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Quantum transport in graphene Hall bars: Effects of vacancy disorder
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Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in
graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of
monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These
states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the
square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the
energies of these localized states, the electron current flows around the monovacancies and, as we show, it can
follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized
states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor
hopping term. Our results are also compared with the situation when double vacancies are present in the system.
Double vacancies also induce localized states, but their energy and magnetic field dependencies are different.
Their localization energy scales linearly with the magnetic field, and their localization length appears not to
depend on the field strength.
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I. INTRODUCTION

The discovery of graphene [1], a material with a linear low-
energy spectrum, generated new interest in the quantum Hall
effects governed by relativistic particles. Unusual quantum
Hall resistance plateaus were observed in graphene [2,3]. Later
experiments reported new, more detailed features such as the
splitting of the zeroth Landau level (LL) due to breaking of
the valley and spin degeneracies [4,5].

Disorder in experimentally available honeycomb graphene
lattices is inevitable, whether it is structural like reconstructed
and non-reconstructed vacancies, substituted carbon atoms,
or it originates from charged impurities such as adatoms.
Therefore, disorder in graphene is a very active area of
research, both experimentally, in devising ways to characterize
it [6], and theoretically in studying its influence on electron
transport [7,8], with even possible applications in future
spintronic devices [9]. Due to the relativistic nature of its
charge carriers, disordered graphene offers a tabletop environ-
ment for the study of previously experimentally unaccessible
phenomena, such as the atomic collapse reported recently
in charged vacancies in graphene [10]. Vacancy disorder in
the case of a zero external magnetic field was extensively
studied in Refs. [11–13], where new states localized around
missing carbon atoms were reported. Effects of vacancies in
the quantum Hall regime were studied in Refs. [14,15], which
reported on the occurrence of a zero-resistance quantum Hall
plateau and breaking of the Landau level degeneracy. Graphene
with on-site potential disorder was also used in Ref. [16] to test
a new numerical approach to calculate the Kubo conductivities.

In this paper, we simulate the transport of electrons in a Hall
bar made from a single layer of graphene. Our main goal is
to study the influence of various types of vacancy disorder on
the electron transport in the quantum Hall regime. We report
that vacancy disorder can cause the appearance of new states
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in the Landau spectrum, which are observable in the bend
resistance, as well as in the total density of states (DOS) and in
the distributions of eigenenergies in a closed system (a system
detached from the leads). For monovacancies, the energies
of these new states scale as the square root of the magnetic
field, similarly to the energies of relativistic Landau levels, but
with a different scaling coefficient. The local density of states
(LDOS) reveals a strong localization around the monovacancy
sites, with localization length proportional to the cyclotron
radius. The localization on divacancies is somewhat different:
their localization energy scales linearly with the magnetic
field, while their localization radius appears to be constant. We
further study how the electron current flows in the presence of
vacancies, and what are the effects of the next-nearest-neighbor
interaction (NNN).

This paper is organized as follows: In Sec. II we describe
our system and methods used to obtain our results. In order
to focus on specific aspects of the problem, ranging from
vacancy concentration to NNN hopping, we discuss our results
(Sec. III) in several subsections (from Secs. III A to III E).
All these insights are combined and summarized in the last,
concluding section (Sec. IV).

II. SYSTEM AND METHODS

The studied system is shown in Fig. 1; it is a graphene Hall
bar with zigzag edges along the horizontal leads and armchair
edges along the vertical leads. The width of the vertical,
armchair arms (wv) is chosen so that the corresponding leads
are metallic, meaning that there is no gap around zero energy.

We introduce vacancy disorder in this system by randomly
removing carbon atoms from the graphene lattice. Three
different disorder types are studied, as shown in the right
insets in Fig. 1. The first is a single-vacancy/single-sublattice
disorder (SVA). Here, we randomly remove carbon atoms only
from one sublattice (e.g., sublattice A). The second type is
ordinary single-vacancy disorder (SV), where carbon atoms
are removed without any respect to the sublattice to which
they belong. The third type is a double-vacancy disorder (DV),
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FIG. 1. Graphene Hall bar system (left) and three studied disorder
types (right). Widths of the horizontal and vertical leads are set to
wh = 49.71 nm and wv = 49.94 nm, respectively, while lengths of
the horizontal and vertical arms (lv and lh) are equal, and set to 50 nm.
Before disorder is introduced, all edges are considered to be clean,
meaning that there are no dangling bonds on them.

where only pairs of neighboring atoms, each belonging to
a different sublattice, are removed. It is known that single
vacancies (or monovacancies) break the sublattice symmetry,
while divacancies preserve it. Here we choose two types of
monovacancy distributions, since one (SV) should preserve
the sublattice symmetry on average, while the other (SVA) is
the extreme case of sublattice symmetry breaking.

When discussing the effects of vacancy disorder, it is
important to investigate the general effects introduced by
disorder, and to separate them from effects that occur only
for some specific disorder distributions. Therefore, we will
present two types of results. In order to capture the general
disorder effects, for each disorder type and concentration,
we perform calculations over a sample of N = 10 different
vacancy distributions. Results for specific distributions Ri

(i = 1,2, . . . ,10) are then averaged R̄ = ∑N
i=1 Ri/N (we

mark the averaged quantities with a bar line on top). On the
other hand, in order to better understand the origin of these
effects, we often analyze results for some specific distribution,
or compare results of several different distributions.

For our numerical calculations we use KWANT, a software
package designed to simulate electron transport in the quantum
regime [17]. KWANT is based on the so-called wave function
formulation of the scattering problem, a method which is
mathematically equivalent to the nonequilibrium Green’s
function method, but according to Ref. [17] it is numerically
more stable. We define graphene material in KWANT using
the tight-binding model Hamiltonian

Ĥ =
∑
〈i,j〉

(t̃ij ĉ
†
i ĉj + H.c.) +

∑
〈〈i,k〉〉

(t̃ ′ik ĉ
†
i ĉk + H.c.), (1)

where ĉ
†
i (ĉi) creates (annihilates) a pz electron on the ith

carbon atom. No external electric potential is included, except
that of the back gate which controls the Fermi energy. The
hopping terms t̃ij = teiϕij and t̃ ′ik = t ′eiϕik are defined using

the electron nearest-neighbor hopping energy t = −2.7 eV, the
NNN hopping term t ′, and the Peierls phase factor ϕij (which
we discuss below). Although most of our results deal only with
nearest-neighbor interaction (t ′ = 0), in the last subsection
of the next part (Sec. III E) we comment on the effects of a
nonzero NNN term.

Defining a magnetic field in a multilead system, where some
leads point in different directions, is a problem that needs to
be carefully considered. Vector potential along the leads needs
to be translationally invariant in order to simulate each lead
as a semi-infinite system. Following this condition, we set the
vector potential in horizontal leads using the Landau gauge
�AH = −By�ex , and that in vertical leads as �AV = Bx�ey . To

connect these two, the gauge in the main region is set to
change smoothly from �AH to �AV in the upper and lower
arms of the cross. This is achieved by using an additional
scalar function f (x,y) which rotates the vector potential
�A′ = �A + �∇f locally, without changing the orientation and

strength of the magnetic field. This scalar function is defined in
Ref. [18] as

f (x,y) = Bxy sin2θ + 1
4B(x2 − y2) sin 2θ, (2)

where θ is the angle of rotation. In order to apply f (x,y)
only in a specific subregion of the cross, we multiply it with
a smooth step function ξi(y) = 1

2 {1 + tanh[2(y − y0)/d]},
which is nonzero only very close to one of the vertical
leads (here the index i specifies the lead number). Previous
expression defines y0 as a crossover position, where ξi(y0) =
1
2 , and d as a width of the crossover region, where ξi smoothly
goes from 0 to 1. For our numerical calculations, we used
d = lv/5 = 10 nm. Based on this, we can define a rotation
function for the second lead

F2(x,y) = f (x,y)ξ2(y)

= 1

2
Bxy

[
1 + tanh

(
2
y − yu

d

)]
, (3)

and similarly for the fourth lead

F4(x,y) = f (x,y)ξ4(y)

= 1

2
Bxy

[
1 + tanh

(
2
yd − y

d

)]
. (4)

In both cases θ is set to π/2 (since neighboring leads are
perpendicular to each other), and yu = −yd = (lv + wh)/2.
We also define the sum of the two rotation functions as F =
F1 + F2.

In order to check that the modified vector potential
�A′(x,y) = �A(x,y) + �∇F (x,y) is properly defined, this func-

tion is presented in Fig. 2. The �AH gauge oriented in the
x direction in the horizontal part of the cross transforms
smoothly to a y-oriented gauge �AV in the vertical part of
the cross, thus confirming the correctness of �A′.

Note that functions ξ2 and ξ4 are chosen because they
are smooth, thus guaranteeing the smoothness of the vector
potential. But in a tight-binding system, due to its discreteness,
and the constant distance between the atoms, this is not
a necessary condition. The discontinuous Heaviside step
function could also be used instead. We tested this by changing
the width d from a value used in all our calculations (d = lv/5)
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FIG. 2. Modified vector potential �A′(x,y). Arrows show the
direction of �A′(x,y), and their color represents its intensity. System
shape is marked by the gray area.

to values well below the carbon-carbon distance (equivalent to
a discontinuous step function), with no observable changes in
the final results.

The Peierls phase factor between sites i and j for the
modified vector potential is

ϕij = e

�

∫ �ri

�rj

( �AH + �∇F )d�r

= e

�

∫ �ri

�rj

�AHd�r + e

�
(Fi − Fj )

= ϕL
ij + �i − �j, (5)

where ϕL
ij is the Peierls phase factor for the translationally

invariant Landau gauge in the x direction

ϕL
ij = − e

�
B

(yi + yj )

2
(xi − xj ), (6)

as is also explained in Ref. [19]. Note that ϕL
ij does not depend

on the x coordinates, since differences xi − xj are constant.
Resistances in this four-terminal device are obtained using

the Landauer-Büttiker formula [20–22]

Rmn,kl = h

2e2
(TkmTln − TknTlm)/D, (7)

where Rmn,kl is a resistance measured when the current is
injected from lead m and collected at lead n, and the voltage
is measured between leads k and l. Tij is the transmission
function between the corresponding leads, while parameter D

is defined as

D = (α11α22 − α12α21)S, (8)

where

α11 = (T21 + T31 + T41) − (T14 + T12)(T41 + T21)/S, (9a)

α22 = (T12 + T32 + T42) − (T21 + T23)(T12 + T32)/S, (9b)

α12 = (T12T34 − T14T32)/S, (9c)

α21 = (T21T43 − T41T23)/S, (9d)

with

S = T12 + T14 + T32 + T34. (10)

The previous resistance formula [Eq. (7)] defines six differ-
ent resistances, and when used with transmission functions at
a specific Fermi energy Tij (EF ) it provides resistances for the
zero-temperature case. To obtain the resistances at a nonzero
temperature, the previously calculated transmission functions
need to be additionally convoluted in energy

T ′
ij (EF ,T ) =

∫ ∞

−∞
Tij (E′)FT (E′ − EF )dE′, (11)

where the convolution function [23]

FT (E,T ) = 1

4kBT
sech2

(
E − EF

2kBT

)
(12)

is the temperature-dependent negative derivative FT (E) =
−∂f/∂E of the Fermi-Dirac distribution

f (E) = 1

exp[(E − EF )/kBT ] + 1
. (13)

Since vacancy disorder introduces a considerable amount of
noise in all calculated quantities, in some cases we perform
temperature smoothing by setting T = 16 K; the temperature
is considered to be zero otherwise. In the case of the averaged
results, the temperature smoothing is always performed before
the averaging.

III. RESULTS

A. Effects of different disorder types

Here we discuss the general transport effects of the three
disorder types, observable in the Hall (RH = R13,42) and
the bend (RB = R12,43) resistances. Note that actual Hall
measurements are usually performed on devices with six or
more terminals, with current and voltage probes usually set
on different terminals. That is why we focus here on the bend
resistance RB , and not on R13,13, since RB should be closer to
experimentally measured Rxx .

It is widely known [24] that the Hall resistance in graphene
exhibits quantized plateaus

RH =
(

h

2e2

)
1

1 + 2n
, n = 0,±1, . . . , (14)

between the energies of the Landau levels

En = sgn(n)
√

2eBv2
F �|n|, (15)

where n is the Landau level number, and vF is the Fermi ve-
locity (vF = 3|t |a/2� ≈ 106 m/s, with parameter a = 1.42 Å
being the carbon-carbon distance). At the steps in the Hall
resistance, the longitudinal resistance exhibits peaks. Beside
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FIG. 3. Average Hall (R̄H = R̄13,42; red curves) and bend (R̄B =
R̄12,43; blue curves) resistances for various types and concentrations
of vacancy disorder. Disorder type and concentration are shown in
every subplot, in the lower-left corner. Results for the bend resistance
depend strongly on the vacancy concentration; therefore we scale R̄B

by multiplying it with a scaling coefficient, in order to present all
results in the same range. A scaling coefficient is presented in every
subplot, above the vacancy concentration. Thin gray vertical lines
mark the energy of Landau levels given by Eq. (15) for B = 20 T,
while black vertical lines mark the position of the new peaks at
E = ±33.9 meV. The temperature is equal to 16 K.

these expected features, our results for a disordered system
(presented in Fig. 3) show some additional features.

Monovacancy disorders (SV and SVA) induce two new
peaks in the bend resistance, around E = ±33.9 meV. These
peaks do not agree with the analytic formula for Landau
levels given by Eq. (15). In contrast, peaks induced by
double vacancies (DV) appear to agree with Eq. (15) (i.e.,
they correspond to the expected Landau levels, broadened
by temperature and vacancy scattering). Each row in Fig. 3
presents data for one type of vacancy disorder, for two different
concentrations. For each vacancy type, the increase in vacancy
concentration leads to an increase in RB , which can be seen
in a decreasing scaling coefficient (given in the insets of the
figure). The higher the vacancy concentration, the larger the
bend resistance, and consequently the smaller the scaling
coefficient. For higher concentrations [Figs. 3(b) and 3(d)],
two peaks in R̄B are not well defined, and R̄H also slightly
deviates from the expected Hall plateaus. Although we discuss
the effects of a vacancy concentration further below, it is
important to state that new peaks in R̄B occur only in a
certain range of concentrations, and that above some critical
concentration, these peaks broaden and merge. This critical
concentration depends on the ratio of the average vacancy-
vacancy distance and the magnetic length. It also depends on
the type of monovacancy disorder, since for SVA disorder,
the two peaks disappear for smaller concentrations [0.01% in
Fig. 3(b)] as compared to SV disorder [0.02% in Fig. 3(d)].

Another interesting feature is the negative bend resistance in
Fig. 3(b). As explained in Ref. [21] [page 321, paragraph below
Eq. (13) in that reference] and in Ref. [22] (Sec. 3.4.4.2 in that
reference), the Büttiker formula for a four-terminal device
can produce negative nonlocal resistances. This is usually the
case when the second term in the numerator of Eq. (7) is
larger than the first term. We obtain negative RB peaks for
almost all concentrations, but for low concentrations they do
not appear often (because the scattering is weak), and are
not very pronounced (they usually disappear after temperature
smearing). In general, if the number of vacancies exceeds the
critical value, vacancy scattering becomes too strong, such
that no general features exist in the low-energy region. The
bend resistance then strongly depends on a particular vacancy
distribution.

Another characteristic of the averaged resistance R̄B is
that it is fairly symmetric with respect to electrons and
holes, whereas results for individual distributions (used to
calculate R̄B) are not. This means that in general, a random
monovacancy distribution induces two new peaks in the bend
resistance, but the actual relative height of those two peaks
depends on a particular arrangement of vacancies. For some
distributions there is only one peak in RB , at positive or nega-
tive energy, and for some distributions there are no peaks at all
(a question which we address in Sec. III D). This asymmetry
between electrons and holes is expected, since exchanging
electrons for holes is equivalent to flipping the magnetic
field, which in turn is equivalent to keeping the field fixed
and flipping the system around the z axis. A clean system is
symmetric with respect to this transformation, but a disordered
system is not. After the flip, the incoming electrons see a
different arrangement of vacancies. A vacancy distribution can
be constructed to be symmetric with this flip transformation, in
which case all results would also be electron-hole symmetric.
This asymmetry between electrons and holes occurs only for
a fixed field orientation [RB(E,B) 	= RB(−E,B)], and should
not be confused with the case when both magnetic field and
Fermi energy change sign. Results for electrons and holes are
then symmetric: RB(E,B) = RB(−E,−B).

Results for the averaged total density of states (DOS) and
distributions of eigenlevels in a closed system, presented in
Fig. 4, are obtained for the same set of vacancy distributions
as in Fig. 3, and they exhibit similar effects to those seen in
the bend resistance in Fig. 3. Here, as in Fig. 3, monovacancy
distributions induce two new broad peaks in the total DOS
(around E = ±33.9 meV; marked with red lines in Fig. 4),
while double-vacancy distributions appear only to broaden
the DOS around the expected Landau levels. We show below
that the energy of these broadened peaks (E = ±33.9 meV)
corresponds to an energy of a monovacancy localized state.
Similar behavior is seen in distributions of eigenlevels in a
closed system (a Hall bar detached from the leads). Usually,
the eigenlevels of a closed system in a high magnetic field
tend to cluster around the energies of the Landau levels. Here
we plot histograms (orange areas in Fig. 4) showing how
many eigenlevels occupy a narrow energy range around each
energy, and these plots also show two distributions around
E = ±33.9 meV.

According to Refs. [14,25], divacancies in graphene should
also induce new states in the Landau spectrum. Our results
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FIG. 4. Averaged DOS (black curves; arbitrary units) and distri-
butions of eigenenergies in a closed system (orange histograms in
the background). Red lines mark the positions of the two new peaks
at E = ±33.9 meV, while dotted lines mark the energies of Landau
levels. Similarly to the resistances in Fig. 3, for every vacancy type
and concentration, DOS is first smoothed and then averaged over
N = 10 different vacancy samples. In the case of the eigenenergies,
results for positive energies for N = 10 distributions are summed
without smoothing or averaging, and mirrored around E = 0 axis.
We used the same sets of vacancy distributions as in Fig. 3. Magnetic
field is B = 20 T, and T = 16 K.

for DV distributions appear to contradict those of these two
references. However, a higher resolution DOS plot around
the zeroth Landau level [shown in Fig. 5(a)] for one particular
DV distribution reveals additional DOS peaks. These peaks are
positioned only a few meV away from the LLs, and that is why
they were not very distinguishable from the LLs in the previous
results. This suggests that additional peaks coming from the
divacancies would be harder to observe experimentally, since
they would be usually smeared by temperature.

Previous experiments on graphene in high magnetic
fields [5] reported splitting of the zero Landau level, which
was attributed to the breaking of the sublattice symmetry. One
of the possible explanations of the new DOS peaks is that
they correspond to the occurrence of new states, localized
in areas close to the vacancies. The unsplit zeroth Landau
level is still present in the DOS of the whole device (for all
disorder types), since it originates from the local density of
states (LDOS) in areas which are vacancy free. This connection
between the new DOS peaks and the vacancy localized states
becomes apparent if we look at the LDOS at one of the two
peak energies. A LDOS at one of the two new peaks, for one
particular SVA distribution, is shown in Fig. 5(b). The LDOS
is highly localized around the vacancies (marked with green
circles). A zoom in Fig. 5(c) shows states localized mostly on
one sublattice, which could be connected with the breaking
of sublattice symmetry. These states that are localized around
single vacancies are the origin of the two new peaks in RB

and DOS. Similarly, in Figs. 5(d) and 5(e) we show the LDOS
for one particular DV distribution, at the energy of one of the
new peaks [marked with red line in Fig. 5(a)]. Divacancies
also induce localized states, but these states are localized
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FIG. 5. (a) DOS for a single DV distribution (n = 0.01%, B =
14 T). (b) LDOS for a single SVA distribution (n = 0.005%, B = 20
T) at the vacancy localization energy (E = 33.9 meV). (d) LDOS for
a single DV distribution (n = 0.01%, B = 14 T) at the localization
energy [E = 1.45 meV; marked with red vertical line in (a)]. (c) and
(e) Zoom around particular vacancies in (b) and (d). Vacancies are
marked with green circles and green dots in the center. Temperature
is set to T = 0 K.

equally on both sublattices, since divacancies do not break
the sublattice symmetry. For other energies (when there is no
localization), divacancies act similarly to graphene structural
armchair edges; namely, the LDOS spreads in areas between
them, as if they repel it. Similar behavior was observed in
Ref. [14].

B. Changing vacancy concentration

As stated previously, all these results depend strongly on
the vacancy concentration. To illustrate this, we present in
Fig. 6 how the DOS and LDOS change with increasing number
of vacancies, belonging to a SV disorder type. Here, we
show results for specific vacancy distributions without any
temperature smoothing or averaging. For low concentrations
[Figs. 6(a) and 6(e)] the DOS shows two well-defined peaks at
±33.9 meV, which correspond to one state, localized around
one monovacancy. Other vacancies in Fig. 6(a) are very close
to the system edges, and localization on them is very weak.
These results explain why the smoothed and averaged RB

and DOS exhibit strong peaks around ±33.9 meV, because
this corresponds to the energy of a state localized around
one isolated monovacancy. The localization happens at this
specific energy only if a vacancy is in the bulk and sufficiently
away from the system edges, but also far from the other
vacancies, which is satisfied only for low concentrations.
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FIG. 6. (a)–(d) LDOS for SV disorder type, for different vacancy concentrations: 0.001%, 0.005%, 0.01%, and 0.02%, and at different
energies: 33.9 meV, 33.9 meV, 45 meV, and 52 meV, respectively. Vacancy positions are marked with green circles. (e)–(h) DOS for SV disorder
type, for the corresponding concentrations. Energies at which we calculated LDOS in (a)–(d) are marked with red vertical lines in (e)–(h).
Magnetic field is B = 20 T, and T = 0 K.

With increasing concentration, the average distance between
the vacancies decreases, and vacancies start to “see” each
other, meaning that they start to influence the formation of
localized states on their neighbors. This is demonstrated in
Figs. 6(b) and 6(f), where several peaks appear in the total
DOS. However, the peak at the monovacancy localization
energy (±33.9 meV) is still well defined. This is because there
is still one well isolated monovacancy in the upper arm of the
cross [see Fig. 6(b)]. For even higher concentrations, there are
no longer well isolated vacancies, and therefore there is no
well defined localization energy. Instead, the monovacancies
start to form something which resembles bond states. In a
vague analogy with atoms and molecules, these bond states
correspond to groups of vacancies which are sufficiently close
to each other, so that localization occurs over the whole group,
and not on separated, individual vacancies. This bonding,
shown in Figs. 6(c) and 6(d), is responsible for spreading
of the localization energy, and consequently for broadening of
the new peaks in RB and DOS.

C. Changing the magnetic field

In this part, we investigate how these vacancy localized
states behave when we change the magnetic field B. In
Figs. 7(a) and 7(b) we show that the localization energy for
monovacancies scales with the square root of the magnetic
field E ∼ ±√

B, similarly to the relativistic Landau levels. The
blue curves in Figs. 7(a) and 7(b) show the parabolic function
B = αE2, where parameter α = 17500 T/(eV)2 is set to fit
the peak positions. This dependence can also be expressed

as E = ±
√

γ 2ev2
F �B, where γ ≈ 0.057. It is important to

note that Fig. 7(a) presents results for the same vacancy
distribution as in Fig. 6(a), with only one monovacancy
capable of sustaining the localized states. The DOS in this case
exhibits two narrow peaks at positive and negative localization
energy. For weak fields (B < 5 T) these peaks are almost
unobservable, whereas for stronger fields they become better

and better defined in energy. Beside these two localization
peaks, Fig. 7(a) shows some additional peaks for B = 0 T
(e.g., two peaks at approximately ±35 meV). According to
Pereira et al. [11], localization of electrons on vacancies also
occurs for B = 0 T, but localization energy is then equal to
zero, and therefore these extra peaks should not be connected
with the localized states. Indeed, a closer study reveals that
these peaks originate from new modes opening in the leads,
and can be predicted by calculating the lead minimal subband
energies.

For larger concentration of monovacancies [Fig. 7(b)], the
localization energy is not well defined, and the two narrow
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FIG. 7. DOS for different values of magnetic field and different
disorder distributions: (a) n = 0.001% SV distribution, (b) n =
0.005% SV distribution, (c) single divacancy located at the center
of the system, (d) n = 0.01% DV distribution. The two distributions
of monovacancies are the same as those used in Figs. 6(a) and 6(b),
respectively. In all four cases T = 0 K. The green arrows mark (E,B)
points at which we study LDOS in Figs. 8, 9, and 10.
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DOS peaks from Fig. 7(a) split into two distributions of peaks.
As we explained in the previous subsection, this is mainly
due to a decrease of the average vacancy-vacancy distance,
and is thus due to an increase of the interference between
vacancies, resulting in the formation of bond localized states.
Since localization radius around a monovacancy is inversely
proportional to the square root of the magnetic field (as we
show below), the field strength determines how far a single
vacancy actually “sees” its surroundings; i.e., it determines
the bond length of previously described bond states. Because
this length changes with magnetic field, various groups of
vacancies bond together at different field strengths, and the
two distributions of DOS peaks in Fig. 7(b) evolve quite
unpredictably with B. However, the average energies of the two
distributions still tend to follow the parabolic B dependence,
as is apparent from the graph. Thus for extremely large fields,
the localization would be so strong that the bond length
will go below the average vacancy-vacancy distance, and the
vacancies would no longer “see” each other. All these separate
DOS peaks would then converge to a single energy, equal to
that of an isolated monovacancy.

Scaling of the localization energy with magnetic field is
different for divacancies. As Figs. 7(c) and 7(d) show, the local-
ization energy for divacancies scales linearly with the magnetic
field. The red lines in these two figures mark the linear
dependence B = βE, where β ≈ 9700 T/eV. Contrary to
monovacancies where the bond states evolve rather unpre-
dictably with magnetic field, the bond states of divacancies
evolve very predictably with the field. The two DOS peaks
at positive energies and the two peaks at negative energies
in Fig. 7(d) move proportionally to the magnetic field. There
are no additional peaks which would correspond to different
bonding of divacancies. These results suggest that bonding of
divacancies is weaker, when compared to monovacancies. One
of the possible reasons for this weaker bonding might be the
constant localization length for divacancies, which we discuss
below.

Reference [25] also studied the E(B) dependence of the
new (localized) states, and for both mono- and divacancies
found it to be neither linear, nor parabolic. However, the lowest
field considered in that reference (beside B = 0 T) was around
300 T; therefore our results can be understood as a low field
limit of those presented in Ref. [25].

As we stated previously, the localization radius for mono-
vacancies rL is inversely proportional to the square root of the
magnetic field. It is also proportional to the cyclotron radius
rL ∼ Rc = E/(evF B), and since E ∼ √

B, then rL ∼ 1/
√

B.
To demonstrate this, in Fig. 8 we follow how the LDOS around
an isolated monovacancy evolves as we increase the magnetic
field. In other words, we follow the localized state along the
αE2 parabola in Fig. 7(a). A first look at Fig. 8 suggests
that localization radius is not proportional to the cyclotron
radius Rc. While Rc decreases with rising magnetic field, the
localization radius appears to increase, and the LDOS forms
intricate flower-like patterns. The answer to this contradiction
lies in the lower-right insets in Fig. 8, which show the total
DOS around the localization energy. For stronger fields, the
localized state is better defined in energy, and therefore the
total DOS is larger. In order to properly compare these four

FIG. 8. The evolution of LDOS around a single SV vacancy for
(E,B) values lying on the parabola in Fig. 7(a) (marked by the
green arrows). The magnetic field strengths are 5 T, 10 T, 15 T,
and 20 T, and the corresponding energies and cyclotron radii are
(a) E = 16 meV, Rc = 36.7 Å; (b) E = 23.4 meV, Rc = 26.8 Å; (c)
E = 29 meV, Rc = 22.1 Å; and (d) E = 33.9 meV, Rc = 19.4 Å. The
two circles with radii Rc and 2Rc in each inset are centered at the
vacancy site. Insets in the lower-right corners show the total DOS in
a 6 meV energy range around the localization energy.

cases, we need to normalize the LDOS in each subplot. This
is done in Fig. 9, where each LDOS distribution is divided
by its maximal value. Now, with these normalized results,
the localization radius scales proportionally to the cyclotron

FIG. 9. Same as Fig. 8 but now showing normalized LDOS, where
LDOS in each subplot is divided by a maximum LDOS value for that
subplot. The lower-right insets (showing the total DOS around the
energy of a localized state) are also scaled, so that the DOS peak
maximum is equal to 1.
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FIG. 10. Same as Fig. 9 but now showing normalized LDOS and
DOS for a single divacancy located at the center of the system. The
(E,B) points at which we calculated LDOS and DOS are marked
with green arrows in Fig. 7(c).

radius Rc as is intuitively expected. The scaled results also
point to another interesting feature. We stated earlier that
the LDOS around a monovacancy is localized mostly on one
sublattice, opposite to that of the vacancy. However, the scaled
results show that at the localization energy, the LDOS around
a monovacancy spreads over both sublattices. Nonzero LDOS
on the vacancy sublattice is located mostly in the symmetric,
flower-like area. Outside of this area, states are still localized
only on one sublattice. LDOS is also C3v symmetric, which
can be connected with the underlying C3v (structural) lattice
symmetry.

A similar LDOS comparison, but for an isolated divacancy,
is presented in Fig. 10. Contrary to monovacancies, a diva-
cancy localization length does not change significantly with
magnetic field. This can be understood just based on the linear
E(B) dependence of the divacancy localization energy. If we
assume that localization length is still proportional to the
cyclotron radius, then since E = B/β, it follows that rL ∼
Rc = E/(evF B) = 1/(βevF ). The LDOS around a divacancy
is C2v symmetric, which could be also connected with the
underlying lattice symmetry. Contrary to monovacancies,
divacancies preserve the sublattice symmetry, and this is the
origin of the different behavior of these two disorder types.

D. Decomposition of RB and the current density

When discussing results for the averaged bend resistances
R̄B in Sec. III A, we mentioned that although the averaged
results appear to be symmetric for electrons and holes, the
results for individual distributions are not, and for some
distributions there are no new peaks in RB . In this subsection
we study why this is the case. We compare bend resistances for
two specific monovacancy distributions: one for which there
are new peaks in RB , and one for which there are not. In order
to understand how these peaks come into existence from the
different transmission terms in the S matrix, we decompose
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FIG. 11. Decomposition of the bend resistance RB =
(T41T32 − T42T31)/D, where D = (α11α22 − α12α21)S. Results
for two SV distributions (n = 0.01%) in (a) and (b) are decomposed
in (c) and (d), respectively. Most of the terms in (c) and (d) are
vertically displaced, with dashed lines marking the corresponding
positions of the zero axes. Magnetic field is B = 20 T, and T = 0 K.

RB on its constituent parts, according to the Landauer-Büttiker
(LB) formula [20]. Results are presented in Fig. 11. Here we
focus only on a narrow energy range where these new peaks
in RB appear. Analysis of the main LB terms in Fig. 11(c)
reveals that only one term (T41T32; green curve) is responsible
for the appearance of the RB peaks. The other term in the
numerator (T42T31; gray line) is always equal to zero. A further
decomposition of the first term (T41T32; green curve) shows
that one transmission function (T32; blue curve) is very close
to unity, and that only T41 (red curve) dictates where the new
RB peaks appear. Only when this transmission (T41) is nonzero,
we have peaks in RB . Therefore, to a first approximation, we
can say that RB is proportional to modulated T41. One might
argue that T32 is also important, but since B is perpendicular,
T32 will always be close to unity in this energy range, because
of the edge states that go from the second to the third lead. This
RB-T41 connection is also confirmed in Figs. 11(b) and 11(d),
where both main LB terms in the numerator are equal to zero,
as well as T41, and thus RB is also equal to zero.

The only way to understand why for some vacancy distri-
butions the particular T41 transmission is equal to zero, and for
some it is not, is to investigate how electron current flows in
the presence of vacancy disorder. This is presented in Fig. 12,
for the same two SV distributions as those used in Fig. 11.
In a clean system without vacancies, and with a perpendicular
magnetic field, all current from the first lead would go to the
second lead because of the current carrying edge states. This is
mostly what we see in both cases [Figs. 12(a) and 12(b)] where
the T21 term is the most dominant when compared with the
other transmission functions. This is also visible in Fig. 12(c),
where most of the current from the first lead travels to the
second lead along the edges. The two vacancy distributions
differ in the way they scatter this edge current from the
first to the second lead. The first distribution [Fig. 12(a)] is
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FIG. 12. (a) and (b) Electron transmission functions from the first
lead, for two specific disorder distributions [the same two distributions
as used in Figs. 11(a) and 11(b), respectively]. The transmission
functions are vertically displaced by �T = 2 for clarity. (c)–(f)
Current densities at energies marked in (a) and (b) by vertical red
lines. Magnetic field is B = 20 T, and temperature is T = 0 K.

causing more backscattering (T11), and scattering to the fourth
lead (T41), whereas the second distribution is causing more
scattering to the third lead [T31 in Fig. 12(b)]. Where this edge
current is diverted depends mostly on a particular arrangement
of vacancies, since current flow is pinned by the vacancies.
For example T41, and consequently RB , exhibits narrow peaks
because of a particular arrangement of vacancies in the central
part of the cross. As shown in Fig. 12(d), the current starts to
flow around these vacancies, and it is diverted to the fourth
lead. In a similar way, the current flow in Figs. 12(e) and 12(f)
is also pinned by the vacancies, and diverted to the third lead.

Reference [23] (and particularly chapter IV in this ref-
erence) gives a valuable explanation of the quantum Hall
effect in terms of the electron propagation along the sample
edges. According to this reference, the rise of longitudinal
resistance (for Fermi energies coinciding with the Landau
levels) occurs due to the existence of states in the interior of
the sample. These bulk states connect the otherwise separated
edges channels, and give rise to their backscattering, and this

backscattering manifests in a nonzero longitudinal resistance.
The existence of vacancy localized states in our system, with
energies in between the Landau levels, leads to the expected
LL broadening. Additionally, these vacancy states can provide
a narrow pathway between the channels propagating along
the opposite edges of the system. In our particular setup, the
nonzero T41 term is due to a backscattering between a channel
going from the 1st to the 2nd lead (1 → 2), and the one going
from the 3rd to the 4th lead (3 → 4). This edge state scattering
is responsible for the nonzero bend resistance.

Similar analysis can also explain the asymmetry between
the resistance results for electrons and holes (when the field
direction is fixed). In a clean sample with no vacancies, T21 = 1
and T41 = 0 for electrons, while T21 = 0 and T41 = 1 for holes.
Also T32 = 1 for electrons, while T32 = 0 for holes. We already
showed that the first term in the Büttiker formula [term T41T32

in Eq. (7)] determines the bend resistance. For electrons this
term depends mostly on T41, since T32 = 1. For holes, on
the other hand, it depends on T32, since T41 = 1. Because
T32(−E,B) 	= T41(E,B), the bend resistance in a disordered
system is not the same for electrons and holes. The bend
resistance becomes equal only if we additionally change the
magnetic field direction (from �B to − �B) when we switch from
electrons to holes.

In summary, although the two new peaks in RB should in
general appear at the vacancy localization energy, they are
very sensitive to a particular distribution of vacancies. The
vacancies significantly disrupt and divert the current flow.
However, if not in RB , this current guiding will probably
manifest itself in measurements of some other nonlocal
resistance.

E. NNN interaction

In this section we study the effects of a nonzero hopping
between the second-nearest neighbors (t ′ 	= 0). Figure 13
shows the averaged results for the SV disorder type, for
increasing value of the next-nearest-neighbor (NNN) hopping.
According to Pereira et al. (Refs. [11,12]), for the B = 0 case,
there are vacancy localized states even when t ′ 	= 0. Although
the NNN hopping breaks the electron-hole symmetry, the
localized states are still preserved. Here, we study the nonzero
magnetic field case, and we still observe localization peaks.
Breaking of the e-h symmetry leads to a displacement of the
two peaks, and this displacement (as we show in Fig. 13)
depends linearly on the NNN hopping energy t ′. One of the
peaks moves toward the n = −1 Landau level, whereas the
other moves to the zeroth Landau level. Although the two
new peaks are clearly visible in the bend resistance, they
are not so distinguishable in the DOS. The DOS exhibits
considerable broadening, and the two peaks are barely visible
after temperature smoothing. A closer look in the LDOS
for t ′ 	= 0 (not shown) reveals a strong localization on the
horizontal, zigzag edges. This edge localization causes this
wide background in DOS and masks the narrow vacancy
localization peaks.

The linear energy dependence of the new peaks can be
further explained if compared with the zero field results of
Ref. [11]. The introduction of a nonzero NNN hopping shifts
the whole Landau spectrum by �E = 3|t ′|. According to
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next-nearest-neighbor hopping energy t ′. All results are obtained for
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distributions. Magnetic field is B = 20 T, and T = 16 K. Green,
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hopping energy t ′. Results for t ′ 	= 0 are displaced horizontally by
�E = −3|t ′| in order to align the Landau levels. The RB peaks at the
zeroth Landau level are cut off above 0.09 h/(2e2) for clarity.

Ref. [11], the shift of the zero mode is less than �E, and
proportional to t ′. If we assume that the two localized states that
we obtain originate from this shifted zero mode, than we expect
them to also shift linearly and follow the zero mode. On the
other hand, the two linear coefficients in Fig. 13 are different
(the distance between the peaks increases with t ′). If we assume
that the parabolic E(B) dependence is preserved, then we can
conclude that t ′ also modifies the scaling coefficient α, which
is then a linear function of t ′.

IV. CONCLUSIONS

To conclude, we studied electron transport in graphene Hall
bars in quantizing magnetic fields in the presence of three
different types of vacancy disorder. All three types of vacancy
disorder induce new states in the relativistic Landau spectrum,
but these states behave differently depending on the disorder
type. The new states, localized around monovacancies, are
indirectly observable in the bend resistance and in the total
DOS, but only for vacancy concentrations below a critical
concentration. These states are localized mostly only on

one sublattice, but at the localization energy they spread
on both sublattices in C3v-symmetric, flower-like patterns.
Another interesting feature is the different behavior of the
two monovacancy distribution types. SVA disorder, although
inducing an approximately equal number of states as SV
disorder (compare DOSs in Fig. 4 for these two disorder
types for n = 0.01%), creates considerably different results
in the bend resistance. The origin of these differences is not
known, and requires further study. We speculate that these
differences might come from different current flow patterns
around different types of vacancy pairs. For example, Ref. [25]
showed that vacancy coupling does not depend on their type.
However, we showed that these states have a certain symmetry;
therefore the coupling strength will also depend on direction,
and not only on distance. Divacancies also cause localization,
but for fields that we consider, their localization energies are
much closer to those of the relativistic LLs, which makes them
harder to observe experimentally. Since they do not break the
sublattice symmetry, they are usually C2v symmetric, and they
have a constant localization length.

Depending on the ratio between the average vacancy-
vacancy distance (which depends on the vacancy concentra-
tion) and the field strength, localized states around several
monovacancies can bond together, forming localized bond
states. These bond states have a localization energy different
from that of an isolated monovacancy, but on average they
spread equally around this energy. The localization energy
around a single monovacancy is proportional to the square
root of the magnetic field, while the localization radius (and
consequently the possible radius of the bond states) scales with
the cyclotron radius. The behavior of divacancies is different.
Their localization energy scales linearly with the field, and
their localization length is independent of the field. Based on
this, whether they form bond states depends solely on their
mutual distance, and not on the field strength.

A decomposition of the bend resistance reveals that only
one transmission function (T41) is responsible for the ap-
pearance of additional peaks in RB , which we additionally
connect with the vacancy-guided current flow inside the
system. All these results are slightly modified when a next-
nearest-neighbor interaction is included, and the symmetry
between electrons and holes is broken.
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