toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Seuntjens, D.; Carvajal Arroyo, J.M.; Molina, J.; Boon, N.; Vlaeminck, S.E. pdf  openurl
  Title Enabling partial nitritation/anammox on pre-treated sewage with IFAS : aeration and floc SRT control strategies limit nitrate production Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151116 Serial 7901  
Permanent link to this record
 

 
Author (down) Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S. pdf  url
doi  openurl
  Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
  Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.  
  Volume 34 Issue 34 Pages 1700287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418416100005 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798  
Permanent link to this record
 

 
Author (down) Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J. url  doi
openurl 
  Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
  Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz  
  Volume 19 Issue 12 Pages 668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419007900037 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.821 Times cited 3 Open Access  
  Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821  
  Call Number UA @ lucian @ c:irua:148548 Serial 4900  
Permanent link to this record
 

 
Author (down) Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S. pdf  url
doi  openurl
  Title Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 176 Issue Pages 194-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403992200026 Publication Date 2017-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:149654 Serial 4914  
Permanent link to this record
 

 
Author (down) Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T.A.F.; Fery, A. pdf  url
doi  openurl
  Title Nanorattles with tailored electric field enhancement Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 9 Issue 9 Pages 9376-9385  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These

nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high

electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry

owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions

and commensurate variations in enhancement factor. We present a novel synthetic approach for

the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric

nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission

electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering

cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference

time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of

high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy

(STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of

structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic

applications where a defined and robust unit cell is crucial.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405387100015 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 69 Open Access OpenAccess  
  Notes This study was funded by the European Research Council under grant Template-assisted assembly of METAmaterials using MECHanical instabilities (METAMECH) ERC-2012-StG 306686. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). M. T. wants to acknowledge funding by the Elite Network of Bavaria, the Bavarian Ministry of State according to the Bavarian elite promotion act (BayEFG), as well as the Alexander von Humboldt Foundation for a Feodor-Lynen Research Fellowship. S. B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T. A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. We thank Ken Harris from the National Research Council Canada for valuable discussion of the manuscript. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @ c:irua:144797UA @ admin @ c:irua:144797 Serial 4631  
Permanent link to this record
 

 
Author (down) Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G. url  doi
openurl 
  Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages 8901-8913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000413884900037 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:147432 Serial 4886  
Permanent link to this record
 

 
Author (down) Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J.-M. pdf  doi
openurl 
  Title Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 14 Pages 5948-5956  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000406573200026 Publication Date 2017-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 26 Open Access Not_Open_Access  
  Notes ; M.S., J.T., and R.G. acknowledge the financial support received from the Department of Science and Technology (DST-SERC), Government of India under the funding from the TRC Grant Agreement No. AI/1/65/ARCI/2014. The authors are thankful to Dr. Sundararajan, Chairman, TRC and Dr. G. Padmanabham, Director, ARCI for helpful discussions. Initial microscopy analysis by Dr. M. B. Sahana, Dr. Prabu, and Mr. Ravi Gautham of ARCI are greatly acknowledged. The elemental analysis by Dr. Domitille Giaume, IRCP – ENSCP, Chimie Paris Tech, Paris is greatly acknowledged. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:145759 Serial 4740  
Permanent link to this record
 

 
Author (down) Satarifard, V.; Mousaei, M.; Hadadi, F.; Dix, J.; Sobrino Fernández, M.; Carbone, P.; Beheshtian, J.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Reversible structural transition in nanoconfined ice Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 064105  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The report on square ice sandwiched between two graphene layers by Algara-Siller et al. [Nature (London) 519, 443 (2015)] has generated a large interest in this system. By applying high lateral pressure on nanoconfined water, we found that monolayer ice is transformed to bilayer ice when the two graphene layers are separated by H = 6,7 angstrom. It was also found that three layers of a denser phase of ice with smaller lattice constant are formed if we start from bilayer ice and apply a lateral pressure of about 0.7 GPa with H = 8,9 angstrom. The lattice constant (2.5-2.6 angstrom) in both transitions is found to be smaller than those typical for the known phases of ice and water, i.e., 2.8 angstrom. We validate these results using ab initio calculations and find good agreement between ab initio O-O distance and those obtained from classical molecular dynamics simulations. The reversibility of the mentioned transitions is confirmed by decompressing the systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393943300005 Publication Date 2017-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141994 Serial 4558  
Permanent link to this record
 

 
Author (down) Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Structural and electronic properties of defects at grain boundaries in CuInSe2 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 19 Pages 14770-14780  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect

of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at

the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403327200059 Publication Date 2017-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 12 Open Access OpenAccess  
  Notes We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @ c:irua:143869 Serial 4577  
Permanent link to this record
 

 
Author (down) Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V. pdf  url
doi  openurl
  Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 45 Pages 30520-30532  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000416054400023 Publication Date 2017-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 4 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:147659 Serial 4888  
Permanent link to this record
 

 
Author (down) Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
  Year 2017 Publication Micron Abbreviated Journal Micron  
  Volume 94 Issue 94 Pages 66-73  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393247300008 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 11 Open Access OpenAccess  
  Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @ c:irua:139515 Serial 4341  
Permanent link to this record
 

 
Author (down) Sakarika, M.; Kornaros, M. pdf  url
doi  openurl
  Title Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation : effect of different nutrient limitation strategies Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 243 Issue Pages 356-365  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54% w w(-1), respectively) compared to sulfur requirements (0.20% w w(-1)) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35% w w(-1)) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30 g L-1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43 +/- 3.93% g g(DW)(1). In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411239300042 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146663 Serial 8139  
Permanent link to this record
 

 
Author (down) Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-Fard, T.; Farmanbar, M.; Peeters, F.M. url  doi
openurl 
  Title Strong anisotropic optical conductivity in two-dimensional puckered structures : the role of the Rashba effect Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 7 Pages 075411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000407097100005 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145725 Serial 4752  
Permanent link to this record
 

 
Author (down) Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M. url  doi
openurl 
  Title Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 11 Pages 115402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Frohlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408826200004 Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145665 Serial 4737  
Permanent link to this record
 

 
Author (down) Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414151800068 Publication Date 2017-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:145926 Serial 4710  
Permanent link to this record
 

 
Author (down) Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M. pdf  doi
openurl 
  Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type A1 Journal article
  Year 2017 Publication Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 87 Issue 87 Pages 54-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000392681800009 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access  
  Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 2.446  
  Call Number UA @ lucian @ c:irua:141535 Serial 4498  
Permanent link to this record
 

 
Author (down) Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A. pdf  doi
openurl 
  Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
  Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 23 Issue 15 Pages 3583-3594  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000397502900010 Publication Date 2016-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access  
  Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:142485 Serial 4653  
Permanent link to this record
 

 
Author (down) Roefs, I.; Meulman, B.; Vreeburg, J.H.G.; Spiller, M. pdf  url
doi  openurl
  Title Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion Type A1 Journal article
  Year 2017 Publication Water research Abbreviated Journal  
  Volume 109 Issue Pages 274-286  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sanitation systems are built to be robust, that is, they are dimensioned to cope with population growth and other variability that occurs throughout their lifetime. It was recently shown that building sanitation systems in phases is more cost effective than one robust design. This phasing can take place by building small autonomous decentralised units that operate closer to the actual demand. Research has shown that variability and uncertainty in urban development does affect the cost effectiveness of this approach. Previous studies do not, however, consider the entire sanitation system from collection to treatment. The aim of this study is to assess the economic performance of three sanitation systems with different scales and systems characteristics under a variety of urban development pathways. Three systems are studied: (I) a centralised conventional activated sludge treatment, (II) a community on site source separation grey water and black water treatment and (III) a hybrid with grey water treatment at neighbourhood scale and black water treatment off site. A modelling approach is taken that combines a simulation of greenfield urban growth, a model of the wastewater collection and treatment infrastructure design properties and a model that translates design parameters into discounted asset lifetime costs. Monte Carlo simulations are used to evaluate the economic performance under uncertain development trends. Results show that the conventional system outperforms both of the other systems when total discounted lifetime costs are assessed, because it benefits from economies of scale. However, when population growth is lower than expected, the source-separated system is more cost effective, because of reduced idle capacity. The hybrid system is not competitive under any circumstance due to the costly double piping and treatment. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392788900028 Publication Date 2016-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:143853 Serial 7587  
Permanent link to this record
 

 
Author (down) Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408570800004 Publication Date 2017-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145697 Serial 4755  
Permanent link to this record
 

 
Author (down) Rezaei, M.; De Pue, J.; Seuntjens, P.; Joris, I.; Cornelis, W. pdf  doi
openurl 
  Title Quasi 3D modelling of vadose zone soil-water flow for optimizing irrigation strategies : challenges, uncertainties and efficiencies Type A1 Journal article
  Year 2017 Publication Environmental modelling and software Abbreviated Journal  
  Volume 93 Issue Pages 59-77  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A quasi 3D modelling approach was developed by integrating a crop growth (LINGRA-N) and a hydrological model (Hydrus-1D) to simulate and visualize water flow, soil-water storage, water stress and crop yield over a heterogeneous sandy field. We assessed computational efficiency and uncertainty with low to high-spatial resolution input factors (soil-hydraulic properties, soil-layer thickness and groundwater level) and evaluated four irrigation scenarios (no, current, optimized and triggered) to find the optimal and cost-effective irrigation scheduling. Numerical results showed that the simulation uncertainty was reduced when using the high-resolution information while a fast performance was maintained. The approach accurately determined the field scale irrigation requirements, taking into account spatial variations of input information. Optimal irrigation scheduling is obtained by triggered-irrigation resulting in saving up to similar to 300% water as compared to the current-irrigation, while yield increased similar to 1%. Overall, the approach can be useful to help decision makers and applicants in precision farming. (C) 2017 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403512500005 Publication Date 2017-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144167 Serial 8445  
Permanent link to this record
 

 
Author (down) Ren, X.-N.; Hu, Z.-Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 35 Pages 29687-29698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Phase-junctions. between a cocatalyst and its semiconductor host are quite effective to enhance the photo catalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H-2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nano particles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juneted cocatalyst demonstrates a highest photocatalytic H-2 rate of 13 mmol g(-1) h(-1) under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H-2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H-2 production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410597500032 Publication Date 2017-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 18 Open Access OpenAccess  
  Notes ; B.L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y.L. acknowledges the Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China (2015DFE52870), National Natural Science Foundation of China (51502225), and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Z.Y.H. and G.V.T. acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:146765 Serial 4779  
Permanent link to this record
 

 
Author (down) Reijniers, J.; Partoens, B.; Peremans, H. pdf  openurl
  Title DIY measurement of your personal HRTF at home : low-cost, fast and validated Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 1-5  
  Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The breakthrough of 3D audio has been hampered by the lack of personalized head-related transfer functions (HRTF) required to create realistic 3D audio environments using headphones. In this paper we present a new method for the user to personalize his/her HRTF, similar to the measurement in an anechoic room, yet it is low-cost and can be carried out at home. We compare the resulting HRTFs with those measured in an anechoic room. Subjecting the participants to a virtual localization experiment, we show that they perform significantly better when using their personalized HRTF, compared to a generic HRTF. We believe this method has the potential of opening the way for large scale commercial use of 3D audio through headphones.'));  
  Address  
  Corporate Author Thesis  
  Publisher Audio Engineering Society Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:148068 Serial 4871  
Permanent link to this record
 

 
Author (down) Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 10 Pages 1700013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413045800010 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910  
Permanent link to this record
 

 
Author (down) Ranjbar, S.; Hadipour, A.; Vermang, B.; Batuk, M.; Hadermann, J.; Garud, S.; Sahayaraj, S.; Meuris, M.; Brammertz, G.; da Cunha, A.F.; Poortmans, J. pdf  url
doi  openurl
  Title P-N Junction Passivation in Kesterite Solar Cells by Use of Solution-Processed TiO2 Layer Type A1 Journal article
  Year 2017 Publication IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt  
  Volume 7 Issue 7 Pages 1130-1135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we used a solution-processed TiO2 layer between Cu2ZnSnSe4 and CdS buffer layer to reduce the recombination at the p–n junction. Introducing the TiO2 layer showed a positive impact on VOC but fill factor and efficiency decreased. Using a KCN treatment, we could create openings in the TiO2 layer, as confirmed by transmission electron microscopy measurements. Formation of these openings in the TiO2 layer led to the improvement of the short-circuit current, fill factor, and the efficiency of the modified solar cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404258900026 Publication Date 2017-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3381 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.712 Times cited 2 Open Access OpenAccess  
  Notes This work was supported in part by the European Union’s Horizon 2020 research and innovation program under Grant 640868, in part by the Flemish government, Department Economy, Science and Innovation, in part by the FEDER funds through the COMPETE 2020 Programme, and in part by the National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. The work of S. Ranjbar was supported by the Portuguese Science and Technology Foundation through Ph.D. grant SFRH/BD/78409/2011. The work of B. Vermang was supported by the Flemish Research Foundation FWO (mandate 12O4215N). Approved Most recent IF: 3.712  
  Call Number EMAT @ emat @ c:irua:143986 Serial 4583  
Permanent link to this record
 

 
Author (down) Ranieri, P.; Shrivastav, R.; Wang, M.; Lin, A.; Fridman, G.; Fridman, A.A.; Han, L.-H.; Miller, V. pdf  doi
openurl 
  Title Nanosecond-pulsed dielectric barrier dischargeinduced antitumor effects propagate through depth of tissue via intracellular signaling Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 3 Pages 283-297  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Studies using xenograft mouse models have shown that plasma applied to the skin overlying tumors results in tumor shrinkage. Plasma is considered a nonpenetrating treatment; however, these studies demonstrate plasma effects that occur beyond the postulated depth of physical penetration of plasma components. The present study examines the propagation of plasma effects through a tissue model using three-dimensional, cell-laden extracellular matrices (ECMs). These ECMs are used as barriers against direct plasma penetration. By placing them onto a monolayer of target cancer cells to create an in-vitro analog to in-vivo studies, we distinguished between cellular effects from direct plasma exposure and cellular effects due to cell-to-cell signaling stimulated by plasma. We show that nanosecond-pulsed dielectric barrier discharge plasma treatment applied atop an acellular barrier impedes the externalization of calreticulin (CRT) in the target cells. In contrast, when a barrier is populated with cells, CRT externalization is restored. Thus, we demonstrate that plasma components stimulate signaling among cells embedded in the barrier to transfer plasma effects to the target cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155658 Serial 8293  
Permanent link to this record
 

 
Author (down) Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K. url  doi
openurl 
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 6 Pages 066102  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404623000002 Publication Date 2017-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 16 Open Access  
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:152633 Serial 5369  
Permanent link to this record
 

 
Author (down) Ramakers, M.; Trenchev, G.; Heijkers, S.; Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 2642-2652  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO2 into chemicals and fuels. Since CO2 is a very stable molecule, a key performance indicator for the research on plasma-based CO2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO2. From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403934400014 Publication Date 2017-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek, G.0383.16N 11U5316N ; Horizon 2020, 657304 ; Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:144184 Serial 4616  
Permanent link to this record
 

 
Author (down) Ramakers, M.; Medrano, J.A.; Trenchev, G.; Gallucci, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2conversion Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 12 Pages 125002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414675000001 Publication Date 2017-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access OpenAccess  
  Notes This work was supported by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; grant numbers G.0383.16N and 11U5316N). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:147023 Serial 4761  
Permanent link to this record
 

 
Author (down) Rahemi, V.; Sarmadian, N.; Anaf, W.; Janssens, K.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unique opto-electronic structure and photo reduction properties of sulfur doped lead chromates explaining their instability in paintings Type A1 Journal article
  Year 2017 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 89 Issue 89 Pages 3326-3334  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artists material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr1-xSxO4, with 0≤x≤0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the co-precipitate with lead sulfate (PbCr1-xSxO4) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that on increasing the sulfur(S)-content in chrome yellow, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photo activity is the result. However, the photo activity relative to the Cr content, and thus Cr reduction, of sulfur-rich PbCr1-xSxO4 is found to be much higher compared to the sulfur-poor or non-doped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its co-precipitates are p-type semiconductors, which explains the observed reduction reaction. As understanding this phenomenon is valuable in the field of cultural heritage, this study is the first joint action of photo-electrochemical measurements and first-principles calculations to approve the higher tendency of sulfur-rich lead chromates to darken.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000397478300015 Publication Date 2017-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 7 Open Access OpenAccess  
  Notes ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government, department EWI. The BOF-GOA action SOLARPAINT of the University of Antwerp Research Council is acknowledged for financial support. W.A. acknowledges support from BELSPO project S2-ART. Dr. L. Monico and Dr. C. Miliani (ISTM, Perugia) are gratefully acknowledged for helpful discussions and for providing some of the initial batches of the materials studied. ; Approved Most recent IF: 6.32  
  Call Number UA @ lucian @ c:irua:140886 Serial 4451  
Permanent link to this record
 

 
Author (down) Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 20974-20980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404090000079 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 4 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: