|
Record |
Links |
|
Author |
Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D. |
|
|
Title |
Structural and electronic properties of defects at grain boundaries in CuInSe2 |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Physical chemistry, chemical physics |
Abbreviated Journal |
Phys Chem Chem Phys |
|
|
Volume |
19 |
Issue |
19 |
Pages |
14770-14780 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT) |
|
|
Abstract |
We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect
of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at
the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000403327200059 |
Publication Date |
2017-05-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1463-9076 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.123 |
Times cited |
12 |
Open Access |
OpenAccess |
|
|
Notes |
We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. |
Approved |
Most recent IF: 4.123 |
|
|
Call Number |
EMAT @ emat @ c:irua:143869 |
Serial |
4577 |
|
Permanent link to this record |