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The exciton ground state and excited state energies are obtained within the single band approximation for a
model system of an infinitely long cylindrical wire. The effective Coulomb potential between the electron and
the hole is studied as function of the wire radius and difference in dielectric permittivity inside and outside of
the wire. Within the adiabatic approximation, we obtain “exact” numerical results for the effective exciton
potential and the lowest exciton energy levels. The effective exciton potential is fitted to a tractable analytical
expression that will facilitate further calculations.
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I. INTRODUCTION

A remarkable increase in the research of synthesis and use
of semiconductor nanowires has taken place over recent
years. Driven by the technological potential of these struc-
tures for applications in electronics,1–3 photonics,4,5 and
biotechnology,6 research has been pursued on several growth
methods in order to fabricate semiconductor nanowires with
decreasing diameter. One of these growth methods, the
vapor-liquid-solid �VLS� technique,7 appears to be very
promising and results in freestanding nanowires, i.e., nano-
wires that are not embedded in a substrate.

Having a length and a diameter in the micrometer, respec-
tively, nanometer range, these nanowires have a large aspect
ratio and can be considered quasi-one-dimensional �1D�
structures. The intrinsic features of the latter are reflected in
their optical properties, which, in turn, are determined by the
exciton energy levels.8 Here we present a numerical calcula-
tion of the exciton potential in a nanowire and fitted the
result to a Padé approximant which is sufficiently accurate to
calculate the exciton binding energy and the lowest lying
excited states for the electron and hole radial ground state
configurations.

Although excitons in nanowires have been intensively
studied previously,8–14 much less effort has been devoted to
the construction of tractable analytical representations for the
exciton potential accounting for the dielectric mismatch be-
tween the nanowire and its environment �vacuum, oxide, wa-
ter,…�. Several fits have been suggested previously, but the
accuracy is often to low to compute the exciton binding en-
ergy. In the present paper, we will present more accurate
expressions which are also tractable for future work.

In Ref. 8, a six-band model was used to calculate the
electron and hole wave functions. These wave functions
were then used to average the six-dimensional �6D� interac-
tion potential in order to obtain the effective exciton poten-
tial. An approximate expression for the effective potential of
CdSe nanorods was used which allowed those authors to find
analytical expressions for the energy and wave functions of
1D excitons. However, the approximation for the effective
potential is rather poor and the fitted parameters cannot be
used to study other materials. A similar conclusion may be
drawn for the expression suggested by Xia et al.11 Muljarov

et al.10 did not give an analytical expression and they used
the numerically calculated effective potential to obtain the
exciton binding energy which was then compared with ex-
periment. In Ref. 13, several fits were suggested for the ef-
fective exciton potential in order to obtain analytical expres-
sions for the exciton energy, but only for the case of no
dielectric mismatch. Furthermore, numerical results are
shown for a few values of the dielectric mismatch and no
systematic study of the exciton potential is given. Finally,
Keldysh14 also performed calculations on nanostructures, but
mainly on thin films. Also some analytical approximations
for the exciton potential and energy in quantum wires are
briefly mentioned, but it has to be noted that Keldysh only
obtained a valid result for a specific range of values of the
interparticle distance in the wire.

So we can conclude that time-consuming calculations
have to be done over and over again for other materials.
Therefore, we have performed calculations of the exciton
potential and tested a Padé approximant for a significant
range of dielectric permittivities covering a wide variety of
materials. The parameters of this Padé approximation are
then fitted as a function of the material parameters. We also
constructed a set of fits that enable a quick and accurate
reconstruction of the exciton potential. This allows us to
study the exciton binding energy as a function of the dielec-
tric mismatch, a result not presented in previous works.

The paper is organized as follows. In Sec. II, the analyti-
cal formalism we used is explained. In Sec. III the electro-
static potential with a dielectric mismatch is obtained. Sec-
tion IV presents the effective exciton interaction potential
together with the Padé approximation used to fit this poten-
tial and Sec. V shows the results for the exciton binding
energy and compares them with the experimental results of
Ref. 10. Our conclusions are given is Sec. VI.

II. ADIABATIC APPROXIMATION

The appropriate Hamiltonian for an exciton in the effec-
tive mass approximation is given by

H = −
�2

2me
�� e

2 + Ve�xe,ye� −
�2

2mh
�� h

2 + Vh�xh,yh� + W�r�e − r�h� ,

�1�

where me �mh� is the effective mass of the electron �hole�, Ve
�Vh� is the confinement potential of the electron �hole�, and

PHYSICAL REVIEW B 74, 235321 �2006�

1098-0121/2006/74�23�/235321�8� ©2006 The American Physical Society235321-1

http://dx.doi.org/10.1103/PhysRevB.74.235321


W�r�e−r�h� is the electrostatic potential due to the interaction
between the electron and the hole. It is convenient to sepa-
rate the motion of the two particles into that of the center of
mass of the exciton Z= �meze+mhzh� / �me+mh� and the rela-
tive motion z=ze−zh, thereby introducing the total mass M
=me+mh and the reduced mass �= �memh� / �me+mh�. In the
case of strong lateral confinement, the exciton motion
along the wire is decoupled from the lateral motion of
the particles and we may write the wave function as
��xe ,ye ,xh ,yh ,z ,Z�=eiKZ��z��e�xe ,ye��h�xh ,yh� and there-
fore Eq. �1� an be written as

H = −
�2

2me
�� xe,ye

2 + Ve�xe,ye� −
�2

2mh
�� xh,yh

2 + Vh�xh,yh�

−
�2

2M

�2

�2Z
−

�2

2�

�2

�2z
+ W�r�e − r�h� . �2�

Because the Coulomb energy in the considered cases is much
weaker than the single particle confinement energy, we adopt
the adiabatic approximation, thereby taking �e�h��x ,y� as the
single particle states for a cylindrical quantum wire. In free-
standing quantum wires, the confinement potential Ve�h� is a
circular quantum well. The barrier height is determined by
the electron affinity and is approximated by infinity. The
single particle states in such a well can be determined solv-
ing the following Schrödinger equation:

−
�2

2me�h�
�� 2�e�h��r�� + Ve�h��r���e�h��r�� = E�e�h��r�� . �3�

This equation can be reduced to a Bessel differential equa-
tion by separating the variables in an appropriate way, i.e.,
we take �e�h��� ,� ,z�=F���e−il�eikzz, where we introduced cy-
lindrical coordinates �� ,� ,z�. It is straightforward to identify
the function F��� with a Bessel function of the first kind,
leading to the complete solution of the wave function

�n,l,kz
��,�,z� = Cn,le

−il�Jl�	n,l

R
��eikzz, �4�

where 	n,l is the n-th zero of Jl�x� and Cn,l is a normalization
constant. Multiplying Eq. �2� with the abovementioned
single-particle wave functions �e

*�xe ,ye��h
*�xh ,yh� from the

left and with �e�xe ,ye��h�xh ,yh� from the right, integrating
over the lateral coordinates, we are able to reduce the origi-
nal 6D Schrödinger equation for the exciton to a 1D effective
Schrödinger equation involving only the relative exciton co-
ordinate

�Ee + Eh +
�2K2

2M
−

�2

2�
�z

2 + Utot�z����z� = Etot��z� , �5�

where Ee �Eh� are the single-electron �hole� energies and

Utot�z� =� � � � dxedyedxhdyhW�r�e − r�h���e�xe,ye��2


��h�xh,yh��2 �6�

is the total exciton potential due to the Coulomb interaction,
which will be discussed in the next section.

Introducing the wire radius R as the unit of length and
denoting the permittivities of the wire and its surrounding
medium by �1 and �2 respectively, we may rewrite the
effective Schrödinger equation in terms of dimensionless
quantities

�− ��z
2 + Ũtot�z����z� = ẼC��z� , �7�

where in SI units we find that �=aB
* /2R with aB

*

=4
�1�2 /�e2 the effective Bohr-radius of the exciton in the

wire, Ũtot=Utot /E0, EC̃=EC /E0, E0=e2 /4
�1R, EC=Etot−Ee
−Eh−�2K2 /2M, and z is in units of R. Solving Eq. �7� yields
the exciton energies. But in this procedure it is essential to
have an accurate determination of the 1D exciton potential
Utot�z� which will be presented in this paper.

III. ELECTROSTATIC POTENTIAL WITH DIELECTRIC
MISMATCH

The electron and hole interact via Coulomb forces, but
due to the difference in dielectric permittivity inside ��1� and
outside ��2� of the wire, the Coulomb interaction will be
distorted. We follow the approach of Ref. 9, and calculate
first the potential V�r� ,r��� at a point r� due to a charge e at r��
inside a cylindrical wire. This is achieved by solving the
appropriate Poisson equation

�1�
2V�r�,r��� = − e��r� − r��� for ��� � R ,

�2�
2V�r�,r��� = 0 for ��� � R . �8�

Because Ref. 9 contains several typographical errors, we will
repeat the calculation and give the major results. The poten-
tial at r� for a charge located at r�� is then given by

Vin�r�,r��� =
e

4
�1
� 1

�r� − r���
+

2



� �1

�2
− 1� �

m=−�

+�

eim��−���


 �
0

�

dk cos	k�z − z��
Cm�kR,
�1

�2
�Im�k��Im�k����

�9�

when the charge resides inside the wire, where

Cm�kR,
�1

�2
� =

Km�kR�Km� �kR�

Im�kR�Km� �kR� −
�1

�2
Im� �kR�Km�kR�

. �10�

For the potential outside the wire we have

Vout�r�,r��� =
2e

4
2�1
�

m=−�

+�

eim��−����
0

�

dk cos	k�z − z��



� � �1

�2
− 1�Im�kR�Km� �kR�

�Im�kR�Km� �kR� −
�1

�2
Im� �kR�Km�kR�� + 1



Im�k���Km�k�� . �11�
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In a very similar way, we can calculate the potential V̄ at a
point r� in case the charge at r�� is located outside the wire.
Therefore, we need to solve a slightly different Poisson equa-
tion from the one given by Eq. �8�. Inside the wire we have

V̄in�r�,r��� =
2e

4
2�2
�

m=−�

+�

eim��−����
0

�

dk cos	k�z − z��



� � �1

�2
− 1�Im� �kR�Km�kR�

�Im�kR�Km� �kR� −
�1

�2
Im� �kR�Km�kR�� + 1



Km�k���Im�k�� , �12�

and outside the wire

V̄out�r�,r��� =
e

4
�2
� 1

�r� − r���
+

2



� �1

�2
− 1�


 �
m=−�

+�

eim��−����
0

�

dk cos�k�z − z���


Dm�kR,
�1

�2
�Km�k��Km�k���� �13�

with

Dm�kR,
�1

�2
� =

Im�kR�Im� �kR�

Im�kR�Km� �kR� −
�1

�2
Im� �kR�Km�kR�

. �14�

As an illustration, the above potential is plotted in Fig. 1 as
function of the radial distance to a charge placed in the cen-
ter of the wire. It clearly shows how the Coulomb interaction
is distorted due to the difference in permittivity inside and
outside of the wire: for �1 /�2�1 the dielectric outside the
wire screens more strongly the charge resulting in a strong
reduction of the Coulomb potential. The limit �1 /�2=0 cor-
responds to a wire surrounded by a metal �i.e., �2=��. The
opposite case of �1 /�2→� corresponds to the case where the

charges are strongly screened by the medium inside the wire.
The presence of the medium outside the wire with a smaller
permittivity leads to an enhancement of the Coulomb poten-
tial inside the wire.

Figure 2 shows the dependence on the position of the
charge for a fixed value of �1 /�2=10, which is typical for
III-V semiconductor nanowires in vacuum. Notice �i� the
1/ ��−��� divergence, �ii� for ���� the potential is indepen-
dent on the position of the charge, while �iii� for ���� this is
not the case.

The next step is the calculation of the electrostatic energy
of the electron-hole pair inside the wire which is defined by
�with e the charge of an electron�

W�r�e,r�h� =
1

2
� dr�	e��r� − r�e� − e��r� − r�h�



	Vin�r�,r�e� − Vin�r�,r�h�
 . �15�

As is usually done,9 we substract the electrostatic self-energy
coming from the terms proportional to

��r� − r�e�
�r� − r�e�

+
��r� − r�h�
�r� − r�h�

�16�

in the integral of Eq. �15�. We obtain

�W = Wdir + Wind + Wind,S, �17�

where

Wdir�r�e,r�h� = −
e2

4
�1

1

�r�e − r�h�
�18�

is the direct Coulomb interaction in the absence of a dielec-
tric mismatch and

Wind,S�r�e,r�h� =
e2

4
2�1
� �1

�2
− 1� �

m=−�

+� �
0

�

dkCm�kR,
�1

�2
�


	Im
2 �k�e� + Im

2 �k�h�
 , �19�

FIG. 1. Potential V at r�= �� ,0 ,0� due to a charge in
r��= �0,0 ,0�. R is the wire radius and V0=e /4
�1R.

FIG. 2. Potential V at r�= �� ,0 ,0� due to a charge in
r��= ��� ,0 ,0�. R is the wire radius and V0=e /4
�1R. �1 /�2 has been
set to 10.
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Wind�r�e,r�h� = − 2
e2

4
2�1
� �1

�2
− 1� �

m=−�

+� �
0

�

dkCm�kR,
�1

�2
�


�cos	k�ze − zh�
cos	m��e − �h�



Im�k�e�Im�k�h�� �20�

is the modification of this interaction due to the image
charges induced by the difference in permittivity between the
wire and its surrounding environment.

These expressions clearly show the different contributions
to the electrostatic energy �W �also see Fig. 3�. �i� A direct
contribution of the regular Coulomb potential Wdir 	Eq. �18�
.
�ii� A self-energy contribution from the interaction between
an induced image charge and the original charge �that pro-
duces the image�. This is given by Eq. �19�. This contribution
Wind,S as a function of the radial position of the particle is
shown in Fig. 4. The divergence of Wind,S at �=R can be
understood as follows: the contribution from m=0 to the
induced self-energy for the electron and for ��R is propor-
tional to

C0�kR,
�1

�2
�I0

2�k�e� . �21�

For k→� we know that I0�kR��ekR /�2
kR and K0�kR�
��
 /2kRe−kR. Therefore, C0I0

2�k�e��e2k��e−R� /k�e, which
leads to a finite integral as long as �e�R. For �e=R, the
integrand is proportional to 1/k which implies that the inte-
gral diverges causing the total energy to be infinity. Investi-
gation of the asymptotic behavior of Wind,S /E0 near the wire
edge showed that Wind,S /E0→ ±1/ �1−� /R� as � /R→1. �iii�
An induced contribution Wind emerging from the interaction
between a charge in the wire and the induced image charge
	Eq. �20�
.

IV. EXCITON EFFECTIVE INTERACTION POTENTIAL

Adopting the adiabatic approximation and averaging over
the ground state wave functions of the electron and hole, we
obtain Udir�z�, Eself, and Uind�z�. Udir and Uind depend on the
dimensionless interparticle distance z �in units of R� and add-
ing them gives

U�z� = −
e2

4
�1R

1


2J1
4�	0,0�

	Uind�z� + Udir�z�
 , �22�

where 	0,0=2.4048 is the first zero of the Bessel function
J0�x� and

Uind�z� = 8
� �1

�2
− 1��

0

1

d�e�e�
0

1

d�h�hJ0
2�	0,0�e�


 J0
2�	0,0�h��

0

�

dkC0�k,
�1

�2
�I0�k�e�I0�k�h�cos�kz� ,

Udir�z� = �
0

1

d�e�
0

1

d�h�
0

2


d�e�
0

2


d�h



�e�hJ0

2�	0,0�e�J0
2�	0,0�h�

z2 + ��ecos �e − �hcos �h�2 + ��esin �e − �hsin �h�2

�23�

with �e, �h, �e, and �h dimensionless polar coordinates.
The self-energy for the electron or hole does not depend

on the interparticle distance and can be written as

Eself =
1

2

e2

4
�1R

4


J1
2�	0,0�

� �1

�2
− 1� �

m=−�

+� �
0

�

dk


 Cm�k,
�1

�2
��

0

1

d��Im
2 �k���J0�	0,0���2 �24�

with Utot�z�=U�z�+2Eself. Since the numerical calculation of
the effective potential is a tedious and time-consuming pro-
cess, it is highly desirable to construct analytical expressions
for it. In previous work,15 we extensively studied the direct
Coulomb interaction Udir and showed that it can be accu-
rately fitted to the following simple Padé approximant which
we used for further calculations:

FIG. 3. Schematical drawing of electron �e� and hole �h� near an
interface with the indication of the different interactions between e
and h and their images e� and h�.

FIG. 4. Self-energy Wind,S contribution from the interaction be-
tween the induced image charge and the original charge �electron or
hole� for different values of the ratio �1 /�2. Wind,S is given by Eq.
�19�. R is the wire radius and E0=e2 /4
�1R.
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Ũdir =
��z� + �

z2 + ��z� + 	
, �25�

with �=−1,�=−1.22,�=1.13, and 	=0.47 for the electron
and hole in the ground state.

Here, we focus on the calculation of the induced potential
Uind, which depends on the dielectric mismatch. The numeri-
cal results of these calculations can be seen in Fig. 5, to-
gether with the following two Padé approximants

Ũind,1 =
p�z� + q

z2 + r�z� + s
�26�

and

Ũind,2 =
az2 + b�z� + c

�z�3 + dz2 + e�z� + f
. �27�

We found almost no difference between both Padé approxi-

mations for �1 /�2=2 �the chi-square for Ũind,1 is 1.5
10−7

and for Ũind,2 is 1.2
10−7, indicating that both fits are very

good�. As �1 /�2 increases, the difference between Ũind,1 and

Ũind,2 becomes noticeable. However, for �1 /�2=10 and 18

the chi-square results for Ũind,1 is 2.6
10−4 and 1.4
10−3

while for Ũind,2 we have 3.8
10−5 and 1.3
10−4, which
indicates that the introduction of more fit parameters only
slightly improves the result. When we go to a log-log plot of
both Padé approximants together with the numerical results
�Fig. 6� in order to show more clearly the small and large z
behavior, we can even conclude that the Padé approximant
P2 / P3 for large interparticle distances is less accurate than
the P1 / P2 approximant, where Pn is a polynomial in z of
order n. A lower chi-square was obtained for the P2 / P3 ap-
proximant however, due to the excellent fit for small inter-
particle distances z.

In previous papers, other fits were proposed for the effec-
tive exciton potential. For example, Xia et al.11 suggested

Ũdir + Ũind =
�1

�2

− 1

�z� + �e−��z� , �28�

with �=1.382 and �=0.421 for �1 /�2=10 whereas Bányai et
al.9 and Shabaev et al.8 proposed the following fit formula:

Ũdir + Ũind =
�1

�2

− 1

�z� + �
. �29�

with �=1.203. In these papers the fit involved the total
z-dependent exciton potential, i.e., the sum of the direct and

induced potential Ũdir+ Ũind. However, Fig. 7 shows that
these fits produce significantly different results for the total
of the direct and induced potential. A significantly better re-
sult is obtained with our P1 / P2 approximant with parameters
p=−8.94, q=−56.43, r=2.11, and s=11.57 and with the
P2 / P3 approximant with parameters a=−7.33, b=146.65,
c=226.88, d=8.21, e=30.07, and f =46.52, as seen in Fig. 7.
From now on, we will no longer consider the Padé approxi-
mant P2 / P3, since it does not lead to any significant im-
provement.

FIG. 5. Induced potential for different ratios of the permittivi-
ties. The numerical results �full curves� together with the fits of Eq.
�26� �open symbols� and Eq. �27� �unfilled symbols� are shown.

FIG. 6. The same as Fig. 5 but now shown on a log-log
scale.

FIG. 7. Plot of the effective exciton potential Ũdir+ Ũind for
�1 /�2=10. The full thick line is the numerical result and the thin
lines show the different fits: Eq. �28�, Eq. �29�, P1 / P2 together with
Eq. �25�, and P2 / P3 together with Eq. �25�.
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Requiring that the first derivative of Ũind vanishes at
z=0 and matching the fit function with the calculated value
at z=0, we obtain the following expressions which we fitted
to the numerical results:

Ũind,1 =
p�z� + Ũind�z = 0�s

z2 + r�z� + s
. �30�

In this case we have also taken the correct behavior for
z→0 into account, because it should be noted that we can

write Ũind of Eq. �23� as follows:

Ũind�z� = �
0

�

f�k�cos�kz� . �31�

The function f�k� is a complicated function depending on k
but not on z. f�k� exhibits a logarithmic divergence for
k→0. Consequently, since for z�0 we can write that
cos�kz�=1+ �1/2�z2k2+¯, we find that

Ũind�z → 0� = A + Bz2 + ¯ �32�

with A and B constants.
The parameters for Eq. �30� were determined for a wide

range of permittivities. In Fig. 8 we show these fit param-
eters as a function of the dielectric mismatch ratio, �1 /�2. In
the range 1��1 /�2�20 we obtained the following simple fit
expressions:

p = 0.86	1 − ��1/�2�1.05
 , �33a�

r = 0.84 + 0.23��1/�2�3/4, �33b�

s = 1.57 + 1.02��1/�2� , �33c�

Ũind�z = 0� = 1.36	1 − ��1/�2�2/3
 . �33d�

Avoiding time-consuming numerical calculations, we may
use the abovementioned fit formulas to quickly and accu-
rately construct the exciton potential for a wide range of

�1 /�2-values appearing in any further calculations.
The only thing left to calculate is the self-energy, i.e., Eq.

�24�. Comparing various free standing quantum wires, we
particularly have to deal with the case where the dielectric
constant of the wire ��1 /�0� typically varies from one to
twenty while �2 /�0 remains fixed to some constant value, say
1. In that case it proves convenient to express the self-energy
in terms of E0�=e2 /4
�2R which is independent of �1. We
found that the self-energy can then be adequately fitted to the
expression

Eself

E0�
=

a	��1/�2�b − 1

�1/�2

�34�

with a=0.89 and b=0.59. The numerically calculated self-
energy is plotted and compared with its analytical fit formula
in Fig. 9. Clearly, Eself /E0� attains a maximum value of 0.285
around �1 /�2=4.7. This is very different from the results for
a quantum dot reported in Ref. 16, where it was shown that
the dominant contribution to the self-energy in a quantum
dot is 1 /2�1−�2 /�1� which reduces to 0.5 when �1 /�2→�.
Consequently, the maximal self-energy of the dot is roughly
twice as large as the maximum attained in the wire. This
can be explained as a dimensional effect in the sense that
surface effects in a 0D structure are significantly more im-
portant than in wires where the self-energy vanishes as

Ẽself /E0�→0.89��1 /�2�−0.41 for �1 /�2→�.

V. EXCITON BINDING ENERGY

Using the analytical representation of the induced exciton
potential as given by the Padé approximant 	Eq. �30�
, we
are able to construct the complete exciton potential and solve
the effective 1D Schrödinger equation. As was indicated be-
fore, the natural unit E0 that arises when calculating the ef-
fective exciton potential, is not the most appropriate unit to
study the energy. Also we found that some choices of units
may lead to confusing results and therefore we have chosen
to rewrite the Schrödinger equation �7� as follows:

FIG. 8. The fitting parameters as function of the dielectric mis-
match. The full lines are the expressions of Eq. �33� and the nu-
merically fitted parameters of Eq. �30� are given by the symbols.

FIG. 9. Self-energy as function of the ratio of dielectric con-

stants in units of E0�=e2 /4
�2R and �inset� Ẽself, i.e., Eself is in units
of E0=e2 /4
�1R. The fit �full lines� of Eq. �34� agrees very well
with the numerical results �symbols�.
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�−
1

2
� 1

R/aB,0
* �2

�z
2 +

Utot

E0�
���z� =

EC

E0�
��z� , �35�

where E0�=e2 /4
�0aB,0
* with aB,0

* =4
�0�2 /�e2. Typical
values for these energy and length units are for GaAs:
E0�=1.58 eV, aB,0

* =0.91 nm; Si: E0�=8.86 eV, aB,0
* =0.16 nm;

Ge: E0,� =6.49 eV, aB,0
* =0.22 nm; InP: E0�=1.90 eV,

aB,0
* =0.76 nm,where we used the bulk electron and heavy

hole masses. Since we calculated and fitted the potential Utot
in units of E0, we find that the conversion factor between
both units for the potential is given by ��0 /�1��aB,0

* /R�, re-
sulting in

�−
1

2
� 1

R/aB,0
* �2

�z
2 +

�2

�1

1

R/aB,0
*

Utot

E0
���z� =

EC

E0�
��z� ,

�36�

for the Schrödinger equation, in case we use an obvious and
logical value of �2 /�0=1. Now the Schrödinger equation has
been rewritten so we can easily plug in our previous results
and we find the energy EC /E0�. Note that we have to leave out
the self-energy given in Eq. �24�, i.e., a constant energy shift
amounting to a mere normalization of the bandgap, to calcu-
late the actual exciton binding energy EB, so we have EB
=EC−2Eself, where the factor of 2 arises since the self-energy
of both electron and hole has to be taken into account. Figure
10 shows the excitonic ground state and the first few excited
states as a function of the dielectric mismatch ratio �1 /�2 for
different values of the dimensionless parameter R /aB,0

* . As a
result, it follows that the effect of the dielectric mismatch on
the exciton binding energy is significant and may not be
neglected when the optical properties of a quantum wire are
investigated. Note that the binding energy generally changes
the most between �1 /�2=1 and 5.

Also note that the self-energy changes depending on the
dielectric mismatch ratio and therefore the normalization of
the bandgap also constantly changes. To emphasise this, we
also plotted EC, which corresponds to the PL energy minus
the bandgap energy. This is shown in Fig. 11.

Next, we investigate the energy as a function of the wire
radius. This is shown in Fig. 12. This figure emphasises

again that a change in dielectric mismatch will have the
strongest effect for small values of the mismatch and that
mismatch effects will become less important for larger radii.

The numerical results of Fig. 12 can be fitted to an ana-
lytical expression. In previous work,15 we already introduced
an analytical expression for the binding energy as function of
the wire radius for �1 /�2=1. Based on these results, we sug-
gest the following fitting curve:

EB

E0�
=

1

R/aB,0
*

�

1 + �/�R/aB,0
*

�37�

with the fit parameters given in Table I.
The fits are also shown in Fig. 12. This figure illustrates

the importance of the Coulomb interaction and how it grows
as the radius of the wire is reduced.

We compared our results with experimental results on InP
and CdSe wires in chrysotile asbestos.10 Muljarov et al.
found an estimated exciton binding energy EB=192 meV for
R=2 nm InP wires. For CdSe wires, EB=257 meV for

FIG. 10. Lowest three energy levels of the exciton as function of
the ratio of the permittivity for R /aB,0

* =1 and �inset� R /aB,0
* =10.

FIG. 11. Plot of the PL energy �except for the bandgap energy�
as a function of the ratio of the permittivity for R /aB,0

* =1 and �in-
set� R /aB,0

* =10.

FIG. 12. Ground state binding energy of the exciton as function
of R /aB,0

* for different values of the dielectric mismatch. The nu-
merical results �open symbols� are shown together with the fits �full
lines� of Eq. �37�.
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R=2 nm and EB=224 meV for R=4.8 nm. According to our
calculations, we find for InP EB=211 meV while for CdSe
EB=271 meV �R=2 nm� and EB=233 meV �R=2.4 nm�. In
view of the fact that we used a simple two band model, we
find that our theoretical results compare rather well with the
experimental values reported in Ref. 10 and overestimates
the exciton binding energy with about 5–10 %. The follow-
ing parameters were used in our calculations. For InP:
me=0.079m0, �1=4.94, �2=1.65, Eg=1.4236 eV �T=2 K�,
and �1=9.61; for CdSe: me=0.12m0, mh=0.45m0, Eg=1.751,
�1=5.8; for chrysotile asbestos Eg=4 eV and �2=2.2. Bear-
ing in mind that spill-over effects necessarily take place for
InP and CdSe wires in a chrysotile asbestos matrix, the ef-
fective confinement will be lowered, resulting in a lower
binding energy. Also note that the binding energies for wires
with a dielectric mismatch are significantly larger than for
wires with no dielectric mismatch. Excluding the dielectric
mismatch we found EB=64 meV for an InP wire with
R=2 nm and for the CdSe wires of R=2 nm and
R=2.4 nm we obtained EB=134 and 117.2 meV, respec-
tively. To emphasize the difference between a wire with and
without a dielectric mismatch, we plotted the exciton binding
energy as a function of the mismatch ratio in Fig. 13. In this
figure, �1 /�0=10, while the dielectric constant of the sur-
rounding medium, �2 /�0, is changing. This is different from
Figs. 10 and 11, where �2 /�0 was set to 1 and �1 /�0 was
varied.

VI. CONCLUSION

We proposed an appropriate analytical formula for the
effective exciton potential in a semiconductor quantum wire,

which accounts for the effect of dielectric mismatch for a
wide variety of semiconductor permittivities. The different
parameters in the formula have been fitted to several expres-
sions, which enables a quick reconstruction of the complete
effective exciton potential for different dielectric permittivi-
ties. The formula greatly facilitates the determination of the
energy levels of the exciton �i.e., ground and excited states�
and the optical oscillator strengths while drastically reducing
the computation time �by as much as a factor of 100�. Fur-
thermore, the self energy and the binding energy was studied
as a function of the dielectric mismatch. It was shown that a
change in dielectric mismatch from one to five has a signifi-
cantly larger influence on the total energy then a change
from, e.g., 5 to 10. Also the binding energy as function of the
wire radius was calculated for different values of the dielec-
tric mismatch, fitted to an analytical expression and com-
pared to experimental results.
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TABLE I. Fit parameters for the exciton binding energy 	Eq.
�37�
.

� �

�1 /�2=1 −2.45 1.07

�1 /�2=5 −0.87 0.44

�1 /�2=10 −0.64 0.33

�1 /�2=15 −0.54 0.29

FIG. 13. Ground state binding energy of the exciton as function
of �1 /�2, with R /aB,0

* =10 and �1 /�0=10.
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