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ABSTRACT 

Lignocellulosic biomass is the most abundant source of renewable biomass and is seen 

as a high-potential replacement for petroleum-based resources. The conversion technologies to 

advanced biofuels are still at a low maturity level, thus allowing for future cost reductions 

through technological learning. This fact is barely considered in state-of-the-art techno-

economic assessments and a structured approach to account for technological learning in 

techno-economic assessments is needed. In this study, a framework for techno-economic 

assessments of advanced biofuels, integrating learning curves, is proposed. As a validation of 

this framework, the economic feasibility of the valorization of corn stover for the production of 

second-generation bioethanol in Belgium is studied. Process flowsheet simulations in Aspen 

Plus are developed, with an emphasis on the comparison of four different pretreatment 

technologies and two plant capacities at 156 dry kt biomass/y and 667 dry kt/y. The dilute acid 

pretreatment model of the large-scale biorefinery required the lowest minimum learning rate to 

reach an economically feasible biorefinery by 2030, being 3.9%, almost half as the one 

calculated for the smaller scale plant. This learning rate seems to be achievable based on 

learning rates commonly estimated in literature. We conclude that there is a potential for 

advanced ethanol production in Belgium under the current state of technology for large-scale 
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biorefineries, which require additional biomass imports, when accounting for future cost 

reductions through learning. 

KEYWORDS 

Lignocellulosic biomass, advanced biofuels, pretreatment, learning rate 

1. INTRODUCTION 

Worldwide concerns over the high energy consumption and greenhouse gas emissions 

leading to climate change, have shifted the interest from fossil fuels to renewable energy 

sources [1]. Notably, the transport sector was responsible for around 27% of the total global 

greenhouse gas emissions in 2019 [2]. The second revision of the EU Directive 2018/2001 

(RED III) has set new goals for renewable energy in the European Union by 2030, aiming at 

having at least a 45% share of renewable energy in the overall energy consumption [3]. At least 

14% of the total energy required for the transport sector should be derived from renewable 

sources, while advanced biofuels should make a contribution of at least 3.5% [4].  

Advanced biofuels are biofuels produced from renewable sources as described in the 

Part A of the Annex IX of the EU Directive 2018/2001 [4]. These can be further classified into 

second-generation biofuels, which are produced from agricultural/forestry residues, waste or 

non-food crops [5]. In Europe, there were 26 biorefineries commercially producing liquid 

biofuels in 2021, with 31% of those using secondary biomass (e.g., residues from agriculture, 

forestry and other organic residues/wastes) as feedstock, while the rest using crop-based 
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feedstock (e.g., starch, corn and sugar) [6]. However, competition with the food supply chain 

may lead to land use changes and food price increase [7], although this has been limited over 

the past years within the EU [8]. Also, in case of geopolitical conflicts and global pandemics, 

food security concerns may rise. Thus, second-generation biofuels production seems to be 

pivotal. 

Lignocellulosic biomass is a promising renewable feedstock due to its abundance and 

low cost. Its composition mainly consists of cellulose, hemicellulose and lignin [9]. Two 

primary conversion pathways of lignocellulosic biomass to biofuels exist: the biochemical, 

whose main product is bioethanol, and the thermochemical, whose main products are biodiesel 

and bio-jet fuels [10]. The biochemical pathway requires an extra processing step, known as 

pretreatment, prior to saccharification and fermentation, due to the complex and heterogenous 

structure of lignocellulose, in order to achieve a better enzyme accessibility to the 

polysaccharides. Pretreatment is a critical step for the economic feasibility of a biorefinery, as 

it plays a vital role in the final fuel yield [9].  

In 2021, EU was the largest biodiesel producer with numerous large-scale plants already 

at a Technological Readiness Level (TRL) of 9 [11,12]. On the other hand, remarkable efforts 

have been made to improve pretreatment processes over the years and therefore second-

generation ethanol production. Despite these efforts, the commercialization of second-

generation ethanol production still remains a challenge, mainly due to the costs associated with 

the pretreatment process. Indeed, only 1% of the total bioethanol production within the EU in 
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2021 was produced from lignocellulosic biomass [12]. Currently, biochemical conversion of 

lignocellulosic biomass to ethanol is still at a TRL 7-8, with only few plants that have reached 

an early commercial case [11].  

The first commercial plants of a specific technology have still the potential of decreasing 

their production costs in the future. These are often called first-of-a-kind (FOAK) technologies, 

while the mature ones are called nth-of-a-kind (NOAK) [13]. This cost reduction can be induced 

by technological learning, which is assumed to improve the performance of the new technology 

by gaining more experience. Technological learning and cost reductions are usually associated 

with the learning curve approach, in which cost reductions are considered as learning effects. 

Specifically, this theory assumes that the technological costs are decreased over time per 

doubling of cumulative production under a specific learning rate [14]. 

T.P. Wright developed the learning curve concept based on his observations on the 

reduction of labor costs in aircraft industry, due to the increase of cumulative production [15]. 

This concept was later extended to describe the relationship between the decrease in production 

cost and the cumulative production volume in various industries, mainly in the energy sector. 

Solar photovoltaic systems and wind turbines have been thoroughly studied in literature, while 

fewer studies have been conducted in the field of fossil-fuel and bioenergy plants [14]. The 

experience curve is another concept, introduced by the Boston Consultancy Group in 1968, to 

describe the decrease in total production cost as a function of increasing cumulative production 

[16]. Both terms are used interchangeably in the literature, but initially had different meanings. 
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The main difference is that the learning curve focuses on the reduction of the labor cost, while 

the experience curve illustrates the decrease in the total production cost. For consistency reasons 

with the literature, we use the term learning curve to cover both in the present study.  

A recently published review by Thomassen et al. [17] on learning curves applied in 

energy technology assessments, indicated that 66% of the investigated studies (80 studies in 

total) calculated learning effects based on (i) estimations from literature data, (ii) estimations 

from a similar technology and (iii) rules-of-thumb according to the maturity of the studied 

technology. On the other hand, the calculation of learning effects is typically based on historical 

data extrapolated to the future. As far as advanced biofuels production is concerned, there have 

been some attempts to account for learning effects in future cost projections. However, due to 

the lack of historical data for such emerging technologies, most of the available studies are 

estimating learning rates based on the maturity of the investigated technology [18–22]. 

Moreover, Mustapha et al. [23] and Chen et al. [24] estimated learning rates on second-

generation biofuels based on literature data for similar technologies, while Lee et al. [25] used 

a photovoltaic technology learning rate for biobutanol and algal biofuels production. 

Given the increased need for advanced biofuels in EU, according to the revised EU 

Directive 2018/2001 [3], learning effects could be observed as the cumulative production 

grows. Therefore, learning curves can be applied to study potential future cost reductions on 

the biochemical production of bioethanol from lignocellulosic biomass, as this technology is 

currently limited because of high production costs. Due to the lack of historical data on 
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advanced biofuels production as well as the uncertainty surrounding the choice of learning rates 

based on technological maturity and similar technologies, an innovative calculation approach 

is suggested in order to identify if an emerging energy technology is likely to reach commercial 

viability, based on the concept of learning curves. 

In this study, we propose a novel learning curve-based calculation method to account 

for potential future cost reductions by learning effects in techno-economic assessments (TEA). 

The method is applied to the case of bioethanol production from corn stover in Belgium. Two 

different biorefinery capacities are investigated: (i) using only the domestically produced corn 

stover as feedstock and (ii) importing additional feedstock. Due to the importance and 

complexity of the pretreatment process, four common methods, namely dilute acid, alkaline, 

steam explosion and liquid hot water are studied, process simulation models are developed and 

a comparative economic assessment is conducted. These pretreatment methods are chosen as 

the most mature and suitable for the biochemical conversion pathway [26,27]. Despite the fact 

that the studied biorefinery includes some systems that are mature and have reached the NOAK 

stage, the use of new technologies, such as the pretreatment, is enough to consider the plant as 

FOAK [13]. 

An overview is given on learning curves, along with definitions, and a method is 

presented to fill the gap in literature for advanced biofuels production technology. The focus is 

given on two different single-factor learning curves, the single- and multi-component learning 

curves. An economic assessment is performed, followed by a break-even point analysis, which 
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calculates the cost reduction needed to reach a profitable investment (i.e. Net Present Value 

(NPV) equal to zero) in the future. According to the required cost reductions, learning rates are 

calculated. This approach levels the playing field, allowing for fewer assumptions and therefore 

miscalculations compared to the commonly applied calculation methods mentioned above. 

Simultaneously, a comparison with the literature for similar technologies is possible, indicating 

the feasibility of this biorefinery plant in the future. As a result, this study investigates the 

economic feasibility of a commercial second-generation bioethanol plant in Belgium and 

explores its future prospects, induced by technology learning.  

2.  MATERIAL AND METHODS 

In the proposed methodology, a workflow is provided to integrate learning effects 

calculation (dashed lines in Fig.1) in the conventional TEA framework (full lines in Fig.1). The 

first step is the scope definition. Then, the TEA methodology described by Van Dael et al. [28] 

is applied, with an addition of learning curves. The TEA methodology starts with the market 

study (within the geographical areas described in the scope definition), investigating market 

parameters, such as commodity prices and volumes, affecting the commercialization of the 

biorefinery project and a process flow diagram is developed along with mass and energy 

balance calculations. A base case economic assessment is then applied, estimating the economic 

viability based on technical and economic criteria. This step focuses on a comparative 

assessment of bioethanol plants in Belgium with different capacities and pretreatment 

processes. The cost reduction required to reach a profitable investment is calculated in this 
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stage. The addition of the learning curves concept in the existing TEA methodology includes 

first a detailed definition of the applied learning curves, where different approaches for the 

multi-component learning curve are discussed. In the following step, the minimum learning 

rates required for the desired cost reduction are calculated for two different learning curves. 

Finally, the results are interpreted and compared with data from relevant studies in literature. 

 

Fig. 1. Methodological TEA-learning curves framework applied in this study. Blue solid lines 
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represent the conventional TEA methodology and pink dashed lines the learning curves 

integration. 

2.1 Scope definition 

Firstly, the scope of the study is defined, i.e., system boundary, foreground (processes 

modelled) and background (fixed geographic and technological background in which the 

technology will be embedded).  

By integrating learning curves in TEAs, it is possible to assess whether a technology 

can be feasible in the future due to occurring learning effects. Bioethanol production through 

the biochemical pathway is chosen as a technology which still exhibits high production costs, 

hindering its large scale commercialization. Corn stover as feedstock and bioethanol production 

within the Belgian territory is chosen as a case study. Corn stover supply is based on national 

production as well as imports, in order to investigate the effect of the biorefinery capacity to its 

economic performance. France and Germany are chosen as potential countries for corn stover 

imports, as they are among the countries with the largest corn production within the EU [29] 

and their proximity to Belgium facilitates the import process while limiting the costs associated 

to transportation. Two different scenarios for the biorefinery capacity are chosen based on the 

feedstock supply: (i) corn stover produced in Belgium and (ii) corn stover produced in Belgium 

along with corn stover imported from France and Germany.  

Auxiliary areas are included in the biorefinery configuration, such as storage, utilities 

and energy generation, in order to reflect a real-case commercial bioethanol plant. The different 
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maturity level of the process steps included in such a biorefinery, broadens the scope of the 

study further. In order to grasp this difference, a multi-component learning curve is applied as 

well. It should be mentioned that potential market disruptions (e.g., feedstock cost fluctuations) 

have been left out of the scope of this study.  

2.2 Market study 

Firstly, the availability of corn stover in Belgium is investigated. Corn stover is a 

lignocellulosic residue from corn production that can be processed as a feedstock for bioethanol 

production. Based on the latest available corn production data in Belgium [30] and a product 

yield of 1 dry kg per dry kg of corn grain [31], a total of 519 dry kt corn stover production is 

calculated for 2020. As one-third should remain on the field for soil quality preservation and 

another one-third is exploited for heat and power generation, horticulture and animal bedding 

[32], around 156 dry kt/year corn stover is assumed to be available in Belgium for bioethanol 

production.  

Next, corn production in France and Germany in 2021 is investigated [33,34]. Grand 

Est region in France and North Rhine-Westphalia state in Germany are among the highest corn 

producing areas within each country, while they are neighboring with Belgium. By making the 

same assumptions as for Belgian corn stover, 638 dry kt corn stover in Grand Est, France and 

301 dry kt corn stover in North Rhine-Westphalia, Germany are available for biofuels 

production (detailed data available in Table S1 of Supplementary Material).  
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The capacity of the biorefinery using only the Belgian corn stover as feedstock is four 

times lower than other TEA studies in literature [35–38] that consider large scale biorefineries, 

usually at a feedstock supply of 2000 dry t/day. Therefore, in order to assess the capacity impact 

and have a basis for comparison, import volumes are chosen in order to reach a feedstock supply 

of 2000 dry t/day (along with the Belgian corn stover). Given the higher biomass production in 

France, two-thirds of the imported quantity required is taken from France (being 364 dry kt/y) 

and the rest from Germany (being 182 dry kt/y). Both quantities amount up to around 60% of 

the available corn stover for biofuels in each area. 

Corn stover price at the plant-gate includes the farm-gate cost, the required feed-

handling/storage cost and the transportation cost to the plant [39]. Farm-gate prices are available 

for each country [40] while average transportation costs are taken within Belgium as well as 

from Grand Est, France and North Rhine-Westphalia, Germany to Belgium by a 40t articulated 

truck [41] (see Table S1 in the Supplementary Material). Feed-handling/storage data are taken 

the same for all countries, at 19 EUR/dry t [42]. A final corn stover price of 65 EUR/dry t 

originated from Belgium, 75 EUR/dry t from Grand Est, France and 119 EUR/dry t from North 

Rhine-Westphalia is calculated in 2021. The costs of chemicals, utilities and disposal can be 

found in the Supplementary Material (Table S3). Most of the prices are obtained online, while 

the rest from previous literature studies [38,43]. When required, costs are updated to 2021 EUR 

using the Producer Price Indices. Utilities include only the water supply, as electricity, steam, 

chilled and cooling water are produced on-site. The average bioethanol producer price is 
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estimated at 0.726 EUR/L for 2021 in the European Union [44]. The average electricity selling 

price for 2021 in Flanders region of Belgium is calculated at 0.061 EUR/kWh [45]. 

2.3 Process model development 

The conversion of corn stover to ethanol is simulated using Aspen Plus® v.12.1 [46], 

based on the biochemical model of Humbird et al. [38] for the National Renewable Energy 

Laboratory (NREL). As the biomass is supplied ready for the pretreatment process, no feed 

handling is required. Based on corn stover availability investigated in section 2.2, two plant 

capacities are investigated: (i) a smaller Plant S at 156 kt/y of dry biomass and (ii) a larger Plant 

L at 667 kt/y of dry biomass. The process flowsheet (Fig. 2) includes eight main areas: 

pretreatment, separate enzymatic hydrolysis & fermentation, enzyme production, product 

recovery, wastewater treatment, storage, energy generation and utilities. Components are 

selected from Aspen Component Databanks, while some are user-defined based on the NREL 

model . The Non Random Two Liquid (NRTL) property method is chosen as the base method 

for calculations, as this activity coefficient model is commonly apply when non-ideality is 

expected due to polar compounds, such as water and alcohols that are presented in the studied 

simulation models [47].  
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Fig. 2. Simplified process flow diagram (PFD) 

The composition of corn stover can be found in the Supplementary Material (Table S2). 

It is assumed to be the same as the one used by Humbird et al. [38], as it provides a detailed 

compositional analysis that is needed for the process simulation. The moisture content is 

assumed to be 15 wt% (i.e., on mass basis), reflecting the average moisture content of European 

corn stover feedstock [48]. 

Four different simulation models are developed; one for each pretreatment method. 

Processes and operating conditions are kept the same for all models according to NREL [38], 

except for the pretreatment area, in order to provide a consistent basis for comparative analysis. 

For the two chemical pretreatment methods, sulfuric acid and sodium hydroxide are used as 

catalysts. Operating conditions for each pretreatment method are summarized in Table 1. Solids 

loading is set to 30 wt % for all methods, except for the liquid hot water method which is limited 

to 20 wt % due to the amount of water required [49]. 
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Table 1. Pretreatment conditions for each method [38,49–52]. 

Conditions 
Pretreatment method 
Dilute acid Alkaline Steam explosion Liquid hot water 

Temperature (oC) 158 121 200 190 
Residence time (min) 2 20 5 10 
Severity factor 7.9 6.2 3.6 3.6 
Acid/Alkali loading  
(mg/ dry g biomass) 

22.1 20.0 - - 

Solids loading (wt %) 30 30 30 20 
Conditioning NH3 H2SO4 NH3 NH3 

 

After the pretreatment, a solids-liquid separation and/or water washing step is usually 

applied for conditioning to neutral pH and detoxification from inhibitory compounds. However, 

these techniques are used in laboratory-scale experiments [53]. For a large scale bioethanol 

plant examined in our case, conditioning with acid or base is chosen for all pretreatment 

methods, as a more effective technique for large volumes.  

The pretreatment conversions of dilute acid pretreatment are the same as the NREL 

model [38]. For the rest of the pretreatment methods, assumptions are made according to lab-

scale experiments with similar conditions and severity factors, in comparison to dilute acid 

pretreatment results [50–52]. The severity factor is calculated for all pretreatment methods 

according to the temperature and residence time, using equation (1). For chemical pretreatment, 

this factor is adjusted in order to take into account the acid or alkali loading, using equation (2) 

[54].  
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𝑆𝐹 = log (𝑡 ∙ exp (𝑇 − 10014.75 )) (1) 

𝑆𝐹 = log (𝑡 ∙ exp (𝑇 − 10014.75 )) + |𝑝𝐻 − 7| (2) 

Where, SF denotes the severity factor, t the residence time (min), T the pretreatment 

temperature (oC) and pH the pH of the pretreated slurry. The fractional conversions chosen for 

the four different pretreatment methods can be found in the Supplementary Material (Table S4). 

2.4 Process economics 

An economic assessment for each biorefinery with a different pretreatment method and 

capacity is applied to evaluate the economic feasibility of ethanol production from corn stover 

in Belgium. All values used in the analysis are in 2021 euros (EUR 2021). The main economic 

assumptions of the model are presented in Table 2. A discounted cash flow analysis is 

conducted for all models and the minimum fuel selling prices (MFSP) are calculated.  

Table 2. Techno-economic assessment parameters. 

Parameter Value Source 
Plant lifetime (years) 20 Assumption 
Year of analysis 2021 Assumption 
Discount rate (%) 15 [28] 
Tax rate (%) 25 [55] 

Depreciation period (years) 
General plant: 7  
Energy generation plant: 20 

[56] 

Depreciation method Linear Assumption 
Annual operating hours (h) 8000 Assumption 
Working capital (EUR) 5% of FCI [38] 
Land cost (EUR) 2% of FCI [57] 
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2.4.1. Capital Expenditure (CAPEX) 

Purchasing cost of equipment is obtained from the NREL report for all areas [38], as it 

is based on vendor equations for specialized equipment. For the different pretreatment areas, 

the cost of relevant process equipment (such as pumps, heat exchangers) is based on data from 

the NREL [38], while the pretreatment reactor costs are adjusted according to literature [58]. 

Costs are scaled for each equipment type using NRELs’ values as the base case [38] and mass 

and energy balances obtained from the ASPEN Plus process model as the new case, based on 

the following equation: 

𝑁𝑒𝑤 𝑐𝑜𝑠𝑡 = (𝐵𝑎𝑠𝑒 𝑐𝑜𝑠𝑡) ∙ (𝑁𝑒𝑤 𝑠𝑖𝑧𝑒𝐵𝑎𝑠𝑒 𝑠𝑖𝑧𝑒)𝑘  (3) 

Where, k is the scaling exponent, ranging from 0.5 to 0.8, depending on the equipment type 

used [38]. The Chemical Engineering Plant Cost Indices are applied to adjust the cost to the 

analysis year of 2021 while NRELs’ installation factors for each equipment type are used to 

calculate the final equipment cost [38].  

The Fixed Capital Investment (FCI) is calculated as the sum of the Total Direct Cost 

(TDC) and Total Indirect Cost (TIC), according to Table 3. Finally, the CAPEX of the 

biorefinery is estimated for each pretreatment method by summing up the FCI, working capital 

and land cost. 

Table 3. Total Direct and Indirect Cost assumptions [38]. ISBL: Inside Battery Limits 

Parameter Value 
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Total Direct Cost (TDC)  
Warehouse 4% of ISBL 
Site development 9% of ISBL 
Additional piping 4.5% of ISBL 
Total Indirect Cost (TIC)  
Prorateable expenses 10% of TDC 
Field expenses 10% of TDC 
Home-office & construction fees 20% of TDC 
Project contigency 10% of TDC 
Other costs 10% of TDC 

 

2.4.2 Operational Expenditure (OPEX) 

The annual operating cost is calculated as the sum of the variable and fixed operating 

costs. The variable operating cost is estimated based on the mass and energy balances of the 

process simulation and the costs of feedstock, chemicals, utilities and disposal.  

Monthly wages for operators in chemical industries in Belgium were estimated at 3534 

EUR in 2019 [59]. Based on Sinnott and Towler’s operator shift positions analysis [43], a 102 

EUR/h total operating labor cost is estimated. The final operating cost also includes the 

supervision, direct salary overhead, maintenance and property taxes and insurance, which are 

calculated as described in Table 4. 

Table 4. Fixed operating cost assumptions. 

Parameter Value Source 
Supervision 25% of operating labor [43] 
Direct salary overhead 50% of operating labor and supervision [43] 
Maintenance 0.5% of CAPEX [60] 
Property taxes and insurance 0.7% of FCI [38] 
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Finally, a break-even point analysis is carried out in order to calculate the cost reduction 

needed to reach a profitable investment. The analysis is executed twice for each simulation 

model, by considering cost as CAPEX and as ethanol production cost. For this analysis, the 

ethanol price in 2021 along with projections up to 2030, is taken from the OECD-FAO 

Agricultural Outlook 2022 [44]. The ethanol production cost CEtOH (EUR/L) is calculated using 

Equation (4):  

𝐶𝐸𝑡𝑂𝐻 = 𝐶𝐴𝑃𝐸𝑋 ∙ 𝑟 + 𝑂𝑃𝐸𝑋𝑄𝐸𝑡𝑂𝐻  
(4) 

  
Where r is the annuity factor and 𝑄𝐸𝑡𝑂𝐻 is the annual ethanol production (L/y). The annuity 

factor is calculated based on the discount rate and plant lifetime [61].  

2.5 Learning curves definition 

Different mechanisms exist for the learning process, sometimes overlapping each other. 

The most studied mechanism is learning-by-doing, which is caused by the repetition of the 

production process of the technology. Other learning effects that have been identified are 

learning-by-using, which occurs when the technology reaches the market and user experience 

feedback is received, learning-by-searching, which arises from R&D investments and finally 

learning-by-interacting, which originates from knowledge diffusion [14]. The effect of these 

different learning mechanisms can be assessed through the multi-factor learning curve. A two-

factor learning curve has been suggested by Kouvaritakis et al. [62], which takes into 
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consideration both learning-by-doing and learning-by-searching effects. However, the single-

factor learning curve is the most commonly used one in the energy sector, as it considers several 

learning mechanisms into one factor and requires less data [63]. The learning curves studied in 

this article are all single factor, hence we decided to not explicitly mention “single factor” in 

the remainder of this work. Two different learning curves, based on the component-learning 

approach, are studied in this article [64].  

2.5.1 Single-component learning curve 

The single-component learning curve considers only one component, the unit cost of 

production, and is expressed as [17]:  

𝐶 = 𝐶0( 𝑃𝑃0)−𝑎 (4) 

Where P is the cumulative production, C is the unit cost of production at P, C0 and P0 are the 

unit cost and cumulative production at an arbitrary starting point and 𝑎 is the learning 

coefficient. 

The corresponding learning rate (LR) expresses the cost reduction per doubling of 

cumulative production and is calculated as [17]: 

𝐿𝑅 = 1 − 2−𝑎 (5) 

2.5.2 Multi-component learning curve 
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The single-component learning curve can be extended to the multi-component learning 

curve, which expresses the cost as a sum of its individual components with potentially different 

learning rates (and hence learning coefficients 𝑎𝑖) [64]:  

𝐶 = ∑ 𝐶0𝑖  (𝑃𝑖𝑃0𝑖)−𝑎𝑖𝑛
𝑖=1 = 𝐶01 (𝑃1𝑃01)−𝑎1 + 𝐶02 (𝑃2𝑃02)−𝑎2 + ⋯ + 𝐶0𝑛 (𝑃𝑛𝑃0𝑛)−𝑎𝑛 (6) 

Where n is the number of components. This approach allows for a better estimation of learning 

effects on new technologies, as each individual component has a different learning rate.  

The choice of components can vary based on the desired outcome of the study. Many 

definitions of components exist in literature, but no structured framework including different 

possibilities is mentioned. The first step is to separate the overall technology into different 

production pathways. For example, Upstill & Hall [65] have considered the onshore/offshore 

depleted oil and gas fields and onshore/offshore deep saline aquifers as different technology 

variants of carbon dioxide storage. Then, they applied the multi-component learning curve for 

each of these variants. Once this is done, the technology variant can be split into different 

components. One option is to disaggregate the technology into multiple process steps. Karka et 

al. [21] have divided methanol production into two main process steps: gasification and 

synthesis. These main processes were further subdivided and learning rates were estimated 

based on the maturity of each step. Finally, considering the overall cost as a sum of different 

cost types, such as equipment and operational costs, is another alternative when applying the 

multi-component learning curve [17,65].  
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These approaches can be applied to the case of advanced biofuels production. This study 

focuses only on the biochemical production pathway of advanced biofuels, thus different 

process steps and cost types are considered as components for this technology variant. The 

biochemical production route is a complex pathway that requires multiple process steps such 

as pretreatment, enzymatic hydrolysis and fermentation. The overall production cost of biofuels 

can be split into the capital and operational expenditure.  

Due to the challenge in calculating the learning effects for different components, an 

optimization-based approach is suggested. Multivariable optimization methods can be applied 

to calculate the minimum learning rates needed in order to reach an economically feasible 

technology level.  

2.6 Learning effects calculation 

Two biorefinery capacities and four biorefinery configurations, with different 

pretreatment technologies are assessed with two single-factor learning curves: the single- and 

multi-component. On the single-component learning curve, two different scenarios are created 

by assuming a cost reduction on CAPEX and on the ethanol production cost. The multi-

component learning curve is applied for two different types of components: cost types and 

process steps. The first is a two-component and the latter an eight-component learning curve, 

which are both solved for two different scenarios.  

The starting point of the learning curves is considered to be 2021, the year of analysis 

of the base case economic assessment performed previously. The cumulative production is 
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assumed to be the total cellulosic ethanol produced in the EU during 2021, being 50 million L 

(ML) [12], and based on projections by 2030 (see Figure S4 of Supplementary Material), this 

will be 10 billion L (BL) [66]. The initial costs are estimated from the base case economic 

assessment, while the costs in 2030 are estimated based on the cost reduction break-even point 

analysis. The learning coefficients are calculated as mentioned below for each learning curve 

model: 

2.6.1 Single-component learning curve 

The single-component learning curve is applied for the four different simulation models 

and for two scenarios: considering a cost reduction in the CAPEX and in the ethanol production 

cost. The learning coefficients are calculated from Equation (4) and the learning rates from 

Equation (5).  

2.6.2 Multi-component learning curve 

The optimization problem is formulated as the minimization of an objective function 

expressing the square of the difference between the cost required to reach economic feasibility 

(𝐶∗, result of the break-even point analysis of the TEA) and the learning curve (which has an 

absolute minimum of 0), subject to bound constraints on the learning coefficients. The learning 

coefficients are the optimization variables which can be translated to learning rates using 

Equation (5).  

The optimization problem is expressed as: 
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min𝑎 𝑓2(𝑎) =  min𝑎 (𝐶∗ − ∑ 𝐶0𝑖  (𝑃𝑖𝑃0𝑖)−𝑎𝑖  𝑛
𝑖=1 )2 (7) 𝑠. 𝑡. 

𝐴 ∙ 𝑎 ≤ 𝑏 

𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈 

Where 𝑎, 𝑏, 𝑎𝐿 and 𝑎𝑈 are vectors (with 𝑎 ∈ ℝ𝑛: 𝑎 ≥ 0) and 𝐴 is a matrix. A MATLAB non-

linear programming function, fmincon, is applied, using the default Interior Point Method 

(IPM), with tolerance taken as 10-6 and maximum iterations as 1000.  

In this article it is assumed that a maximum feasible value for the learning rate is around 

50%, as learning rates of up to 43.7% are mentioned in literature based on rules-of-thumb 

approaches [17]. Different initial values 𝑎0 and upper bound constraints 𝑎𝑈 are tested, in order 

to get different minima in the specified range, which could provide more realistic results. Two 

different optimization problems are formed by considering components as (a) cost types and as 

(b) process steps. 

2.6.2.1 Components: cost types 

The ethanol production cost consists of the discounted capital and the operational cost. 

Therefore, a two-component curve is formed: 

𝑓(𝑎) = 𝐶 − ∑ 𝐶0𝑖  (𝑃𝑖𝑃0𝑖)−𝑎𝑖2
𝑖=1 = 𝐶 − 𝐶01 (𝑃1𝑃01)−𝑎1 − 𝐶02 (𝑃2𝑃02)−𝑎2 (8) 

where i=1 refers to the discounted CAPEX and i=2 refers to the OPEX.  
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There are two possible constraints for the 𝑎1 and 𝑎2: 𝑎1 ≤ 𝑎2 and 𝑎1 ≥ 𝑎2.  

2.6.2.2 Components: process steps 

The ethanol production cost can be split into the production costs of each process area 

of the biorefinery. Therefore, an eight-component (𝑛 = 8) curve is formed: 

𝑓(𝑎) = 𝐶 − ∑ 𝐶0𝑖  (𝑃𝑖𝑃0𝑖)−𝑎𝑖8
𝑖=1 = 𝐶 − 𝐶01 (𝑃1𝑃01)−𝑎1 − ⋯ − 𝐶08 (𝑃8𝑃08)−𝑎8 (9) 

where i=1 is the pretreatment, i=2 the enzymatic hydrolysis & fermentation, i=3 the enzyme 

production, i=4 the product recovery, i=5 the wastewater treatment, i=6 the storage, i=7 the 

energy generation and i=8 the utilities area.  

Each process step has different products. However, it can be assumed that: 𝑃𝑖 𝑃0𝑖⁄ =𝑃4 𝑃04⁄ = const, ∀𝑖 ∈ {1, … , 𝑛}, where 𝑃4 and 𝑃04 are the main output of the product recovery 

area, meaning the cumulative cellulosic ethanol production in EU by 2030 and 2021 

respectively.  

Due to the eight-component learning curve, there are many possible constraint 

combinations. Two different scenarios are formed based on the maturity of each component. In 

the first scenario (scenario A), all auxiliary process areas (i=5,6,7,8) are assumed mature and 

no learning is expected. For the rest, pretreatment is assumed to be the least mature process 

followed by enzymatic hydrolysis & fermentation, enzyme production and product recovery 

areas. In the second scenario (scenario B), storage and utilities areas are assumed to have a zero 

learning rate. Wastewater treatment and energy generation areas are also expected to have a 
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learning rate less than 1% (resulting in an upper bound of 0.0145 for the learning coefficients 𝑎5, 𝑎7). For the rest, pretreatment is assumed to be the least mature process followed by 

enzymatic hydrolysis & fermentation, enzyme production and finally product recovery areas 

[67,68].  

To sum up, two learning curves, the single- and multi-component, are applied for a 

biorefinery with two different capacities (Plant S and Plant L). Each biorefinery is investigated 

for four different configurations based on the pretreatment method applied (dilute acid, alkaline, 

steam explosion and liquid hot water). Each learning curve is applied for two different 

scenarios: the single-component curve for a cost reduction in (i) the CAPEX and in (ii) the 

ethanol production cost and the multi-component curve by taking components as (i) cost types 

and (ii) process steps. In order to solve the curves, two different scenarios are also applied 

during the optimization-based calculations for the constraints. 

3. RESULTS AND DISCUSSION 

3.1 Process simulation results 

The main process results, including inputs and outputs, are presented in Table 5. The 

ethanol yield (considering corn stover’s LHV as 17.4 MJ/kg [48] and bioethanol’s LHV as 26.7 

MJ/kg [36]) was calculated at 0.40 MJ of ethanol per MJ of biomass for the dilute acid model, 

0.26 MJ/MJ for the alkaline model, 0.35 MJ/MJ for the steam explosion model and 0.34 MJ/MJ 

for the liquid hot water model. This can be explained by the fact that the dilute acid pretreatment 
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is well studied through the years in literature and the simulation model developed by NREL is 

optimized for theoretical yields [38]. 



28 
 
 

 

 

 

Table 5. Major process simulation and economic assessment results for each simulation model. 

Values 
Plant S Plant L 

Dilute 
acid 

Alkaline 
Steam 
explosion 

Liquid hot 
water 

Dilute 
acid 

Alkaline 
Steam 
explosion 

Liquid hot 
water 

Process Inputs         
Corn stover (dry t/day) 468 468 468 468 2000 2000 2000 2000 
         
Chemicals (t/h) 2.50 2.30 1.40 1.40 11.0 10.0 6.00 6.20 
Fresh water (t/h) 35.2 47.5 39.7 41.5 153 201 168 180 
Process Outputs         
Ethanol (L/min) 108 70.2 94.4 90.3  463 300 404 386 
Excess electricity (MW) 2.00 7.10 2.70 2.10 13.0 39.0 16.0 13.0 
Base case economic results         
CAPEX (M EUR) 177 180 170 175 439 444 421 435 
OPEX (M EUR/year) 22.0 20.6 19.6 19.7 92.1 85.8 81.6 82.3 
MFSP (EUR/L) 1.04 1.50 1.10 1.18 0.75 1.04 0.79 0.85 
         
Break-even point analysis 

results 
        

CAPEX (M EUR) 50.8 19.5 45.0 37.9 225 98.1 198 168 
Ethanol production cost 
(EUR/L) 

0.499 0.558 0.503 0.498 0.538 0.613 0.541 0.535 
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The highest chemical consumption is evidently observed for the chemical pretreatment 

methods, in contrast to the physicochemical methods. Indeed, the pretreatment area accounted 

for around 26-28% of chemicals use for the dilute acid and alkaline models, while the 

physicochemical pretreatment methods accounted for around 7% (conditioning included), 

verified in both of the investigated plant capacities. 

Water requirement was calculated at 68 t water per L EtOH for the dilute acid model, 

103 t/L for the alkaline model, 79 t/L for the steam explosion model and 89 t/L for the liquid 

hot water model. This includes both fresh and recycled water. The high water demand for the 

alkaline pretreatment model is mainly attributed to the increased need for cooling water for the 

energy generation area, due to the large amount of lignin removed during this pretreatment, 

which is used as a combustible stream. The water requirement for the pretreatment reactor and 

the low solids loading are responsible for the high water consumption of the liquid hot water 

model.  

The electricity demand on-site was found to be similar for all models, around 1.4 GJ/dry 

t biomass. However, the electricity available as a by-product was found to be the highest for 

the alkaline model, due to the high delignification rate of this pretreatment method. On the other 

hand, steam demand was calculated at 19 GJ/dry t biomass for the steam explosion model and 

22 GJ/dry t biomass for the liquid hot water model. The largest amount of steam is used for 

preheating the biomass stream at the pretreatment temperature as well as maintaining the reactor 

temperature. The rest of the steam is mainly used by the distillation process in the product 

recovery area. Indeed, the steam demand for the physicochemical pretreatment methods is 
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almost two times higher than the alkaline model, which had the lowest pretreatment temperature 

as well as ethanol production. 

3.2 Economic assessment results 

The main economic indicators for each biorefinery configuration are summarized in 

Table 5. All values are in 2021 EUR.  

The alkaline pretreatment model exhibits an overall higher CAPEX than all models, 

which can be attributed to the bigger equipment required for the energy generation area, due to 

the high lignin removal of this pretreatment method, which is used as a fuel stream for steam 

and electricity production. Notably, the energy generation and wastewater treatment areas 

account for more than half of the calculated equipment cost, around 33% and 22% respectively. 

The lowest OPEX is observed for steam explosion and liquid hot water due to the lack of 

chemicals use. However, the difference on the OPEX between the pretreatment models is not 

significant (ranging from 5 to 10%). This is attributed to the fact that feedstock supply has the 

highest contribution to the annual operating cost, around 50%, with chemicals following at 

around 30%. This is the case for Plant S. However, feedstock contribution is even higher for 

Plant L, around 60-65%, due to the higher corn stover price of the imported quantities. 

The ethanol production costs were estimated to be the lowest for the dilute acid model 

(0.96 EUR/L), followed by steam explosion (1.02 EUR/L), liquid hot water (1.09 EUR/L) and 

alkaline pretreatment (1.44 EUR/L) for Plant S. Despite the high operating cost estimated for 

the dilute acid pretreatment method, the ethanol production cost for this model was the lowest 
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due to its high ethanol yield. Similar observations are made for the Plant L, but the production 

costs are around 24% lower than Plant S for all models. 

For both of the investigated plant capacities, the dilute acid pretreatment model has the 

lowest MFSP, followed by steam explosion and liquid hot water. The calculated MFSPs for the 

Plant L are approximately 30% lower for all models. The lowest obtained MFSP is for the dilute 

acid model of Plant L, at 0.75 EUR/L. Similar results were obtained by Silva et al. [22], who 

observed a better economic performance for the dilute acid pretreatment compared to steam 

explosion and liquid hot water, despite these having a lower capital cost. A lower MFSP is also 

calculated by Tao et al. [18] for the dilute acid model, compared to the thermochemical and 

alkaline pretreatments.  

Fig. 3 shows the breakdown of MFSP for the different pretreatment models and the two 

plant capacities investigated in this study. The return on investment and feedstock supply are 

the two parameters with the highest contribution for all models studied, over 50% (combined) 

of the MFSP for both plant capacities. Capital depreciation, cost of chemicals and income tax 

showed a big impact on the MFSP as well. By-product credit contribution was significantly 

higher for the alkaline pretreatment model than the rest of the models, due to the higher excess 

electricity production. As indicated earlier, feedstock cost has a bigger contribution to the 

MFSP for Plant L, 30% instead of 20% on average, due to the imported corn stover amount.  
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Fig. 3. Minimum fuel selling price breakdown for four different pretreatment models for Plant 

S (A) and Plant L (B). Values above stacks indicate the final MFSP by taking into account the 

by-product credit. 

The costs calculated from the break-even point analysis are presented in Table 5. As far 

as the CAPEX is concerned, there is a need for 71% reduction by 2030 for the dilute acid model, 

89% for the alkaline model, 74% for the steam explosion model and 78% for the liquid hot 

water model to reach a profitable investment for Plant S. A 50-78% cost reduction was also 

calculated for the different pretreatment models of Plant L. Such cost reductions are high and 

have a small potential to occur in reality. However, when the total production cost is considered, 

the cost reductions are estimated at 48, 61, 51 and 54% for each model respectively of Plant S, 

while even smaller cost reductions are calculated for Plant L. These results indicate that a 

reduction solely in the CAPEX is not enough and other costs, such as the operating costs need 
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to be reduced. The potential of achieving such cost reductions by 2030 through technology 

learning is investigated in the following subsection 3.3.  

3.3 Single-component learning curve 

The learning rates are calculated based on the single component learning curve for two 

different cases: assuming a cost reduction in CAPEX and in the ethanol production cost, as 

shown in Fig. 4. The cost at the end of the learning curve corresponds to the cost required to 

reach a profitable investment by 2030.  

Considering a cost reduction only in the capital investment, the learning rate is found the 

lowest for the dilute acid model at 15.1% for Plant S and at 8.4% for Plant L. Steam explosion 

and liquid hot water models follow, while the alkaline model requires almost a 1.5 to 2 times 

higher rate than the dilute acid model due to its high CAPEX. However, when the total 

production cost is taken into consideration, the results are more similar for all models, with an 

average learning rate of about 9.4% for Plant S and 5.3% for Plant L, while the dilute acid 

model exhibited the lowest learning rate, at 8.2% and 3.9% for Plant S and Plant L respectively. 

The learning rates calculated for both cases are in accordance with the economic 

performance of each process model, as discussed previously. Namely, dilute acid and steam 

explosion models showed the best economic performance, thus a lower learning rate is required 

in comparison to the rest of the models investigated in this study. Also, the higher plant capacity 

of Plant L showed an overall better performance, thus the learning rates obtained for this plant 

are significantly lower, around 30-50%, than Plant S. 
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Fig. 4. Single-component learning curve for Capital cost reduction (A) and Ethanol production 

cost reduction (B) in Plant S and Capital cost reduction (C) and Ethanol production cost 

reduction (D) in Plant L. The learning curve is blue for the dilute acid model, orange for the 

alkaline model, magenta for the steam explosion model and green for the liquid hot water 

model. The learning rates obtained for each model are also displayed. The points indicate the 

starting point, 2021 (left), and the ending point, 2030 (right), of the analysis. 



35 
 
 

 

 

 

3.4 Multi-component learning curve 

3.4.1 Components: cost types  

The results for the multi-component learning curve, by considering components as cost 

types, are summarized in Fig. 5 for Plant L (results for Plant S can be found in Figure S5 of 

Supplementary Material). The lowest learning rates for both components and constraint cases 

are obtained for the dilute acid model, followed by steam explosion, liquid hot water and 

alkaline models. This observation agrees with the economic performance of each model as 

discussed before. In general, learning rates are around 30-60% lower for Plant L than Plant S, 

indicating its higher potential for reaching economic feasibility by 2030. 

By lowering the upper bound constraint, more feasible solutions are obtained, as the 

difference between the learning rates of the two components diminishes. For example, a 

combination of learning rates at 18% for CAPEX and 2% for OPEX is less probable to occur 

than a 13% and 4% respectively for the alkaline model of Plant L. Therefore, different upper 

bounds are included in the presented results, as alternative scenarios, for which the optimization 

objective and constraints were satisfied.  

For the first constraint case, where a higher learning rate is expected for the operational 

cost than the capital cost reduction, the learning rates are within the range of 1.6 – 3.3% for 

CAPEX and 6.0 – 13% for OPEX. The learning rate for the first component is 3 to 5 times 

lower than the second component. A similar observation is also made when a higher learning 
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rate is chosen for CAPEX than OPEX, as learning rates for the first component range within 

7.7 – 18% and 1.5 – 3.9% for the second.  

 

Fig. 5. Multi-component learning rates of Plant L for CAPEX (A) and OPEX (B) for 𝛼1 ≤ 𝛼2 

and CAPEX (C) and OPEX (D) for 𝑎1 ≥ 𝑎2. 𝑎1: learning coefficient for CAPEX, 𝛼2: learning 

coefficient for OPEX, LR: learning rate, ub: upper bound 

3.4.2 Components: process steps 

The results for the multi-component learning curve, considering process steps as 

components, are presented in Fig. 6 for scenario A of Plant L (results for Plant S available in 

Figure S6 of Supplementary Material). In scenario A, all auxiliary areas are assumed to have a 
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zero learning rate, thus only four learning rates are calculated. The learning rates calculated for 

the pretreatment area of the dilute acid pretreatment are around 1.3, 2 and 5 times higher than 

for the enzymatic hydrolysis & fermentation, enzyme production and product recovery areas, 

respectively. These differences become smaller when the upper bound constraint is set at 0.5. 

Similar observations are also made for the physicochemical pretreatment methods, while the 

alkaline model requires almost equally high learning rates for all its areas.  

Results for the scenario B of Plant L are presented in Fig. 7 (results for Plant S available 

in Figure S7 of Supplementary Material). The learning rates here are slightly smaller than 

scenario A, as more process areas are assumed to contribute to the total cost reduction. 

However, the wastewater treatment (i=5) and energy generation (i=7) areas, which are now 

included in the learning curve, are assumed to have a small learning rate and therefore a small 

impact on the cost reduction. Therefore, no significant differences are observed between the 

two scenarios. Among all models and for both scenarios, the highest learning rates are 

calculated for the pretreatment area (i=1) of the alkaline model, which indeed presented the 

worse economic performance.  
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Fig. 6. Multi-component learning rates of Plant L obtained for the four different process models 

by considering components as process areas for scenario A: only four process steps are included 

as the rest of the areas are assumed have a learning rate of zero. Results are presented for two 

different upper bounds (ub). 

Overall, higher learning rates were calculated for Plant S compared to Plant L for both 

scenarios. Especially for the lower upper bound (ub=0.5), learning rates of 2 to 3 times lower 

were calculated for Plant L for both scenarios. 
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Fig. 7. Multi-component learning rates of Plant L obtained for the four different process models 

by considering components as process areas for scenario B: six process areas are included as 

storage and utilities areas are assumed to have a learning rate of zero. Results are presented for 

two different upper bounds (ub). 

3.5 Discussion 

The economic assessment performed in this study can be used to assess the potential of 

second-generation ethanol production from corn stover in Belgium. Because of the importance 
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of the scale, two different plant capacities were investigated. Indeed, the larger plant capacity 

of Plant L, showed an overall improved economic performance. 

Firstly, an important remark is that the equipment cost in this study is based on actual 

vendor/manufacturer prices, taken from Humbird et al. [38]. This report dates back to more 

than a decade ago and despite the use of CEPCI for updating the costs to the year of analysis, 

there is an uncertainty around the accuracy of these costs. Thus, it is important to assess the 

impact of the CAPEX on the economic performance of the investigated bioethanol plant. This 

can be addressed by performing a Monte Carlo simulation, taking a triangular distribution for 

the capital cost based on a 20% variance (applied for the dilute acid model of Plant S as a case 

study). The 20% variance is chosen based on capital costs estimations in ASPEN Plus Capital 

Cost Estimator software, where equipment costs in 2021 values were obtained, estimating a 

20% decrease in CAPEX compared to the base case calculations. The calculated MFSP ranges 

from 0.91 to 1.15 EUR/L, meaning that an up to 11% decrease in the MFSP can occur in case 

of a decreased capital cost (detailed results available in Figure S8 of Supplementary Material). 

Indeed, the capital cost has a significant impact in the economic performance of the biorefinery, 

however, estimating the cost of equipment is a challenging task for specialized units, which are 

not usually available in capital cost estimator packages.  

More than 50% of the calculated capital cost was attributed to the energy generation and 

wastewater treatment areas. Steam and electricity are produced on-site, at the energy generation 

area, thus raising the question of whether this is the optimal option. An alternative scenario 
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could be that of excluding the energy generation area, buying electricity, HP steam and LP 

steam from suppliers, while selling lignin and biogas produced in the wastewater treatment area 

as by-products to the market for further processing (prices available in Table S3 of 

Supplementary Material). Performing such a scenario for the dilute acid model indicated a 2% 

decrease in the MFSP for Plant S and a 5% increase for Plant L (see Table S5 of Supplementary 

Material). However, there is a lot of uncertainty surrounding the pricing of lignin and biogas as 

by-products (e.g. lignin prices can reach up to 330$/t [69]), which can have a big impact on the 

economic viability of the plant. Also, in case of taking the environmental impact into 

consideration, the energy produced on-site is accounted as renewable energy (deriving from 

biomass), while the utilities supplied by the market could rely on fossil-based energy. Thus, 

based on these preliminary results the inclusion of energy produced on-site is deemed as a better 

solution for large-scale capacities, while more research needs to be conducted for smaller scale 

biorefineries, in order to identify the optimal strategy. 

As far as the wastewater treatment area is concerned, the major source of wastewater in 

biorefineries is the stillage which has a high chemical oxygen demand (COD) content, low pH 

and dark brown color (mainly caused by melanoidins) [70]. Wastewater composition varies 

depending on the feedstock type and processes used [71]. For lignocellulosic biorefineries, the 

various chemicals added (e.g. ammonia) or produced (e.g. furans) during the pretreatment 

process have a high impact on the wastewater composition [72].  
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In this study, the operating conditions and specialized equipment required are modelled 

according to Humbird et al. [38], assuming a 99.6% total COD digestion. The wastewater 

treatment area is treating the condensed pretreatment vapor as well as the filtered stillage and 

boiler and cooling tower blowdown streams. A combination of anaerobic digestion producing 

biogas (51% CH4 and 49% CO2 on a dry molar basis) and aerobic digestion producing treated 

water and sludge is applied. Membrane filtration is used to remove the total suspended solids 

and reverse osmosis to remove the dissolved inorganic salts. The anaerobic digestion is 

modelled to digest 91% of each organic component and the aerobic digestion to further digest 

96% of the remaining COD. Sulfates produced during the detoxification step of pretreatment 

are converted to hydrogen sulfide in the biogas (removed later at the energy generation area) 

while a nitrification step is applied to remove the present ammonium ions. However, due to the 

high organic rates, the suggested wastewater treatment processes pose challenges. In particular, 

achieving the anaerobic COD removal rate simulated in this study might be hard and quite 

optimistic. In literature, COD removals of up to 79% in a CSTR anaerobic reactor [73] and up 

to 89% in a fluidized bed reactor [74] have been obtained in pilot-scale experiments for 

wastewater from corn-stover bioethanol plants. 

Given the Importance of wastewater treatment and upstream processes in the overall 

economic performance of a biorefinery [72], small changes in the slurry composition can vary 

significantly the costs associated with this area. This is also verified by our results, as the 

alkaline pretreatment model requires a 5-9% less expensive wastewater treatment area, due to 
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the limited amount of side-compounds produced during the pretreatment. It is also worth 

mentioning that, except for the economic impact, the wastewater treatment can affect 

significantly the environmental performance of the biorefinery [71]. Indeed, biorefinery 

effluents are toxic, having a direct impact in soil and water contamination, human toxicity and 

water eutrophication, while the presence of significant amounts of side-compounds can lower 

the biodegradability (i.e. biodegradable COD) of the wastewater [70,71]. Nowadays, much 

research is conducted in developing novel methodologies that can improve both the economic 

and environmental performance, while achieving higher than 95% COD removal [71]. 

The calculated MFSPs were benchmarked with the current average bioethanol price in 

the market, indicating that for large capacities, second-generation bioethanol can be competitive 

with the conventional bioethanol. An even better economic performance could be achieved by 

optimizing the feedstock supply chains, in terms of importing quantities, exporting countries 

and transportation modules, however this is left out of the scope of this study.  

On the other hand, for small-scale biorefineries, the potential is quite limited at the 

moment. Higher process efficiencies and yields could potentially increase the ethanol 

production, and thus the annual revenues from ethanol sales. More research in the field of 

different pretreatment methods for lignocellulosic biomass could achieve this target. The 

relatively worst results obtained for the alkaline pretreatment do not mean that this pretreatment 

method should be neglected. The high delignification rate of this method could be exploited in 

different ways, instead of using lignin solely as a fuel stream for steam and electricity 
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production. Much interest is given lately to lignin valorization through the production of high-

value chemicals and materials, known as lignin-first biorefineries [75,76]. These by-products 

could offer extra biorefinery revenues and thus improve its economic viability.  

It should be pointed out that benchmarking advanced biofuels with conventional 

biofuels is a practice applied by multiple recent studies in the field [77–79], due to the limited 

amount of data on advanced biofuels markets. Given the continuously increasing share of 

advanced biofuels by 2030 as well as the increased blend-in mandates in EU countries [80], a 

separate market for advanced biofuels is likely to be created in the near future. The International 

Renewable Energy Agency (IRENA) is expecting that second-generation ethanol will have four 

main future markets: (i) bioethanol blended with gasoline, (ii) bioethanol for flexible fuel 

vehicles (FFV), (iii) bioethanol as an intermediate to other drop-in-fuels and (iv) bioethanol as 

an intermediate to biochemicals [81]. However, they recognize that biofuel markets are 

extremely complex and volatile, mostly attributed to the lack of a stable policy environment in 

many countries. A similar statement is made in the 2022-2031 Agricultural Outlook published 

by the Organization for Economic Co-operation and Development (OECD) and the Food and 

Agriculture Organization (FAO) [44], where it is mentioned that feedstock and crude oil prices 

have a lower effect on biofuels prices, compared to policies. These policies are creating an 

uncertainty around biofuels price projections. In the same report, future bioethanol (nominal) 

prices are predicted until 2031, remaining almost constant, while expecting no significant 

influence by cellulosic ethanol production. These estimations are based on the wholesale 
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ethanol price data from the USA. Moreover, Panoutsou et al. [82] investigated the advanced 

biofuels market in the EU by 2030, identifying challenges in the market associated with 

appropriate pricing. Therefore, due to the lack of data, to the best of our knowledge, on second-

generation bioethanol pricing in the future market and the challenges in predicting the future of 

this market, the average EU bioethanol price along with its projections until 2030 by the OECD-

FAO Agricultural Outlook has been used in this study to benchmark the calculated MFSPs as 

well as calculating the cost reductions required in the break-even point analysis. 

Finally, the potential of an economically viable biorefinery by 2030 was investigated, 

accounting for cost reductions induced by technological learning. The International Renewable 

Energy Agency (IRENA) has suggested a learning rate of 3% for the lignocellulosic 

fermentation pathway [83], while the International Energy Agency (IEA) has estimated a 5-

27% reduction in the total production costs of advanced biofuels due to gained experience [78]. 

The Energy Information Administration of the United States, has assumed a 10-25% learning 

rate for capital cost reduction on cellulosic ethanol production in its 2022 Annual Energy 

Outlook [84]. Finally, first-generation ethanol production from corn crops is a similar 

technology that has been applied for many years. Based on the experience gained, a learning 

rate of 13% has been observed for the period of 1983 to 2005 for the United States, while 19% 

between 1975 and 2005 for Brazil [85].  

A 3.9% learning rate for the dilute acid model of Plant L, as calculated from the single-

component learning curve for the ethanol production cost is really close to the estimations made 
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by IRENA. Indeed, all of the learning rates calculated for the large-scale biorefinery, seem to 

be realistic to achieve, based on both estimations for advanced biofuels as well as the experience 

gained from conventional biofuels. As far as Plant S is concerned, learning rates could also be 

possible to achieve under specific circumstances, requiring probably more investments, in order 

to further increase the cumulative production volume, thus allowing for a bigger cost reduction. 

It should be noted that in this analysis only the European cellulosic ethanol production is taken 

into consideration, not accounting for the global market which is much larger. For the scope of 

this study, which is restricted to the case study of Belgian territory, learning effects are assumed 

more likely to occur because of experience gained within the European region.  

A bigger increase in the deployment of advanced biofuels production technology would 

significantly decrease the production costs, although the uncertainty surrounding the learning 

rates does not allow for precision in future calculations. Especially for different components 

the cost reduction can vary strongly. The use of the multi-component learning curve in this 

study proved that the difference between the learning rates for each component is significant, 

indicating the importance of applying the multi-component learning curve on this technology. 

Therefore, by applying this learning curve, the potential and contribution of each component to 

the cost reduction can be better assessed.  

The integration of learning curves in the proposed framework allows for better 

estimation of the economic performance of an advanced biofuels production plant, whose large 

scale commercialization level is still hindered. The potential for cost reductions through 
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learning should not be neglected, as it can provide insight on the prospects of the studied 

technology. The calculation of the minimum learning rates required to reach an economically 

viable biorefinery in the future, tackles the lack of data problem that is usually encountered in 

such studies and is usually criticized in literature. Furthermore, this methodology can be applied 

for similar FOAK technologies in the energy sector. The inclusion of the multi-factor learning 

curve could be investigated in future work, in order to account for the different types of learning 

effects.  

Consequently, the large-scale biorefinery project investigated in this study seems to 

have a potential for investments in Belgium, by taking into consideration future cost reduction 

through technological learning. On the other hand, the smaller-scale bioethanol plant, relying 

solely on domestically produced biomass, shows a lower potential. Different valorization 

pathways of corn stover feedstock are recognized as an alternative option with many 

perspectives in the future. Biomass intermediates produced during the existing bioethanol 

production process, such as furfural, can be further valorised as added-value chemicals and 

enhance the profitability [86]. An integrated biorefinery producing biofuels in combination with 

multiple by-products, such as high-value biochemicals and/or biomaterials, could exhibit an 

improved economic performance compared to a standalone bioethanol plant. 

4. CONCLUSIONS 

A methodological framework for techno-economic assessments integrating learning 

effects has been developed, allowing for a better, fairer evaluation of the prospects of emerging 
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technologies. The economic feasibility of second-generation ethanol production in Belgium 

through the biochemical pathway was chosen as a case study. The future prospects for reaching 

economic viability by 2030 while accounting for cost reductions through technological learning 

were investigated. Two plant capacities were studied based on corn stover produced in Belgium 

as well as importing additional biomass. Four pretreatment methods were simulated in an 

integrated biorefinery plant, with a capacity of 156 kt/year dry corn stover for Plant S and 667 

kt/y for Plant L. The minimum learning rates required were calculated for the single- and multi-

component learning curves. The results were close to the available projections in literature for 

the large-scale biorefinery, reflecting the potential of such a biorefinery project in Belgium. On 

the other hand, the smaller capacity plant showed an overall worse economic performance, even 

by accounting for future cost reductions through technological learning. The dilute acid 

pretreatment model presented the best results, as it has already been well-developed, while the 

steam explosion model seems to be the alternative pathway to bioethanol production with the 

highest potential. Based on the current state of technology, a standalone large-scale bioethanol 

plant in Belgium seems to have a potential in the short future. Smaller-scale plants could also 

be possible by considering different valorization trajectories of corn stover into biochemicals 

and biomaterials, in combination with advanced biofuels.  

NOMENCLATURE 

Acronyms 

CAPEX : Capital expenditure  
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COD: Chemical Oxygen Demand 

FCI : Fixed capital investment  

FOAK: First-of-a-kind 

IEA: International Energy Agency 

IPM: Interior Point Method 

IRENA: International Renewable Energy Agency 

ISBL: Inside battery limits 

MFSP : Minimum fuel selling price  

NOAK: Nth-of-a-kind 

NPV : Net present value  

NREL : National Renewable Energy Laboratory  

NRTL: Nonrandom two liquid 

OPEX: Operational expenditure  

PFD: Process flow diagram 

TDC: Total direct cost  

TEA: Techno-economic assessment 
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TIC: Total indirect cost 

TRL: Technology readiness level 

List of symbols 

𝐶: unit cost of production (EUR/L) 

𝐶∗: unit cost of production identified from the break-even point analysis (EUR/L) 

𝐶0: unit cost of production at an arbitrary starting point (EUR/L) 

𝐶𝐸𝑡𝑂𝐻: ethanol production cost (EUR/L) 

𝑘: scaling factor 

𝐿𝑅: learning rate 

n : number of components at the multi-component learning curve  

𝑃: cumulative production (ML) 

𝑃0: cumulative production at an arbitrary starting point (ML) 

pH : pH of the pretreated slurry  

𝑄𝐸𝑡𝑂𝐻: annual ethanol production (L/y) 

r: annuity factor 

𝑆𝐹: Severity factor  



51 
 
 

 

 

 

T: Pretreatment temperature (oC) 

t: Residence time (min) 

𝑎: learning coefficient 
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