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The orbital effects of the in-plane magnetic field on a two-electron harmonic quantum dot are studied using
a variational method. For flat quantum dots the singlet-triplet transitions appearing in a perpendicular magnetic
field are absent in a magnetic field oriented parallel to the plane of confinement. Instead, a degeneracy of
orbital energies for symmetric and antisymmetric states at high in-plane magnetic field is observed. This
degeneracy is due to the formation of Wigner molecules in the laboratory frame of reference with charge
islands elongated along the direction of the magnetic field and localized within the plane perpendicular to it.
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I. INTRODUCTION

Epitaxially grown quantum dots1 usually have a flat ge-
ometry with a confinement in the growth direction much
stronger than the in-plane confinement. Application of a
magnetic field oriented along the growth direction leads to a
number of extensively studied2 effects, i.e., angular momen-
tum and spin transitions, which are observed in transport
spectroscopy3 as cusps in the single-electron charging lines.
A high perpendicular magnetic field induces separation of
electron charges, i.e., Wigner crystallization, which for cir-
cular dots appears only in the internal degrees of freedom.
Laboratory-frame Wigner crystallization is a realizable fea-
ture of the ground state only at the angular momentum
transitions.5 On the other hand, Wigner molecules can be
observed in anisotropic quantum dots if the system possesses
a nondegenerate classical4 counterpart reproducing the sym-
metry of the confinement potential.5,6 The pinning of Wigner
molecules by a local potential cavity7,8 or by an external
charged defect9 was studied recently. In this paper we con-
sider the breaking of the rotational symmetry of the quantum
dot by the application of an in-plane magnetic field, and we
show that it can result in a laboratory-frame Wigner localiza-
tion.

The effect of the external magnetic field on the electron
system is proportional to its flux through the area encircled
by the electrons. Therefore, the orbital effects of the in-plane
magnetic field are weaker than those of the perpendicular
field and in the limit of a strictly two-dimensional confine-
ment the in-plane magnetic field does not influence the or-
bital wave functions. Such an in-plane magnetic field
has been applied experimentally10–12 to investigate spin ef-
fects(Zeeman splitting and spin-orbit13,14 interactions). Nev-
ertheless, the electron wave functions in real dots have a
finite spread in the growth direction. In pillar quantum dots
based on AlxGa1−xAs/InxGa1−xAs double barrier hetero-
structures15 the quantum well has a width of 12 nm, and the
width of the GaAs quantum well in the planar vertical dot16

is about 17 nm. The lateral quantum dots17 are based on a
gated two-dimensional electron gas(2DEG) formed at a
GaAs–nAl xGa1−xAs heterojunction. The vertical spread of
the electron wave function in the 2DEG for typical values of
the electron density and dopant concentration is also of the

order 10–15 nm.18 As a consequence, the orbital effects of
the field are nonzero and can be visible for instance in the
diamagnetic shifts12 of chemical potentials. The role of the
in-plane magnetic field for the attenuation of tunneling be-
tween vertically19 and laterally20 coupled dots has been
pointed out.

The effect of the in-plane magnetic field on few-electron
systems in a single dot has not been studied so far. The
purpose of the present paper is to provide such a study for
the two-electron system—the simplest few-electron eigen-
problem. We show that although for strong vertical confine-
ment and relatively weak magnetic fields the orbital related
triplet-singlet energy difference(the exchange energy20) is
positive and approximately constant, its limit value in the
high magnetic field falls to zero, which results from the sepa-
ration of the electron charges appearing due to Wigner crys-
tallization. In vertical and lateral quantum dots the confine-
ment in the growth direction has a rectangular or triangular
shape. In the present paper we are interested in the qualita-
tive effects of the in-plane field, so we consider a harmonic
confinement potential that largely simplifies the calculations
due to the separation of the center-of-mass motion.

This paper is organized as follows. The next section out-
lines the theory and the method to solve the Hamiltonian
eigenvalue problem. In Sec. III the results and discussion are
given. The summary and conclusions are presented in Sec.
IV.

II. THEORY

We consider a pair of electrons in a three-dimensional
harmonic quantum dot, rotationally symmetric with respect
to the z axis and subject to a magnetic field oriented along
the x direction. We apply the Landau gaugeA =s0,−Bz,0d
under which the Hamiltonian reads

H = − "2s¹1
2 + ¹2

2d/2m+ mv2sx1
2 + y1

2 + x2
2 + y2

2d/2

+ msvz
2 + vc

2dsz1
2 + z2

2d/2 + i"vcsz1 ] /] y1 + z2 ] /] y2d

+ e2/4pee0ur 1 − r 2u, s1d

where"vz is the confinement energy in thez direction,"v is
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the energy of confinement in thesx,yd plane,m is the elec-
tron band mass,vc=eB/m is the cyclotron frequency, ande
is the dielectric constant. For our numerical calculations ma-
terial data of GaAs are usedm=0.067 ande=12.9. We study
the orbital effects neglecting the spin Zeeman interaction,
which, however, can be trivially accounted for.

Introducing center-of-massR=sr 1+r 2d /2 and relative po-
sition r =r 1−r 2 vectors, one can separate the Hamiltonian
into a sum of center-of-mass and relative HamiltoniansH
=Hcm+Hrel with

Hcm= − "2¹cm
2 /2M + Mv2sX2 + Y2d/2 + Msvz

2 + vc
2dZ2/2

+ i"vcZ ] /] Y s2d

and

Hrel = − "2¹rel
2 /2m + mv2sx2 + y2d/2 + msvz

2 + vc
2dz2/2

+ i"vcz] /] y + e2/4pee0r , s3d

whereM =2m andm=m/2. The two-electron wave function
can be written as a product of center-of-mass and relative
eigenfunctions

Csr 1,r 2d = Fcmfsr 1 + r 2d/2gFrelsr 1 − r 2d. s4d

It can be verified by a direct calculation that the ground-state
energy of the center-of-mass motion equalsEcm="hv+fvc

2

+sv+vzd2g1/2j /2, and that the ground-state wave function
reads(up to a normalization constant)

FcmsRd = exps− bxX
2 − byY

2 − bzZ
2 + ibzyZYd, s5d

with bx=Mv /2", by=MvÎ1+vc
2/ svz+vd2/2", bz

=MvzÎ1+vc
2/ svz+vd2/2", andbzy=Mvcv / svz+vd".

The relative Hamiltonian(3) commutes with the parity
operatorsr →−r d. States with even(odd) parity are symmet-
ric (antisymmetric) with respect to the interchange of elec-
trons and therefore correspond to spin singlets(triplets). The
relative Hamiltonian commutes also with operators of inver-
sion inx directionsx→−xd and in the plane perpendicular to
the magnetic fieldfsy,zd→−sy,zdg. In the following we will
label the states by their parities inx and y directions put in
parentheses by the first and second descriptor, respectively
[for instance,(even,odd) stands for a state even inx direction
and odd in the(y, z) plane].

In the absence of the electron-electron interaction the con-
tribution of the diamagneticsmvc

2z2/2d and the paramagnetic
si"vcz] /]yd terms describing the in-plane magnetic field in
Hamiltonians(1)–(3) can be evaluated analytically. For the
center-of-mass Hamiltonian(2) and the wave function(5) the
expectation values of the diamagnetic and paramagnetic
terms equal Mvc

2/8bz="vc
2/4vzÎ1+vc

2/ svz+vd2 and
−"vcbzy/4bz=−"vvc

2/2svz+vdvzÎ1+vc
2/ svz+vd2, respec-

tively. In the limit of infinite vz the electrons become con-
fined two-dimensionally in thez=0 plane, which leads to the
vanishing of the diamagnetic and paramagnetic contributions
(it is also evident from the form of the corresponding terms
in the Hamiltonian). In order to maintain the values of the

magnetic contributions to the energy,vc has to grow simul-
taneously withvz. For thevc/vz ratio kept constant the dia-
magnetic contribution is approximately linear invc and the
paramagnetic contribution is approximately constant.

In order to solve the eigenequation for the relative motion
Hamiltonian in the presence of the interaction we use the
variational method with the following trial wave function:

Frelsr d = exps− ax2 − by2 − gz2 + iczyd o
i,j ,k=0

i+j+køM

dijkxiyjzk,

s6d

wherea, b, g, c are the nonlinear parameters anddijk is the
linear variational parameter,M controls the number of basis
elements. In the absence of the interaction, the wave function
(6) reproduces exactly the analytic eigenfunctions using a
finite number of terms in the expansion. In this sense the
present approach is equivalent to the three-dimensional gen-
eralization of the method used by Drouveliset al.22,23 for
two-dimensional anisotropic quantum dots with perpendicu-
lar magnetic field. Similar single-electron wave function was
used by Harjuet al.21 for the configuration-interaction study
of the electron pair in two-dimensional laterally coupled
quantum dots.

The exact wave function for thes-type states in a
harmonic-oscillator confinement potential is asymptotically
linear in the limitr →0 (has a cusp atr =0), which is related
to the Coulomb interaction singularity. Sincer cannot be
developed in a MacLaurin series in Cartesian coordinates the
present and previously used wave functions21–23 cannot ac-
count for this linearity in the nearest neighborhood of the
origin. We have performed test calculations in order to esti-
mate the importance of this shortcoming. For this purpose
we have solved the eigenequation for Hamiltonian(1) for
B=0 and a spherically symmetric potential"v="vz
=3 meV in a numerically exact manner with a finite differ-
ence method. Table I shows the convergence of the energy
estimates obtained with the wave function(6) to the exact
ground-state eigenvalue. Comparison of the wave functions
is presented in Fig. 1. ForM =6 the wave function has a
shallow local minimum at the origin and the maximum of the
wave function is shifted to the right with respect to the exact
solution. ForM =22 the local minimum gets almost as deep

TABLE I. Convergence of the energy estimates obtained with
wave function(6) to the exact ground-state energy(last row) of the
relative Hamiltonian as function ofM (the number of terms used in
the wave function isK) for B=0 and a spherically symmetric con-
finement potential with"v="vz=3 meV.

M K EsmeVd

0 1 8.6100

2 5 8.4336

6 30 8.4187

14 204 8.4145

22 650 8.4134

exact 8.4134
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as in the exact solution, the wave function becomes linear
between 5 and 15 nm, and the position of the maximum of
the wave function is improved with respect to theM =6 wave
function. The expectation value of the energy is a functional
of the radial probability density, which is depicted in the
inset of Fig. 1. We can see that the exact radial probability
density and the one calculated forM =22 are indistinguish-
able, which explains the high precision of the energy esti-
mates(cf. Table I). The region of the trial wave function
nonlinearity around the origin can be made arbitrarily small,
and a numerically exact value of the energy and a nearly
exact radial probability density are obtained. Therefore the
application of the proposed wave function is well justified.
The cusp shortcoming concerns also the states ofp symme-
try, but its importance is smaller since forp states the func-
tions vanish at the origin. Wave functions of higher angular
momentum have no cusps at the origin. The cusps in the
exacts andp symmetry states dissapear24 in the Wigner crys-
tallization limit for which a Coulomb hole is formed in the
relative wave function nearr =0.

III. RESULTS AND DISCUSSION

A. Spherical quantum dot

We consider first the effect of the magnetic field on a
spherical quantum dot. The lowest energy levels for all parity
symmetries calculated with respect to the lowest Landau
level are plotted in Fig. 2 as function of the external mag-
netic field. The solid(dotted) lines correspond to states of
even(odd) total parity, i.e., to singlet(triplet) states. In the
absence of a magnetic field the ground state corresponds to
the angular momentum quantum numberL=0, the lowest
excited states of(even, odd) as well as with(odd, even)
parity correspond toL=1. The lowest(odd, odd) energy
level corresponds toL=2. The magnetic field breaks the
spherical symmetry of the system so only thex-component

of the angular momentum is quantized. Figure 2 shows that
angular momentum and spin transitions appear in the ground
state. Thex component of angular momentum of the lowest
singlet (triplet) states takes values of even(odd) parity inte-
gers(in " units). The angular momentum transitions and the
singlet-triplet oscillations are qualitatively similar to the ef-
fects appearing in two-dimensional circular quantum dots in
the presence of a perpendicular magnetic field.23,25 The ori-
gin of the singlet-triplet oscillations in two-electron two-
dimensional quantum dots is well understood. The increase
of the magnetic field pushes the maximum of the relative
wave function toward the origin(in the three-dimensional
case—towards thex axis) increasing the mean value of the
Coulomb interelectron repulsion. In consequence the state of
a higher angular momentum(with stronger electron separa-
tion) acquires lower energy beyond some critical value of the
magnetic field. The ground-state angular momentum(with-
out the spin Zeeman term) takes the subsequent integer val-
ues as the magnetic field increases. The lowest-energy states
of the odd(even) angular momentum are realized in the trip-
let (singlet) spin configuration,25 which leads to the singlet-
triplet oscillations.

On the other hand, the order of the lowest singlet and
triplet energy levels that are odd in thex direction is not
affected by the field(cf. Fig. 2). Here, the magnetic-field-
induced localization of the relative wave function around the
x axis does not essentially decrease the electron-electron dis-
tance since in these states the electrons are separated in thex
direction. The driving force for the singlet-triplet oscillations
is therefore absent in this branch of energy levels.

The inset to Fig. 2 shows the contours of the relative
probability density for the lowest singlet state integrated over
the x direction. Note that in the integration the minimum of

FIG. 1. Ground-state wave function of the relative Hamiltonian
calculated for the parameters used in Table I. Solid line shows the
exact wave function, the dashed(dotted) line is the wave function
obtained by the variational method forM =6sM =22d. Inset: com-
parison of the exact radial probability density(solid line) with the
dependence obtained variationally withM =22 (open circles).

FIG. 2. Energy eigenvalues of the relative Hamiltonian(3) cal-
culated with respect to the lowest Landau level for a spherical quan-
tum dot with "v="vz=3 meV (Zeeman effect neglected). The
solid and dotted lines show the singlet and triplet energy levels,
respectively. In parentheses the parity of the corresponding eigen-
states in thex direction and within the(y, z) plane is given. The
numbers indicate thex component of the angular momentum in"
units. The inset shows the lowest singlet probability density inte-
grated over thex direction for magnetic fieldsB=0, 12, and 18 T.
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the probability density at the origin forB=0 (cf. Fig. 1)
disappears. The lowest singlet states forB=0, 12, and 18 T
correspond to thex component of the angular momentum
equal to 0, −2", and −4", respectively. For nonzero angular
momentum, the probability density is totally removed from
the x axis. The densities exhibit perfect circular symmetry
around thex axis, although it is not evident from the form of
the Landau-gauge Hamiltonian[cf. Eq. (3)]. This result can
serve as an additional test of the reliability of the numerical
approach applied.

B. Flat quantum dot

The low-energy spectrum for a flat quantum dot with
"v=3 meV and"vz=12 meV is plotted in Fig. 3(Zeeman
effect neglected). For this value of thez confinement energy
the spread of the electron charge density in thez direction
2Dz=2kz2l1/2=Î2" /mvz is about 13.75 nm. The magnetic
field lifts the degeneracy of the triplet energy levels, which
for B=0 correspond to states withz-component angular mo-
mentum equal to ±". In the presence of a magnetic field
oriented along thex direction none of the components of the
angular momentum commute with the Hamiltonian and
therefore none of them are quantized. The external magnetic
field leads to singlet-triplet degeneracy in contrast to singlet-
triplet oscillations observed in a spherical dot(cf. Fig. 2).
Figures 2 and 3 show that the lowest singlet as well as the
lowest triplet states have evenx direction parity, indepen-
dently of the value of the magnetic field and the strength of
the electron-electron interaction.

The singlet-triplet energy splitting in the absence of the
spin Zeeman effect is shown in more detail in Fig. 4. The
exchange energy for the spherical quantum dot has a discon-
tinuous derivative when angular momentum transitions ap-
pear in the lowest singlet or triplet states. For small aniso-

tropy of the confinement potential(cf. the line for "vz
=3.5 meV), the exchange energy becomes a smooth function
of the magnetic field. The oscillations of the energy differ-
ence around zero have a decreasing amplitude with growing
confinement energy in thez direction. For"vzù8 meV the
oscillations disappear and the exchange energy decreases
monotonically to zero with the external field. The thick
dashed line in Fig. 4 shows the spin Zeeman splitting be-
tween the singlet and triplet states(−B"g*mB with the effec-
tive Landé factorg* =−0.44). The crossing of this line with
the exchange energy curves indicate the value of the mag-
netic field for which the triplet becomes the ground state.

The inset to Fig. 4 shows the exchange energy in the low
magnetic field region. ForB=0 T the singlet-triplet energy
splitting is a decreasing function of the strength of confine-
ment in thez direction. As thez size of the quantum dot is
decreased the system starts to approach the strictly two-
dimensional limit in which the singlet-triplet splitting for
"v=3 meV is 1.3 meV. The increase of thez confinement
energy affects more strongly the energy of the singlet state,
increasing the value of the wave function at the origin(cor-
responding to both electrons localized in the same position).
The triplet wave function vanishes at the origin due to the
Pauli exclusion principle.

Let us now look at the origin behind the magnetic-field-
induced singlet-triplet degeneracy for the dot with"vz
=12 meV. The contour plots in Fig. 5 show the relative prob-
ability density integrated overx (left panel) and z (right
panel) coordinates for the lowest singlet state. The quasi-
three-dimensional plots at the right-hand side of Fig. 5 show
the surface in thez.0 half space at which the probability
density falls to one-fifth of its maximum value. Region in-
side the surface contains roughly 90% of the probability. For
B=0 T the probability density integrated over thex direction
exhibits local maxima outside they=0 line (cf. left panel of
the contour plot in Fig. 5). The magnetic field transforms
them into separated islands on the(y, z) plane. ForB=0 T

FIG. 3. Energy eigenvalues of the relative Hamiltonian calcu-
lated with respect to the lowest Landau level for a flat quantum dot
with "v=3 meV and"vz=12 meV. The solid and dotted lines
show the singlet and triplet energy levels, respectively. In parenthe-
ses the parity of the corresponding eigenstates in thex direction and
within the (y,z) plane is given.

FIG. 4. Triplet-singlet energy difference(without the spin Zee-
man effect) as function of the magnetic field for"v=3 meV and
various confinement energies in thez direction. The thick dashed
line shows the spin Zeeman splitting between the triplet and the
singlet states. The inset shows the low-magnetic-field region.
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the density integrated over thez coordinate is circular sym-
metric (cf. right panel of the contour plot in Fig. 5). For the
flat quantum dot the integration over thez coordinate does
not fill in the central local maximum as in the spherical case
(cf. Fig. 1 and inset of Fig. 2 forB=0 T). When a magnetic
field is applied, the density loses its circular symmetry and is
transformed into two maxima elongated along the direction
of the magnetic fieldsxd and becomes strongly localized in
the direction perpendicular to the field. The region in which
the probability density is nonzero at high magnetic field re-
sembles two beans put along thex axis near thez=0 plane.

Figure 6 shows the relative probability density for the
triplet state[of odd parity in the(y,z) plane and of even
parity in thex direction]. For B=0 the y and z degrees of
freedom are decoupled and the wave function is simply of
odd parity in they direction and even inz direction.26 The
plots for B=0 T show that the density vanishes near they
=0 plane and that it forms two semiround islands parallel to
the x axis localized around thez=0 plane. Magnetic field
makes the islands thinner, longer, and less oval. ForB
=30 T the probability densities for the triplet and singlet
states become almost identical, which is the reason for the
singlet-triplet degeneracy at high magnetic field(cf. Fig. 3).

For the sake of physical interpretation it is useful to look
at the ground-state charge density in the laboratory frame of
reference. The charge density can be extracted from the two-
electron wave function by integration with Diracd functions

nsr d = kCsr 1,r 2dudsr − r 1d + dsr − r 2duCsr 1,r 2dl

= 2E dr 1uFcm(sr 1 + r d/2)u2uFrelsr 1 − r du2. s7d

Figure 7 shows the comparison of the probability densities of
the center-of-mass and relative ground states and the two-
electron charge densities(divided for comparison by two)
integrated over thez direction for the potential parameters of
Figs. 5 and 6.27 The noninteracting density(divided by two)
and the center-of-mass density come from solutions of the
same Schrödinger equations, the only difference is that the
center of mass is twice heavier, which results in a stronger
localization of the center-of-mass density. On the other hand,
the mass that enters the relative Hamiltonian is half of the
electron mass, which along with the repulsive Coulomb
potential results in a weaker localization of the relative
charge density. The interacting two-electron charge density
calculated according to expression(7) is more weakly local-
ized than the center-of-mass density but the localization
is stronger than for the relative wave function. The integra-
tion of the relative charge density with the center-of-mass
density fills the Coulomb hole visible in the relative density
(cf. right panel of Fig. 5 forB=0 T). The effect of the Cou-
lomb interaction on the electron localization can be esti-
mated from a comparison of the interacting and noninteract-
ing charge densities.

FIG. 5. Contour plots at the left side of the
figure shows the relative motion probability den-
sity for the lowest singlet state integrated over the
x direction (left panel) and over thez coordinate
(right panel) for "v=3 meV, "vz=12 meV, and
different magnetic fields. Larger values of density
are marked with darker colors. At the right side of
the figure we show the surface at which the prob-
ability density takes one-fifth of its maximum
value.
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The evolution of the ground-state charge densityfnsr dg
with the in-plane magnetic field, which is presented in Fig. 8.
The two local maxima of the probability density visible for
the relative eigenstate(cf. left plot for B=0 T in Fig. 5)

merge into a central maximum when integrated over the rela-
tive probability density with the center-of-mass density. For
B=10 T the limits of the charge pool become squeezed in the
direction perpendicular to the field. The appearance of the
maximum elongated along thex=0 axis (cf. right plot for
B=10 T) is due to the formation of the two maxima in the
relative density(cf. right plot in Fig. 5 forB=10 T). Plots for
B=20 T andB=30 T show a distinct separation of the elec-
tron charges, i. e., Wigner crystallization. The single-electron
charge islands formed under the influence of the in-plane
field form stripes elongated along the direction of the applied
field. The extent of the charge density is not essentially
changed along the direction of the field.

The magnetic-field-induced singlet-triplet degeneracy can
be conveniently explained in the single-electron picture as
due to the vanishing overlap between the wave functions of
the two electrons. In the absence of the overlap the exchange
interaction disappears leading to the observed spin degen-
eracy. The wave function separation is due to the strong lo-
calization of the single-electron charge islands in the direc-
tion perpendicular to the field. The present effect is similar to
the singlet-triplet degeneracy induced by the in-plane mag-
netic field for laterally coupled quantum dots.19,20 For
coupled dots the in-plane magnetic field induces stronger
localization in each of the quantum dots, which results in a
decreasing tunnel coupling(an increase of the effective
height of the interdot barrier), which eventually leads to the

FIG. 6. The same as Fig. 5 but now for the
lowest triplet state.

FIG. 7. Probability densities of the ground state of the center of
mass(CM) and relative(rel) Hamiltonians, and the charge density
of the noninteracting and interacting system of two electrons inte-
grated over thez direction as a function of the radial coordinater
=Îx2+y2 for "v=3 meV, "vz=12 meV, andB=0 T. The two-
electron charge densities have been divided by 2.
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separation of the single-electron wave functions. The separa-
tion accompanied with the singlet-triplet degeneracy appears
also without the in-plane field for the thick interdot barrier28

as well as in large quasi-one-dimensional quantum dots.28,29

Drouvelis et al.23 found the ground-state singlet-triplet de-
generacy for large anisotropy in asmall two-dimensional
quantum dot in the absence of the external magnetic field.
For strong anisotropy this model23 gives a strictly one-
dimensional potential, for which the Coulomb interaction is
extremely strong, leading to Wigner crystallization even for
dots of relatively small size.

Since the laboratory frame separation is accompanied by a
singlet-triplet degeneracy one can use the vanishing value of
the exchange energy to propose a criterium for the magnetic-
field-induced Wigner crystallization. Figure 9 shows the
triplet-singlet energy difference(Zeeman effect neglected)
on the("vz, B) plane for"v=3 meV. The magnetic field for
which the exchange energy becomes negligible is a distinctly
growing function of"vz. The magnetic field above which the
exchange energy falls below 0.1 meV for"vz.4 meV can
be very well approximated by a linear dependenceB
=1.6s"vz−1.266 meVd T/meV. The value of the magnetic-
field-inducing Wigner crystallization is an increasing func-
tion of "v—the confinement energy in the(x,y) plane. For

"vz.
4
3"v the exchange energy falls to 0.1 meV atB

=1.24s"vz−0.37 meVd T/ meV, B=2.1s"vz−1.72 meVd

FIG. 8. Contour plots at the left side of the
figure show the two-electron probability densities
fnsr dg integrated over thex (left panel) andz co-
ordinates (right panel) for "v=3 meV, "vz

=12 meV. The surface plots at the right side of
the figure show the surface at which the charge
density takes one-fifth of its maximum value.

FIG. 9. (Color online) Triplet-singlet energy difference as a
function of the magnetic field and vertical confinement energy for
"v=3 meV. Blue(white and red) regions correspond to the triplet
(singlet) ground state for the spin Zeeman effect neglected. The
dashed line shows the values ofB and "vz for which the triplet-
singlet energy difference is equal to 0.1 meV. Color scale is given at
the right-hand side of the figure.
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T/meV, B=2.95s"vz−3.74 meVd T/meV for "v=2, 5, and
10 meV, respectively.

In spherical quantum dots(cf. Fig. 2) as well as in circular
two-dimensional quantum dots in a perpendicular magnetic
field23,25 singlet-triplet oscillations are observed instead of
the above degeneracy. But in these systems the separation of
the electron charges appears in the inner degrees of freedom
not in the laboratory frame, so that the picture of vanishing
overlap between the single-electron wave functions does not
apply (it would imply breaking of the symmetry of the ex-
ternal potential).

In the present paper we have used a harmonic confine-
ment potential in the growth direction. The potential in real
dots has often a quantum-well or a triangular form. Although
the shape of the confinement in the growth direction should
not have a qualitative influence on the results, one should
expect quantitative differences except in the region where the
magnetic field is so strong that the magnetic length
sÎ2" /eB=36.28/ÎB nmÎTd is much smaller than the range
of the vertical confinement. In quantum wells the energy
spacings between the lowest-energy levels are larger than
that for the harmonic-confinement potential. The spacings
between the lowest-energy levels for an infinite quantum
well with width 13.75 nm(corresponding to a similar verti-
cal spread of the electron wave function for"vz=12 meV)
equal 22 meV. Therefore, the in-plane magnetic field values
inducing Wigner crystallization in dots with well-like verti-
cal confinement will be larger than the ones found in this
paper for the harmonic-confinement potential.

IV. SUMMARY AND CONCLUSIONS

We have studied the orbital effects due to the external
magnetic field oriented along thex axis on two electrons

confined within a harmonic three-dimensional quantum dot
rotationally symmetric with respect to thez axis. Calcula-
tions used explicitly the center-of-mass separation and were
performed with Gaussian trial wave functions. In flat quan-
tum dots a high in-plane magnetic field leads eventually to
spin degeneracy(in the absence of the spin Zeeman interac-
tion) instead of spin-triplet oscillations, which are obtained
for magnetic field oriented along the axis of a cylindrical
symmetric quantum dot. The spin degeneracy is due to
Wigner crystallization induced in the laboratory frame by the
in-plane magnetic field. For flat quantum dots and low mag-
netic fields the orbital effects have initially a negligible effect
on the singlet-triplet energy splitting. In the high-magnetic-
field limit, when Wigner molecules are formed, all the
singlet-triplet splitting can bestrictly attributed to spin-
related effects. Nevertheless, between the low-field and mo-
lecular regimes there exists a magnetic field interval for
which the exchange energy rapidly changes with the mag-
netic field.
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