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Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory.
We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This
turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states
localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance
oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the
Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the
electron Fermi energy in contrast to predictions from one-dimensional models.
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I. INTRODUCTION

Electrical manipulation of spin polarization of carriers
is one of the key elements for semiconductor spintronics
devices. Since the proposal of the spin-field-effect transistor
by Das and Datta1 particular attention has been addressed
to Rashba spin-orbit (SO) coupling.2 This interaction—a
relativistic consequence of the presence of the electric field
within the device—produces an effective magnetic field3

for the moving electrons which makes their spins precess.
The Rashba coupling has been successfully implemented in
quantum devices that operate on an electron spin through the
control of voltages applied to the electrodes in the system, such
as quantum gates4 and valves.5

Proposals of spin-operating devices concern also spin-orbit-
coupled quantum rings as a realization of universal quantum
gates,6 spin beam splitters,7 or spin filters.8 The electron trans-
fer through quantum rings involves both the spin precession
due to the SO interaction and the quantum interference effects
related to Aharonov-Bohm9,10 and Aharonov-Casher (AC)
effects.11 The latter spin-interference effect12,13 results from
the fact that the relative phase shifts for the wave function
passing through both arms of the ring are spin dependent in the
presence of SO interaction. The AC oscillations were probed
experimentally in a HgTe single quantum ring,14 in a single15

and in an array of InGaAs quantum rings,16 or in an array of
Bi2Se3 topological insulator quantum rings.17

Although the theoretical work on SO-coupled quantum
rings is rich, it is based mostly on the idealized case of a ring
with infinitesimal narrow channels, i.e., the one-dimensional
approximation. This approach allowed one to obtain analytical
description of charge18 and spin6 transport through the ring
as function of the electron Fermi energy and the Rashba
SO coupling strength. Theoretical studies concerning two-
dimensional channels showed however that for an accurate
description of transport through the spin-orbit-coupled ring,
the finite width of the channels cannot be neglected.13,14,19

This is mainly due to the fact that for a finite-width ring the
spin is no longer well defined. Nonetheless, full calculations
are rather scarce. A ring with two-dimensional channels has
been studied within a tight-binding formalism in Ref. 13 or

in the framework of the scattering matrix method in Ref. 20.
Reference 19 investigated the transport within the multiband
Landauer-Büttiker formalism. This was later extended to
describe the experimental data obtained in the presence of
an external magnetic field.14

In this paper we develop a calculation scheme that allows
us to study spin transport through a SO-coupled ring with
two-dimensional channels. We show that the finite width
of the channels along with SO interaction results in the
appearance of Fano resonances in the conductance around the
AC oscillation maxima. These sharp peak-dip structures have
been previously studied in the presence of an external magnetic
field, where they were the result of the broken symmetry of
states localized in the ring,21 in systems of a quantum ring
coupled to a quantum dot,22 or in one-dimensional quantum
rings containing impurities23 and magnetic structures.24 Here
we find that the Fano resonances originate from the coupling
of the transmitted electron with the resonance states localized
in the ring that have broken parity as a consequence of the SO
interaction.

We find that in the resonance region the spin transport
through the ring is strongly modified. We argue that the
modification is caused by the coupling of the electron spin
with the spin of the resonance states which is revealed
by the application of an external magnetic field. When the
SO coupling strength is detuned from the AC oscillation
maxima the Fano resonances are broadened which results in a
dependence of the spin transport on the electron Fermi energy.
This particular result was not present in previous studies
on spin transformations in one-dimensional rings6 and is of
importance for spintronics devices based on SO-coupled rings.

II. THEORY

A. System

We consider a system described by the effective mass
Hamiltonian

H =
(

h̄2k2

2m∗ + Vc(r)

)
1 + 1

2
gμBBσz + HSIA, (1)
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FIG. 1. (Color online) (a) The contour of the confinement
potential of the ring and the leads shown by the black curves. The
region where Rashba coupling is present is marked with blue color.
The dashed thick lines in the leads present the closed system of
leads with length L used to obtain the energies of the localized states
(see text). (b) Function f (y) that controls the spatial presence of
the Rashba coupling. (c) Dispersion relation in the lead obtained for
B = 0.5 T.

where Vc(r) defines the confinement potential of the ring (with
outer radius Ro = 152 nm, inner radius Ri = 88 nm, and mean
radius R = 120 nm) and the leads, both with channel width
W = 64 nm. We adopt a hardwall potential with Vc = 0 inside
the channels and Vc = 200 meV outside (effectively an infinite
barrier). The contour of the confinement potential is depicted
in Fig. 1(a) by the black curve.

The kinetic momentum operator is k = −i∇ + eA
h̄

. We
include magnetic field B directed perpendicular to the plain of
the device. We choose the Lorentz gauge A = (Ax,Ay,0) =
(0,Bx,0).

We include Rashba SO interaction with the Hamiltonian
HSIA = α∇V · (σ × k) resulting from the electric field felt by
the propagating electron. In order to allow for a well-defined
spin in the leads we assume that the Rashba coupling is present
solely in the ring area by applying the electric field only therein.
Experimentally this is realized15 by applying a voltage between
the substrate and a gate that is restricted to the ring area.

In the considered two-dimensional system we describe
the potential that enters the Rashba Hamiltonian HSIA

by V (x,y,z) = Vc(x,y) + |e|Fzzf (y). We include inhomoge-
neous electric field Fz(y) ≡ Fzf (y) that controls the coupling
strength. In Fig. 1(a) in the blue region the electric field is
approximately equal to Fz. The function that controls Fz(y) has
the form f (y) = 1/π2[arctan(y − y1) + π/2][− arctan(y −
y2) + π/2], where y1 = 200 nm and y2 = 500 nm; see
Fig. 1(a). The function is nearly steplike. We depict f (y) by
the blue curve in Fig. 1(b). Finally, we obtain the Rashba
operator for the electric field in the growth direction that
depends on the y position [we neglect the derivatives of Vc(r)
as the wave function disappears in the proximity of the edges
of the confinement potential]:

HSIA = α|e|Fzz
∂f (y)

∂y
(σzkx − σxkz)

+α|e|Fzf (y)(σxky − σykx). (2)

We average over the z direction assuming that the electron
is in the ground state for motion in the vertical excitation
(〈z kz〉 = 1

2 i), obtaining

HSIA = − iα|e|Fz

2

∂f (y)

∂y
σx + α|e|Fzf (y)(σxky − σykx).

(3)

Note that the first term in the latter equation guarantees that
the two-dimensional Rashba Hamiltonian is Hermitian when
the strength of the coupling is varied along the y direction.
In this way we avoid artificial symmetrization needed in the
previous work with nonhomogeneous Rashba coupling.25

We employ material parameters for In0.5Ga0.5As alloy, i.e.,
m∗ = 0.0465m0, g = −8.97. The Rashba coupling parameter
α = 0.572 nm2 is adopted from Ref. 26.

B. Lead eigenstates

We use a finite-difference approach with Hamiltonian
Eq. (1) discretized on a grid with �x = �y = 4 nm, em-
ploying gauge-invariant discretization of the kinetic energy
operator for each of the spinor � components:

h̄2k2

2m∗ �i,j = h̄2

2m∗�x2
(4�i,j − Cy�i,j−1 − C∗

y�i,j+1

−Cx�i−1,j − C∗
x�i+1,j ), (4)

where �i,j = �(xi,yj ), Cy = exp[−i e
h̄
�xAy] =

exp[−i e
h̄
�xBx], and Cy = exp[−i e

h̄
�xAx] = 1. The

derivatives in the SO Hamiltonian (3) are discretized
straightforwardly.

We obtain the asymptotic states in the leads far away from
the ring (i.e., for y = 0), where [−ih̄ ∂

∂y
,H ] = 0 and the spinor

of propagating wave can be written as

�(x,y) = eiky

(
�k

↑(x)

�k
↓(x)

)
. (5)

We insert this form of the spinor in the discretized Hamil-
tonian (1) and obtain a one-dimensional eigenproblem for
transverse quantization in the lead. We plot the dispersion
relation in Fig. 1(c). The energies of the (split by the Zeeman
energy 2Ez) spin-up and spin-down states are plotted with the
red and blue curves, respectively.
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In the present work we consider the range of Fermi energies
such that Ef lies below the energy of the third subband [the
dashed red curve in Fig. 1(c)]. In this case there are four
possible values of the electron wave vector for a given electron
Fermi energy. It can either belong to the lowest subband having
k↑ or −k↑ and spin oriented along the z direction or belong
to the second subband having k↓ or −k↓ and spin oriented
antiparallel to the z direction.

We solve the transport problem through the solution of
the stationary Schrödinger equation H� = E� assuming
boundary conditions such that the electron enters the system
from the bottom electrode and can either be backscattered or
be transmitted through the system. Details on the boundary
conditions and on the approach applied to solve the transport
problem can be found in the Appendix.

Unless stated otherwise in the calculations we lift the spin
degeneracy of the states in the leads by applying a residual
magnetic field with B = 0.1 mT, which does not induce any
observable orbital effects.

III. RESULTS

A. Fano resonances

Let us start with the case of no SO coupling. In the ring
there are two types of localized states: states with positive
and negative parity with respect to the y = 0 axis. We inspect
these states by diagonalization of Hamiltonian (1) for a closed
system with varied length of the leads given by L [see Fig. 1(c)]
and plot the energy spectrum with black dotted curves in
Fig. 2(b). Note that in fact each curve corresponds to the
energies of two spin-opposite states. In Fig. 2(c) we plot the
real part of the wave function of the spin-up states whose
energies we mark by A, B, and C. The A and C states are
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FIG. 2. (Color online) (a) Conductance of the ring as function of
the Fermi energy. (b) Energy spectrum for a closed system of a ring
with leads of length L. In (a) and (b) black dotted curves represent
results obtained for Fz = 0 and red solid curves for Fz = 50 kV/cm.
(c) Real part of the spin-up wave function corresponding to the states
A, B, and C marked with blue arrows on (b) obtained without SO
coupling for L = 80 nm. Green contours depict the profile of the
confinement potential.

the states of positive parity and due to the fact that their wave
function is nonzero in the leads their energy changes with L.
On the other hand the wave function of negative-parity state
B is zero in the leads and its energy is independent of L.

When the electron is transmitted through the ring the
current-carrying state from the lead (which is a state of positive
parity, i.e., the ground state of transverse excitation) couples
to the localized states with positive parity. The conductance
of the ring as function of electron Fermi energy [see black
dotted curve in Fig. 2(a)] exhibits wide resonances due to
this coupling. In the absence of SO interaction the localized
states of the negative parity are bound; i.e., their lifetime is
infinite in spite of the fact that their energy lies in the energy
continuum—above the lowest subband transport threshold. On
the other hand the energy of those states is still below the
transport threshold for the next subband with wave functions
of negative parity with respect to the axis of the channel.

When the SO coupling is introduced (we discuss first the
case of weak Rashba coupling with Fz = 50 kV/cm) the
parity of the localized states is no longer well defined. For
instance mean values of parity operator for states A, B, C
are 0.939, − 0.962,0.957, respectively. Due to the broken
symmetry, the current-carrying state from the lead couples
now to all the localized states. This results in the appearance
of sharp peaks in the conductance, plotted by the red curve in
Fig. 2(a), in addition to the wide resonances. These sharp peaks
are Fano resonances with characteristic asymmetric dip-peak
structures. Their energy corresponds to the energy of states
localized purely in the ring. The small width of the resonances
is reflected in a finite but long lifetime of the resonance state.
In Fig. 2(b) the red curves present the energy spectrum of a
closed system as function of L in the presence of SO coupling.
Note that now due to the fact that the states lack a well-defined
parity anticrossings appear in the spectrum.

B. Spin transport

Let us now inspect spin transport through the ring. We
consider the transmission of the electron with spin initially
polarized along the z direction (from the k↑ subband) and
study the spin state at the output of the system.27 However, for
the considered residual magnetic field B = 0.1 mT the transfer
probabilities from both subbands are exactly the same and the
spin at the output of the ring is exactly opposite.

In Fig. 3 we plot the conductance (black curve) and mean
spin components at the output lead by solid colored curves.
Notice that outside the resonance regions the output spin
orientation remains unchanged when Ef is varied—see the
red and green curves—which is in agreement with the results
of Ref. 6. However, when the electron Fermi energy is tuned
to a resonance value the spin at the output is modified, as seen
clearly in Figs. 3(b) and 3(c).

In order to further explore the spin changes in the narrow
resonance regions let us increase the magnetic field, such the
spin splitting of the localized resonance states is pronounced;
namely, we apply B = 0.02 T. Now the transfer probabilities
for an electron incoming from the subband k↑ and k↓ are
no longer the same. In Fig. 4(a) with the purple curve we
plot the transfer probability for an electron incoming from the
lowest subband in the lead, i.e., k↑ with spin polarized parallel
to the z direction. With the green curve we show the transfer
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FIG. 3. (Color online) (a) Conductance through the ring (black
curve) and mean spin components (blue, green, and red solid curves)
at the output lead for the electron with initial spin polarization along
the z direction. (b), (c) Close-ups of the resonances in plot (a).

probability for an electron incoming from the second subband,
i.e., k↓ with spin polarized antiparallel to the z direction. We
find that the Fano resonances from Figs. 2(a) and 3(a) are now
converted to sharp peaks in the transfer probabilities occurring
separately in both Tk↑ and Tk↓ . In Fig. 4(c) we plot the energy
spectrum of the closed system with varied length of the leads.
Notice that the magnetic field splits the spin doublets of the
localized states. The states have nonzero average spin com-
ponent in the z direction (with |〈sz〉| � 0.9). The states lying
lower in energy have 〈sz〉 < 0; the states with higher energies
have 〈sz〉 > 0. The splitting energy of the doublet is not equal
to the Zeeman splitting as the spin and orbital parts of the wave
function of the states are mixed by the Rashba coupling present
in the ring. Namely, the energy of twice the Zeeman splitting is
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FIG. 4. (Color online) (a) Transfer probability for electron incom-
ing with spin polarized parallel (purple curve) and antiparallel (green
curve) to the z direction. (b) Mean values of the spin components in
the x,y, and z directions at the end of output lead multiplied by the
transfer probabilities. Solid curves are obtained for transport from k↑,
dashed curves for k↓. (c) Eigenenergies of closed system with leads
of length L. The results are obtained for B = 0.02 T.

2Ez = |gμBB| = 10 μeV and the energy difference between
the states whose energies we mark with orange and light blue
curves is 12 μeV and for the pair plotted with blue and red
curves the energy difference is 17 μeV. The mean values of
the spin operators in the x and y direction are zero.

The peaks in the transport probabilities for an electron with
initially spin polarized parallel to the z direction [see purple
curve in Fig. 4(a)] appear for energies equal to those of the
resonance states marked with orange, blue, and green colors
in Fig. 4(c), with positive 〈sz〉. For opposite spin orientation
peaks are present for energies corresponding to the second
state from the spin doublet (with energies marked with light
blue, red, and purple curves), with negative 〈sz〉. This indicates
that resonances in the transfer probability appear when the spin
of the localized state matches the orientation of the spin of the
incoming electron.

Let us now inspect the average spin components at the
output of the system. In Fig. 4(b) we present the mean x,y, and
z spin components multiplied by the conductance with blue,
green, and red curves, respectively. Solid curves correspond
to initial spin-up polarization and the dashed one to initial
spin-down polarization. We observe that when the transported
electron couples to the resonance states localized in the ring the
spin at the output is close to the average spin of the resonance
state (see the peaks marked with vertical dashed lines). Outside
of the resonances we observe that the spin of the transferred
electron deviates from the z or −z direction.

C. Dependence of the spin orientation on the Fermi energy
for increased SO strength

Lets go back to the case of residual magnetic field B =
0.1 mT and inspect the dependence of the spin transport on
the electron Fermi energy for increased strength of the SO
coupling. In Fig. 5 we plot the mean spin components for four
Fz values. We observe distinct broadening of the spin changes
at the Fano resonances. The broadening of the resonances
corresponds to a reduction of the lifetime of the resonance
states in the ring.

Although the Fermi energy affects the spin evolution in the
ring, the spin measured at the output (i.e., multiplied by the G)
remains unchanged as function of Ef for Fz < 200 kV/cm.
This is made clear by the contour maps of the mean spin
components multiplied by the conductance presented in Fig.
6(a) for the y component and in Fig. 6(d) for the z component.
Outside the narrow Fano region spin changes are masked by
the blocked transport through the ring.

Figures 6(a) and 6(b) show that as the strength of the Rashba
coupling is varied the conductance of the ring is changed due
to the phase shift of the wave functions traveling in the left
and right arm of the ring—the AC effect that modifies the
conductance by a factor of13

GAC = e2

h

[
1 − cos

(
π

√
1 +

(
2Rm∗α|e|Fz

h̄2

)2)]
. (6)

For appropriately chosen strength of the SO coupling transport
through the ring is quenched.18,19 For parameters taken in the
present calculation the first AC oscillation minimum (GAC =
0) is present around Fz = 200 kV/cm which can be observed
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FIG. 5. (Color online) Mean values of the spin components at the
output lead obtained for different strengths of the Rashba coupling
(as marked on the right side of plots).

in Figs. 6(a) and 6(d). On the other hand the first maxima
of the AC oscillations appear for Fz = 0 and around Fz =
340 kV/cm (note that the quenching of the conductance is
found at slightly lower values of Fz for higher Fermi energy).

Similarly to the dependence of the spin on the electron
Fermi energy observed before the first AC oscillation min-
imum (Fz < 200 kV/cm) we find that the spin changes for
Fz > 200 kV/cm—after the first AC oscillation minimum [see
Figs. 6(b) and 6(e)]. Similarly to the spin dependence in Fig. 5,
they originate in the Fano resonances. Only now the resonances
are associated with the second AC oscillation maximum
around Fz = 350 kV/cm. Moreover now the dependence of
the spin on the Fermi energy is no longer masked by the
quenched transfer probabilities and it is visible in the contour
maps of Figs. 6(a) and 6(d).

We conclude that the changes in the spin orientation
originate at the Fano resonances appearing around and in the
AC oscillation maxima and are broadened for SO coupling
strength detuned from the AC oscillation maxima.

D. Comparison with one-dimensional model

In Ref. 6 it was found that when the electron is trans-
ferred through a one-dimensional spin-orbit-coupled ring
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FIG. 6. (Color online) Mean spin components [(a) 〈sy〉, (d) 〈sz〉]
at the output of the system multiplied by the conductance as function
of the Rashba coupling strength and the Fermi energy. Plots (b) and
(e) shows mean spin components at the output of the ring 〈sy〉 and
〈sz〉 respectively. (c) and (d) are the spin components independent of
Ef as calculated from the 1D approximation (see text).

its spin precesses around the y direction by an angle
2θ = 2 arctan(−Fz|e|α2m∗R/h̄2) which is independent of
the electron Fermi energy. We calculated the spin after the
rotation (taking R as the external radius of the ring, the
area where the SO is present) about the angle 2θ and plot
the spin components in Figs. 6(c) and 6(f). We observe that
before the first AC oscillation minimum both of the present
results—of the two-dimensional model and the results for the
one-dimensional ring—are similar with the exception of the
spin resonances that are present in the first case. However, as
the SO coupling strength is increased—the entanglement of
the orbital and spin part of the wave function present for the
system with finite-width channel increases—the discrepancy
between our calculation and the results of the one-dimensional
model increases. Namely, we find positive values of the y

spin component, which is not seen in the one-dimensional
approximation [note that the predictions of Eq. (6) for AC
oscillation maxima and minima still hold for this strength of
SO coupling].

E. Impact of the channel width and the ring radius

Let us now inspect the influence of the channel width on the
spin behavior. We perform calculations in which we keep the
mean radius of the ring constant and modify the channel width
W . We observe that the dependence of the spin orientation
on the Fermi energy is changed. In Fig. 7 we plot the spin
components at the output of the ring for different channel
width. The wide resonances of the spin at the output as function
of Fermi energy found for the wide-channel ring [see Fig. 7(c)]
are transformed to sharp peaks for a ring with narrow channels
[see Fig. 7(a)]. As the strength of the Rashba coupling and the
mean radius of the ring are kept constant, we conclude that the
dependence of the spin on the electron Fermi energy is an effect
of the two-dimensional character of the channels which gets
weaker for decreased W ; i.e., the resonances become narrower.
This is in agreement with the intuition that for infinitesimal
narrow channels the dependence of Ef should vanish (the
peaks should be infinitesimally narrow) and the spin changes
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FIG. 7. (Color online) The mean spin components at the output
(〈sx〉 with blue, 〈sy〉 with green, and 〈sz〉 with red curve) for Fz =
70 kV/cm and varied channel width W . Dotted black curves present
the transport probabilities.

should not depend on the electron Fermi energy as found in
the one-dimensional model. Note that in Fig. 7(c) we plot only
the Fermi energy range below the energy of the third subband
in the lead.

As expected from Eq. (6) the position of the AC oscillation
minima and maxima with respect to the Rashba coupling
strength is inversely proportional to the ring radius. In Fig. 8
we the present results obtained for a ring with mean radius
R = 220 nm. First, we observe that spin components oscillate
more frequently as function of the Fermi energy which can
be attributed to the lower spacings between the energies of
the localized states of a larger ring. Nevertheless, we observe
a similar qualitative spin behavior with respect to the Fermi
energy as in the case of a smaller ring [compare Figs. 8(b)
and 8(e) with Figs. 6(b) and 6(e)]. Only now we are able
to observe more periods of AC oscillations. We again find
that the spin changes originate from the Fano resonances,
which appear when the SO strength is tuned to the AC con-
ductance oscillation maxima, i.e., for Fz � 185 kV/cm and
Fz � 320 kV/cm. However, in terms of the mean spin values
multiplied by the conductance, we observe a dependence
on the Fermi energy only for strong SO coupling (namely
Fz > 200 kV/cm) similarly to the case of a smaller ring.
Also the correspondence with the one-dimensional results [see
Figs. 8(c) and 8(f)] remains the same as for smaller ring radius.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the spin and charge trans-
port through a spin-orbit-coupled quantum ring with two-
dimensional channels. We found Fano resonances of the
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FIG. 8. (Color online) Mean spin components [(a) 〈sy〉, (d) 〈sz〉]
at the output of the system multiplied by the conductance as function
of the Rashba coupling strength and the Fermi energy. Plots (b) and
(e) show the mean spin components at the output of the ring 〈sy〉 and
〈sz〉, respectively. (c) and (f) are the spin components as calculated
from the one-dimensional approximation (see text). Results are for a
ring with radius R = 220 nm.

conductance which are present for nonzero SO coupling
strength tuned to the maxima of AC oscillations. These narrow
resonances are an effect of coupling of the current-carrying
states from the leads with the localized states in the ring
that have a long lifetime. The coupling is possible due to the
breaking of the parity of these states by the SO interaction.

In the Fano resonances spin transport through the ring is
modified. We argue that the modification is due to the coupling
of the transferred electron spin with the spin of the resonance
states which we investigated in the presence of finite external
magnetic field.

When the SO coupling strength is such that system is
outside the AC oscillation maxima the Fano resonances are
broadened. In that case the spin modification is translated into a
wide dependence of the spin transport on the Fermi energy. The
latter result is in contrast to the findings of the one-dimensional
model6 which employed spin transformations (independent of
Ef ) performed in a quantum ring to realize a universal set of
quantum gates. However, when the width of the channels is
decreased the resonances that result in the dependence of spin
transport on the Fermi energy become narrower; the results
tend toward the prediction of the one-dimensional model.

Moreover, by the direct comparison of the results of the
one-dimensional model and the two-dimensional calculation
we found that for strong SO coupling the spin evolution
proves to behave in a way exceeding the predictions for a
one-dimensional ring even outside the resonance region.
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APPENDIX

This Appendix describes the applied boundary conditions
and the method which are used for a solution of the electron
transport through system described by Hamiltonian (1).

1. Boundary conditions

The boundary conditions applied in the method assume that
the electron enters the system with a given wave vector kinc

(corresponding to a given energy) and can exit the system
with the combination of wave vectors available for this given
energy.

Let us first consider the output channel. The wave function
in such channel is a combination of channel eigenstates with
positive wave vectors (as we assume no backscattered waves
in the output lead). Let us subtract from the derivative

∂�(x,y)

∂y
=

∑
k>0

ikcout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)
(A1)

ikinc�(x,y), obtaining

∂�(x,y)

∂y
=

∑
k>0

i(k − kinc)cout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+ ikinc�(x,y). (A2)

From the discretized form of the derivative

∂�(x,y)

∂y
= �(x,y + �y) − �(x,y − �y)

2�y
, (A3)

we obtain

�(x,y + �y) = 2�y
∑
k>0

i(k − kinc)cout
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+�(x,y − �y) + 2�yikinc�(x,y). (A4)

The same procedure leads to the form of the boundary
condition in the bottom of the computational box. Only now
we add ikinc�(x,y) and the sum includes a positive wave
vector of incoming electron kinc and the two backscattered
waves with negative wave vector. For instance, for transport
of an electron with wave vector k↑,

�(x,y − �y) = −2�y

k 	=k↓∑
k

i(k+kinc)cin
k exp[iky]

(
�k

↑(x)

�k
↓(x)

)

+�(x,y + �y) + 2�yikinc�(x,y). (A5)

We use the above forms of the wave functions to obtain the
boundary conditions, i.e., �(x,y + �y) for the top edge of
the computational box and �(x,y − �y) at the bottom of the
computational box (at the left and right edge of the mesh we
assume � = 0). The used boundary conditions are transparent;
i.e., the transport results do not depend on the length of the
leads.

2. Solving the transport problem

We solve the system of equations produced by the dis-
cretization of the Schrödinger equation with the boundary
conditions described above. In the present method on the one
hand the amplitudes cin

k and cout
k are required for the boundary

condition and on the other hand they can be obtained from
the solution of the Schrödinger equation. Thus we assume
initial values of the amplitudes (namely, cin

k↑ = cout
k↑ = 1/

√
2

for kinc = k↑; however, we checked that the particular choice of
the initial values does not change the final result) and put them
into the boundary conditions. Then we solve the Schrödinger
equation. From the solution we extract new values of the
amplitudes by projection (in the input and output leads) of
the function

�(x,y) =
∑

k

ck exp[iky]

(
�k

↑(x)

�k
↓(x)

)
(A6)

(which accounts all possible wave vectors for a given energy)
onto the solution and solve again the Schrödinger equation.
Such procedure is repeated until convergence is reached—
the extracted amplitudes do not change in the subsequent
iterations, and the amplitudes ck are such that in the input
channel there is only one incoming wave and in the output
lead there are no backscattered waves.

We calculate transport probability from the ratio of the
probability currents jk in the leads for respective wave vectors:

Tk→k′ =
∣∣∣∣cout

k′

cin
k

∣∣∣∣
2

jk′

jk

. (A7)

The conductance G is calculated as a sum of the trans-
mission probabilities over available subbands; i.e., G =
2e2

h

∑k↑,k↓
i

∑k↑,k↓
j Ti→j .

The described approach allows one to study the electron
transport for a given Fermi energy in contrast to the methods
involving transmission of a wave packet10 that consists of the
superposition of H eigenstates. Also, as the approach is based
on an exact solution of the Schrödinger equation it naturally
includes evanescent modes that can appear in the ring.
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