toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume (up) 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume (up) 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Reynaert, S.; Vienne, A.; de Boeck, H.J.; D'Hose, T.; Janssens, I.; Nijs, I.; Portillo-Estrada, M.; Verbruggen, E.; Vicca, S. pdf  doi
openurl 
  Title Basalt addition improves the performance of young grassland monocultures under more persistent weather featuring longer dry and wet spells Type A1 Journal article
  Year 2023 Publication Agricultural and forest meteorology Abbreviated Journal  
  Volume (up) 340 Issue 1 Pages 109610  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Global warming is altering the intra-annual variability of precipitation patterns in the mid-latitudes, including a shift towards longer dry and wet spells compared to historic averages. Such fluctuations will likely alter soil water and nutrient dynamics of managed ecosystems which could negatively influence their functioning (e.g., productivity and fodder quality). Here, we investigated whether basalt addition could attenuate effects of increasingly persistent precipitation regimes (PR) on two agricultural grassland monocultures differing in drought resistance (low: Lolium perenne (LP) vs high: Festulolium (FL)) and digestibility (high: LP, low: FL), while improving soil C sequestration. In total, 32 experimental mesocosms were subjected to either a low (1-day wet/ dry alternation) or a highly (30-day wet/dry alternation) persistent PR over 120 days, keeping total precipitation equal. In half of these mesocosms, we mixed basalt with the top 20 cm soil layer at a rate of 50 t ha-1. Overall, 30-day PR increased average water availability resulting in improved aboveground biomass and shoot digestibility for both species, in spite of elevated physiological stress. These PR also increased shoot Si, K, N and C but reduced Ca accumulation. Basalt addition generally increased soil Al, Ni, Mg, Ca, P, K and Si availability without altering root biomass or total soil carbon. Moreover, differences in root N content and C:N ratio between species were reduced. Interestingly, basalt modified the PR effects on productivity. Within 30-day PR, basalt stimulated aboveground biomass (& PLUSMN;14%) and root Si and K contents without altering plant digestibility, palatability, crude protein content or Ni/Al content. These results indicate that basalt can stimulate grassland productivity and soil nutrient availability under more persistent PR without negatively affecting fodder quality. Hence, basalt application may improve the performance of young temperate grassland monocultures under climate change, though dry soil conditions may limit effects on soil C sequestration during summer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001051084500001 Publication Date 2023-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199204 Serial 9189  
Permanent link to this record
 

 
Author Vasilakou, K.; Nimmegeers, P.; Thomassen, G.; Billen, P.; Van Passel, S. pdf  url
doi  openurl
  Title Assessing the future of second-generation bioethanol by 2030 : a techno-economic assessment integrating technology learning curves Type A1 Journal article
  Year 2023 Publication Applied energy Abbreviated Journal  
  Volume (up) 344 Issue Pages 121263-15  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Lignocellulosic biomass is the most abundant source of renewable biomass and is seen as a high-potential replacement for petroleum-based resources. The conversion technologies to advanced biofuels are still at a low maturity level, thus allowing for future cost reductions through technological learning. This fact is barely considered in state-of-the-art techno-economic assessments and a structured approach to account for technological learning in techno-economic assessments is needed. In this study, a framework for techno-economic assessments of advanced biofuels, integrating learning curves, is proposed. As a validation of this framework, the economic feasibility of the valorization of corn stover for the production of second-generation bioethanol in Belgium is studied. Process flowsheet simulations in Aspen Plus are developed, with an emphasis on the comparison of four different pretreatment technologies and two plant capacities at 156 dry kt biomass/y and 667 dry kt/y. The dilute acid pretreatment model of the large-scale biorefinery required the lowest minimum learning rate to reach an economically feasible biorefinery by 2030, being 3.9%, almost half as the one calculated for the smaller scale plant. This learning rate seems to be achievable based on learning rates commonly estimated in literature. We conclude that there is a potential for advanced ethanol production in Belgium under the current state of technology for large-scale biorefineries, which require additional biomass imports, when accounting for future cost reductions through learning  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001007488700001 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:196509 Serial 9186  
Permanent link to this record
 

 
Author De Paepe, J.; Garcia Gragera, D.; Arnau Jimenez, C.; Rabaey, K.; Vlaeminck, S.E.; Gòdia, F. pdf  url
doi  openurl
  Title Continuous cultivation of microalgae yields high nutrient recovery from nitrified urine with limited supplementation Type A1 Journal article
  Year 2023 Publication Journal of environmental management Abbreviated Journal  
  Volume (up) 345 Issue Pages 118500-118510  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L−1), magnesium (7.9 mg L−1), calcium (12.2 mg L−1), iron (2.0 mg L−1) and EDTA (88.5 mg Na2-EDTA.2H2O L−1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L−1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052880800001 Publication Date 2023-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.7 Times cited Open Access Not_Open_Access: Available from 03.02.2024  
  Notes Approved Most recent IF: 8.7; 2023 IF: 4.01  
  Call Number UA @ admin @ c:irua:199049 Serial 8844  
Permanent link to this record
 

 
Author Vermeulen, S.; Cools, J.; Staes, J.; Van Passel, S. pdf  doi
openurl 
  Title A review of economic assessments of drought risk reduction approaches in agriculture Type Administrative Services
  Year 2023 Publication Journal of environmental management Abbreviated Journal  
  Volume (up) 345 Issue Pages 118909-118912  
  Keywords Administrative Services; A1 Journal article; Economics; Ecosphere; Engineering Management (ENM)  
  Abstract Due to climate change, the frequency and intensity of droughts are expected to increase. To improve resilience to droughts, proactive drought management is essential. Economic assessments are typically included to decide on the drought risk-reducing investments to make. The choice of both methods and scope of economic assessments influences the outcome, and thus the investment choice. This paper aims to identify how comprehensively economic assessments are applied in practice. Through a systematic literature review, 14 actual economic assessments are identified and their methods are evaluated based on seven criteria for economic assessments as derived from the United Nations Framework Convention on Climate Change (UNFCCC). The results show that in practice, economic assessments rarely address all criteria. Applying a limited number of criteria reduces the scope and narrows the approach, possibly leading to the underestimation of drought risk reduction approaches’ related benefits. Applying the seven criteria in practice will improve the results of economic assessments of drought risk reduction measures, allowing for optimal investment selection. Based on the different criteria, a Framework for Economic Assessments of Drought Risk-Reducing Applications (FEADRRA) is proposed. Applying the criteria of the framework can support decision-makers in drought risk management and in carrying out the most fitting drought interventions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001080044100001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199661 Serial 9222  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P. pdf  url
doi  openurl
  Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume (up) 354 Issue Pages 129403-129418  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059413200001 Publication Date 2023-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number UA @ admin @ c:irua:197987 Serial 8829  
Permanent link to this record
 

 
Author Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume (up) 368 Issue Pages 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume (up) 373 Issue Pages 128713-128719  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000945892500001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:193652 Serial 7306  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
  Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume (up) 378 Issue Pages 133159-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904590500008 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192381 Serial 8824  
Permanent link to this record
 

 
Author Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E.J.M. pdf  url
doi  openurl
  Title Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume (up) 380 Issue 6650 Pages 1174-1179  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The catalytic performance of heterogeneous catalysts can be tuned by modulation of the size and structure of supported transition metals, which are typically regarded as the active sites. In single-atom metal catalysts, the support itself can strongly affect the catalytic properties. Here, we demonstrate that the size of cerium dioxide (CeO2) support governs the reactivity of atomically dispersed palladium (Pd) in carbon monoxide (CO) oxidation. Catalysts with small CeO2 nanocrystals (~4 nanometers) exhibit unusually high activity in a CO-rich reaction feed, whereas catalysts with medium-size CeO2 (~8 nanometers) are preferred for lean conditions. Detailed spectroscopic investigations reveal support size–dependent redox properties of the Pd-CeO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001010846100008 Publication Date 2023-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 22 Open Access OpenAccess  
  Notes We thank the staff of the MAX IV Laboratory for time on beamline SPECIES under proposals 20200412 and 20190983; E. Kokkonen and A. Klyushin for assistance with NAP-XPS and RPES experiments conducted at SPECIES; staff of the MAX IV Laboratory for time on beamline BALDER under proposal 20200378; K. Klementiev for assistance with XAS measurements; J. Drnec at the ESRF for providing assistance in using beamline ID31; and V. Perez-Dieste and I. Villar Garcia at the CIRCE beamline at ALBA Synchrotron for help with acquiring preliminary RPES data obtained under proposal 2020024219. The synchrotron-based XRD measurements were performed on beamline ID31 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. Funding: This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), a NWO Gravitation program funded by the Ministry of Education, Culture and Science of the Government of the Netherlands (V.M. and E.J.M.H.); the European Research Council (ERC consolidator grant 815128 REALNANO to S.B. and N.C.); and the European Union’s Horizon 2020 Research and Innovation Program (grant 823717–ESTEEM to S.B. and N.C). Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496 (VM). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number EMAT @ emat @c:irua:197199 Serial 8801  
Permanent link to this record
 

 
Author Monai, M.; Jenkinson, K.; Melcherts, A.E.M.; Louwen, J.N.; Irmak, E.A.; Van Aert, S.; Altantzis, T.; Vogt, C.; van der Stam, W.; Duchon, T.; Smid, B.; Groeneveld, E.; Berben, P.; Bals, S.; Weckhuysen, B.M. pdf  url
doi  openurl
  Title Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis Type A1 Journal article
  Year 2023 Publication Science Abbreviated Journal  
  Volume (up) 380 Issue 6645 Pages 644-651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Reducible supports can affect the performance of metal catalysts by the formation of suboxide overlayers upon reduction, a process referred to as the strong metal-support interaction (SMSI). A combination of operando electron microscopy and vibrational spectroscopy revealed that thin TiOx overlayers formed on nickel/titanium dioxide catalysts during 400 degrees C reduction were completely removed under carbon dioxide hydrogenation conditions. Conversely, after 600 degrees C reduction, exposure to carbon dioxide hydrogenation reaction conditions led to only partial reexposure of nickel, forming interfacial sites in contact with TiOx and favoring carbon-carbon coupling by providing a carbon species reservoir. Our findings challenge the conventional understanding of SMSIs and call for more-detailed operando investigations of nanocatalysts at the single-particle level to revisit static models of structure-activity relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000999020900010 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 29 Open Access OpenAccess  
  Notes This work was supported by BASF and NWO CHIPP (research grant to B.M.W.); the MCEC NWO Gravitation Program (B.M.W.); the ARC-CBBC NWO Program (B.M.W.); the European Research Council (grant 770887 PICOMETRICS to S.V.A.); and the European Research Council (grant 815128 REALNANO to S.B.). Approved Most recent IF: 56.9; 2023 IF: 37.205  
  Call Number UA @ admin @ c:irua:197432 Serial 8923  
Permanent link to this record
 

 
Author Sauve, G.; Esguerra, J.L.; Laner, D.; Johansson, J.; Svensson, N.; Van Passel, S.; Van Acker, K. pdf  url
doi  openurl
  Title Integrated early-stage environmental and economic assessment of emerging technologies and its applicability to the case of plasma gasification Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume (up) 382 Issue Pages 134684-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Economic and environmental impact assessments are increasingly being adopted in the design and implementation of emerging systems. However, their emerging nature leads to several assessment challenges that need to be addressed to ensure the validity and usefulness of results in understanding their potential performance and supporting their development. There is the need to (i) account for spatial and temporal variability to allow a broader perspective at an early stage of development; (ii) handle uncertainties to systematically identify the critical factors and their interrelations that drive the results; (iii) integrate environmental and economic results to support sound decision-making based on two sustainability aspects. To address these assessment challenges, this study presents an alternative approach with the following corresponding features: (i) multiple scenario development to conduct an exploratory assessment of the systems under varying conditions and settings, (ii) global sensitivity analysis to identify the main critical factors and their interrelations, and (iii) trade-off and ecoefficiency analysis to integrate the economic and environmental results. The integrated approach is applied to a case study on plasma gasification for solid waste management. The results of the study highlight how the approach allows the identification of the dynamic relations between project settings and surrounding conditions. For example, the choice of gasifying agent largely depends on the background energy system, which dictates the impacts of the process energy requirement and the savings from the substituted energy of the syngas output. Based on these findings, the usefulness and validity of the proposed integrated approach are discussed in terms of how the key assessment challenges are addressed and how it can provide guidance for the development of emerging systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906664200001 Publication Date 2022-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:193464 Serial 7361  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume (up) 385 Issue Pages 129359-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031586400001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:198259 Serial 8866  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume (up) 387 Issue Pages 129607-129609  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063180200001 Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:199051 Serial 8843  
Permanent link to this record
 

 
Author Alloul, A.; Moradvandi, A.; Puyol, D.; Molina, R.; Gardella, G.; Vlaeminck, S.E.; De Schutter, B.; Abraham, E.; Lindeboom, R.E.F.; Weissbrodt, D.G. url  doi
openurl 
  Title A novel mechanistic modelling approach for microbial selection dynamics : towards improved design and control of raceway reactors for purple bacteria Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume (up) 390 Issue Pages 129844-129849  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple phototrophic bacteria (PPB) show an underexplored potential for resource recovery from wastewater. Raceway reactors offer a more affordable full-scale solution on wastewater and enable useful additional aerobic processes. Current mathematical models of PPB systems provide useful mechanistic insights, but do not represent the full metabolic versatility of PPB and thus require further advancement to simulate the process for technology development and control. In this study, a new modelling approach for PPB that integrates the photoheterotrophic, and both anaerobic and aerobic chemoheterotrophic metabolic pathways through an empirical parallel metabolic growth constant was proposed. It aimed the modelling of microbial selection dynamics in competition with aerobic and anaerobic microbial community under different operational scenarios. A sensitivity analysis was carried out to identify the most influential parameters within the model and calibrate them based on experimental data. Process perturbation scenarios were simulated, which showed a good performance of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001094606700001 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:200035 Serial 8905  
Permanent link to this record
 

 
Author Buyle, M.; Audenaert, A.; Brusselaers, J.; Van Passel, S. pdf  url
doi  openurl
  Title Rebound effects following technological advancement? The case of a global shock in ferrochrome supply Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume (up) 391 Issue Pages 136264-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings; Engineering Management (ENM)  
  Abstract Novel recycling technologies aim at increasing material efficiency by turning former waste products into valuable reclaimed resources. A key question is whether such technologies really reduce primary resource consumption or instead stimulate aggregated market demand. In this study the consequences of a positive shock in ferrochrome supply to the global stainless steel value chain is assessed quantitatively. This new source might be unlocked by technology under development for the recovery of chromium from carbon and stainless steel slags. The aim of this study is to quantitatively assess the income and substitution effects of reclaimed ferrochrome along a part of the stainless steel value chain. The impact of the supply shock is analysed by means of a vector autoregression (VAR), a dynamic model where lagged values of all included variables estimate current state of the system. Additionally, the VAR model is extended to a structural vector autoregression (SVAR) to account for contemporary effects as well. Both the VAR and SVAR model indicate that additional ferrochrome supply leads to an increase in aggregated supply of stainless steel, in combination with a substitution effect between ferrochrome and nickel. The extended SVAR model additionally highlights that contemporaneous effects do play an important role as well to capture the direct rebound effect in the ferrochrome market when working with quarterly data. In other words, an additional supply of reclaimed ferrochrome triggers a complex combination of interactions and consequences, yet it does not necessarily lead to a lower overall material consumption. The main contributions of this paper are the assessment of direct rebound effects of supplying reclaimed metals along the value chain and the demonstration that quantifying the effects of circular strategies is feasible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930165300001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:193569 Serial 7365  
Permanent link to this record
 

 
Author Borms, L.; Van Opstal, W.; Brusselaers, J.; Van Passel, S. url  doi
openurl 
  Title The working future : an analysis of skills needed by circular startups Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume (up) 409 Issue Pages 137261-137269  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Aside from potential environmental benefits, the implementation of circular economy principles in businesses can have merits for the labour market. The current unemployment in several regions of Europe and the qualitative mismatch between supply and demand could be countered by reskilling the labour force to adjust supply and demand to one another for increased reuse, repair, or recycling, among others. This study uses interviews to increase the focus of the research question and uses survey data to perform an ordered probit regression analysis to sketch the current and future landscape of startups’ skills in Flanders (Belgium), and to analyse the relationship between circular strategies and different types of skills. The results show that design to lower material use increases the need for transport and logistics skills, digitalisation increases the need for R&D and IT skills, and the recuperation of waste requires technical knowledge. Furthermore, gender, age, and experience of the entrepreneur influence the needed skills. The paper probed for policy recommendations for the uptake of circular strategies and recommendations for future research. The most asked policy measures by the respondents are innovation and collaboration support (subsidies), fiscal measures that support circular goods and services, and public procurement for circular goods and services. This research is of relevance for several stakeholders, such as startup ecosystems, sector organisations, policy makers in innovation policy and labour market policy, and educational institutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000988763400001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:195706 Serial 9246  
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume (up) 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume (up) 419 Issue Pages 114156-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E. pdf  url
doi  openurl
  Title Challenges in unconventional catalysis Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume (up) 420 Issue Pages 114180  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004623300001 Publication Date 2023-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380  
Permanent link to this record
 

 
Author Almabadi, M.H.; Truta, F.M.; Adamu, G.; Cowen, T.; Tertis, M.; Alanazi, K.D.M.; Stefan, M.-G.; Piletska, E.; Kiss, B.; Cristea, C.; De Wael, K.; Piletsky, S.A.; Cruz, A.G. url  doi
openurl 
  Title Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination Type A1 Journal article
  Year 2023 Publication Electrochimica acta Abbreviated Journal  
  Volume (up) 446 Issue Pages 142009-142010  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Screening drugs on the street and biological samples pose a challenge to law enforcement agencies due to existing detection methods and instrument limitations. Herein we present a graphene-assisted molecularly imprinted polymer nanoparticle-based sensor for amphetamine. These nanoparticles are electroactive by incorporating ferrocene in their structure. These particles act as specific actuators in electrochemical sensors, and the presence of a ferrocene redox probe embedded in the structure allows the detection of non-electroactive amphetamine. In a control approach, nanoparticles were covalently immobilised onto electrochemical sensors by drop-casting using silanes. Alternatively, nanoparticles were immobilised employing 3D printing and a graphene ink composite. The electrochemical performance of both approaches was evaluated. As a result, 3D printed nanoMIPs/graphene sensors displayed the highest selectivity in spiked human plasma, with sensitivity at 73 nA nM-1, LOD of 68 nM (RSD 2.4%) when compared to the silane drop cast electrodes. The main advantage of the optimised 3D printing technology is that it allows quantitative determination of amphetamine, a nonelectroactive drug, challenging to detect with conventional electrochemical sensors. In addition, the costefficient 3D printing method makes these sensors easy to manufacture, leading to robust, highly selective and sensitive sensors. As proof of concept, sensors were evaluated on the street specimens and clinically relevant samples and successfully validated using UPLC-MS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953087600001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6; 2023 IF: 4.798  
  Call Number UA @ admin @ c:irua:196145 Serial 8888  
Permanent link to this record
 

 
Author Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 457 Issue Pages 141222-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000951011600001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:192868 Serial 7282  
Permanent link to this record
 

 
Author Morais, E.; Delikonstantis, E.; Scapinello, M.; Smith, G.; Stefanidis, G.D.; Bogaerts, A. pdf  url
doi  openurl
  Title Methane coupling in nanosecond pulsed plasmas: Correlation between temperature and pressure and effects on product selectivity Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 462 Issue Pages 142227  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional kinetic model to characterise specifically the gas-phase dynamics of methane

conversion in a nanosecond pulsed discharge (NPD) plasma reactor. The model includes a systematic approach to

capture the nanoscale power discharges and the rapid ensuing changes in electric field, gas and electron temperature,

as well as species densities. The effects of gas temperature and reactor pressure on gas conversion and

product selectivity are extensively investigated and validated against experimental work. We discuss the

important reaction pathways and provide an analysis of the dynamics of the heating and cooling mechanisms. H

radicals are found to be the most populous plasma species and they participate in hydrogenation and dehydrogenation

reactions, which are the dominant recombination reactions leading to C2H4 and C2H2 as main

products (depending on the pressure).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000983631500001 Publication Date 2023-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power-to-Olefins” (P2O; HBC.2020.2620). Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195881 Serial 7246  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7250  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259  
Permanent link to this record
 

 
Author Liu, R.; Hao, Y.; Wang, T.; Wang, L.; Bogaerts, A.; Guo, H.; Yi, Y. pdf  url
doi  openurl
  Title Hybrid plasma-thermal system for methane conversion to ethylene and hydrogen Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 463 Issue Pages 142442  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By combining dielectric barrier discharge plasma and external heating, we exploit a two-stage hybrid plasmathermal

system (HPTS), i.e., a plasma stage followed by a thermal stage, for direct non-oxidative coupling of

CH4 to C2H4 and H2, yielding a CH4 conversion of ca. 17 %. In the two-stage HPTS, the plasma first converts CH4

into C2H6 and C3H8, which in the thermal stage leads to a high C2H4 selectivity of ca. 63 % by pyrolysis, with H2

selectivity of ca. 64 %.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953890500001 Publication Date 2023-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China [22272015, 21503032], the Fundamental Research Funds for the Central Universities of China [DUT21JC40]. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195888 Serial 7253  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title 3D porous catalysts for plasma-catalytic dry reforming of methane : how does the pore size affect the plasma-catalytic performance? Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 464 Issue Pages 142574-12  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The effect of pore size on plasma catalysis is crucial but still unclear. Studies have shown plasma cannot enter micropores and mesopores, so catalysts for traditional thermocatalysis may not fit plasma catalysis. Here, 3D porous Cu and CuO with different pore sizes were prepared using uniform silica particles (10–2000 nm) as templates, and compared in plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2. Large pores reachable by more electrons did not improve the reaction efficiency. We attribute this to the small surface area and large crystallite size, as indicated by N2-sorption, mercury intrusion and XRD. While the smaller pores might not be reachable by electrons, due to the sheath formed in front of them, as predicted by modeling, they can still be reached by radicals formed in the plasma, and ions can even be attracted into these pores. An exception are the samples synthesized from 1 μm silica, which show better performance. We believe this is due to the electric field enhancement for pore sizes close to the Debye length. The performances of CuO and Cu with different pore sizes can provide references for future research on oxide supports and metal components of plasma catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000966076400001 Publication Date 2023-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:194862 Serial 7262  
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) 470 Issue Pages 144390-13  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001030456200001 Publication Date 2023-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:197222 Serial 8882  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: