|
Record |
Links |
|
Author |
Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; König, T.A.F.; Fery, A. |
|
|
Title |
Nanorattles with tailored electric field enhancement |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Nanoscale |
Abbreviated Journal |
Nanoscale |
|
|
Volume |
9 |
Issue |
9 |
Pages |
9376-9385 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Nanorattles are metallic core–shell particles with core and shell separated by a dielectric spacer. These
nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high
electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry
owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions
and commensurate variations in enhancement factor. We present a novel synthetic approach for
the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric
nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission
electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering
cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference
time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of
high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy
(STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of
structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic
applications where a defined and robust unit cell is crucial. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000405387100015 |
Publication Date |
2017-06-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2040-3364 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.367 |
Times cited |
69 |
Open Access |
OpenAccess |
|
|
Notes |
This study was funded by the European Research Council under grant Template-assisted assembly of METAmaterials using MECHanical instabilities (METAMECH) ERC-2012-StG 306686. This work was also supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). M. T. wants to acknowledge funding by the Elite Network of Bavaria, the Bavarian Ministry of State according to the Bavarian elite promotion act (BayEFG), as well as the Alexander von Humboldt Foundation for a Feodor-Lynen Research Fellowship. S. B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T. A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. We thank Ken Harris from the National Research Council Canada for valuable discussion of the manuscript. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; |
Approved |
Most recent IF: 7.367 |
|
|
Call Number |
EMAT @ emat @ c:irua:144797UA @ admin @ c:irua:144797 |
Serial |
4631 |
|
Permanent link to this record |