi
openurl 
  Title Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 23 Pages (down) 235319-235319,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory. We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the electron Fermi energy in contrast to predictions from one-dimensional models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298605700002 Publication Date 2011-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund, Project No. N N202103938 supported by the Ministry of Science and Higher Education (MNiSW) for 2010-2013, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:94292 Serial 1171  
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P. url  doi
openurl 
  Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages (down) 235311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355956500003 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126432 Serial 2534  
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F. url  doi
openurl 
  Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 23 Pages (down) 235309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418654200009 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148505 Serial 4882  
Permanent link to this record
 

 
Author Szafran, B.; Chwiej, T.; Peeters, F.M.; Bednarek, S.; Adamowski, J. url  doi
openurl 
  Title Relative stability of negative and positive trions in model symmetric quantum wires Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages (down) 235305,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230276800059 Publication Date 2005-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69615 Serial 2861  
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M. url  doi
openurl 
  Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages (down) 235303,1-235303,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500073 Publication Date 2009-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77691 Serial 2969  
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 23 Pages (down) 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000432821600001 Publication Date 2018-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035  
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 23 Pages (down) 235303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471983500006 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161329 Serial 5425  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. doi  openurl
  Title Positively charged magneto-excitons in a semiconductor quantum well Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages (down) 235301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000172867900085 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37279 Serial 2679  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: