|
Record |
Links |
|
Author |
Ren, X.-N.; Hu, Z.-Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L. |
|
|
Title |
Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
ACS applied materials and interfaces |
Abbreviated Journal |
Acs Appl Mater Inter |
|
|
Volume |
9 |
Issue |
35 |
Pages |
29687-29698 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Phase-junctions. between a cocatalyst and its semiconductor host are quite effective to enhance the photo catalytic activity and are widely studied, while reports on the phase-juncted cocatalyst are still rare. In this work, we report the deposition of the Pt/PtO phase-juncted nanodots as cocatalyst via NaOH modification of an interconnected meso-macroporous TiO2 network with high surface area and inner-particle mesopores to enhance the performance of photocatalytic H-2 production. Our results show that NaOH modification can largely influence Pt/PtO phase-juncted nanodot formation and dispersity. Compared to the TiO2 nano particles, the hierarchically meso-macroporous TiO2 network containing 0.18 wt % Pt/PtO phase-juneted cocatalyst demonstrates a highest photocatalytic H-2 rate of 13 mmol g(-1) h(-1) under simulated solar light, and possesses a stable cycling activity without obvious decrease after five cycles. Such high H-2 production performance can be attributed to both the phase-juncted Pt/PtO providing more active sites while PtO suppresses the undesirable hydrogen back reaction, and the special hierarchically porous TiO2 network with inner-particle mesopores presenting short diffusion path lengths for photogenerated electrons and enhanced light harvesting efficiency. This work suggests that Pt/PtO phase-juncted cocatalyst on hierarchically porous TiO2 nanostructures is a promising strategy for advanced photocatalytic H-2 production. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000410597500032 |
Publication Date |
2017-08-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1944-8244 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.504 |
Times cited |
18 |
Open Access |
OpenAccess |
|
|
Notes |
; B.L.S. acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y.L. acknowledges the Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is supported by the National Key Research and Development Program of China (2016YFA0202602), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), International Science & Technology Cooperation Program of China (2015DFE52870), National Natural Science Foundation of China (51502225), and the Fundamental Research Funds for the Central Universities (WUT: 2016III029). Z.Y.H. and G.V.T. acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). ; |
Approved |
Most recent IF: 7.504 |
|
|
Call Number |
UA @ lucian @ c:irua:146765 |
Serial |
4779 |
|
Permanent link to this record |