toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Callewaert, V.; Shastry, K.; Saniz, R.; Makkonen, I.; Barbiellini, B.; Assaf, B.A.; Heiman, D.; Moodera, J.S.; Partoens, B.; Bansil, A.; Weiss, A.H.; url  doi
openurl 
  Title Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 115411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of E-b = 2.7 +/- 0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383232800012 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; I.M. acknowledges discussions with M. Ervasti and A. Harju. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this paper were, in part, provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). I.M. acknowledges financial support from the Academy of Finland (Projects No. 285809 and No. 293932). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. K.S. and A.W. acknowledge financial support from the National Science Foundation through Grants No. DMR-MRI-1338130 and No. DMR-1508719. D.H. received financial support from the National Science Foundation (Grant No. ECCS-1402738). J.S.M. was supported by the STC Center for Integrated Quantum Materials under NSF Grants No. DMR-1231319, No. DMR-1207469, and ONR Grant No. N00014-13-1-0301. B.A.A. also acknowledges support from the LabEx ENS-ICFP Grant No. ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137134 Serial 4362  
Permanent link to this record
 

 
Author Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V. url  doi
openurl 
  Title Anisotropic type-I superconductivity and anomalous superfluid density in OsB2 Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 144506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length

scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different

Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the

found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations

to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare

property among compound materials. We show that the found coherence length and penetration depth corroborate

the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using

anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but

anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional

behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals

that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed

solely to a two-gap nature of superconductivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385622500009 Publication Date 2016-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek; European Cooperation in Science and Technology, MP1201 ; Vetenskapsrådet; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:139020 Serial 4338  
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B. url  doi
openurl 
  Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 155111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385242200001 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137234 Serial 4351  
Permanent link to this record
 

 
Author De Beule, C.; Zarenia, M.; Partoens, B. url  doi
openurl 
  Title Transmission in graphene-topological insulator heterostructures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3-like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399216700004 Publication Date 2017-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors would like to thank B. Van Duppen for interesting discussions. This work was supported by the Flemish Research Foundation (FWO) through the Aspirant Fellowship of Christophe De Beule. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:143652 Serial 4609  
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115438  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000399141200003 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142428 Serial 4613  
Permanent link to this record
 

 
Author Houben, K.; Couet, S.; Trekels, M.; Menendez, E.; Peissker, T.; Seo, J.W.; Hu, M.Y.; Zhao, J.Y.; Alp, E.E.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Bessas, D.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title Lattice dynamics in Sn nanoislands and cluster-assembled films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 15 Pages 155413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To unravel the effects of phonon confinement, the influence of size and morphology on the atomic vibrations is investigated in Sn nanoislands and cluster-assembled films. Nuclear resonant inelastic x-ray scattering is used to probe the phonon densities of states of the Sn nanostructures which show significant broadening of the features compared to bulk phonon behavior. Supported by ab initio calculations, the broadening is attributed to phonon scattering and can be described within the damped harmonic oscillator model. Contrary to the expectations based on previous research, the appearance of high-energy modes above the cutoff energy is not observed. From the thermodynamic properties extracted from the phonon densities of states, it was found that grain boundary Sn atoms are bound by weaker forces than bulk Sn atoms.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000401762400008 Publication Date 2017-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the Concerted Research Action (GOA/14/007). The authors acknowledge Hercules stichting (Projects No. AKUL/13/19 and No. AKUL/13/25). K.H. and S.C. thank the FWO for financial support. T.P. acknowledges the IWT for financial support. S.R., M.V.M., and B.P. acknowledge TOPBOF funding of the University of Antwerp Research Fund. J.W.S. acknowledges Hercules Stichting (Project No. AKUL/13/19). The authors want to thank R. Lieten for help with the XRD measurements and T. Picot for fruitful discussions. The authors gratefully acknowledge R. Ruffer and A. I. Chumakov for fruitful discussions and the European Synchrotron Radiation Facility for the measurement of the SnO<INF>2</INF> powder at the Nuclear Resonance beamline (ID-18). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144305 Serial 4667  
Permanent link to this record
 

 
Author Callewaert, V.; Saniz, R.; Barbiellini, B.; Bansil, A.; Partoens, B. pdf  url
doi  openurl
  Title Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085135  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408342600003 Publication Date 2017-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G. 0224.14N ; U.S. Department of Energy, DE-FG02-07ER46352 DE-AC02-05CH11231 DE-SC0012575 ; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:145703 Serial 4703  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 9 Pages 094510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000410166800008 Publication Date 2017-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 56 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145623 Serial 4741  
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V. url  doi
openurl 
  Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 1 Pages 014503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000419229100004 Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 6 Pages 064512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459322400005 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158621 Serial 5212  
Permanent link to this record
 

 
Author Bercx, M.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Quantitative modeling of secondary electron emission from slow-ion bombardment on semiconductors Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 8 Pages 085413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When slow ions incident on a surface are neutralized, the excess potential energy is passed on to an electron inside the surface, leading to emission of secondary electrons. The microscopic description of this process, as

well as the calculation of the secondary electron yield, is a challenging problem due to its complexity as well

as its sensitivity to surface properties. One of the first quantitative descriptions was articulated in the 1950s by

Hagstrum, who based his calculation on a parametrization of the density of states of the material. In this paper, we

present a model for calculating the secondary electron yield, derived from Hagstrum’s initial approach. We use

first-principles density functional theory calculations to acquire the necessary input and introduce the concept of

electron cascades to Hagstrum’s model in order to improve the calculated spectra, as well as remove its reliance

on fitting parameters. We apply our model to He+ and Ne+ ions incident on Ge(111) and Si(111) and obtain

yield spectra that match closely to the experimental results of Hagstrum.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458367800010 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access OpenAccess  
  Notes We would like to thank Prof. D. Depla for the useful discussions on the secondary electron yield. Furthermore, we acknowledge financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWOVlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157174 Serial 5154  
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Transition between ground state and metastable states in classical two-dimensional atoms Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 65 Issue 4 Pages 046602,1-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000175146600036 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 51 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:62440 Serial 3697  
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters Type A1 Journal article
  Year 2003 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 67 Issue 2 Pages 021608,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000181520200051 Publication Date 2003-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 45 Open Access  
  Notes Approved Most recent IF: 2.366; 2003 IF: 2.202  
  Call Number UA @ lucian @ c:irua:62441 Serial 3677  
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Structure and spectrum of two-dimensional clusters confined in a hard wall potential Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 036412,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220729400077 Publication Date 2004-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 42 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:62442 Serial 3298  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Influence of a defect particle on the structure of a classical two-dimensional cluster Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 69 Issue Pages 046605,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000221253000064 Publication Date 2004-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 27 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:62443 Serial 1611  
Permanent link to this record
 

 
Author Kong, M.; Vagov, A.; Partoens, B.; Peeters, F.M.; Ferreira, W.P.; Farias, G.A. url  doi
openurl 
  Title Nonlinear screening in large two-dimensional Coulomb clusters Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 70 Issue Pages 051807,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225970500071 Publication Date 2004-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.366; 2004 IF: NA  
  Call Number UA @ lucian @ c:irua:62444 Serial 2358  
Permanent link to this record
 

 
Author Ferreira, W.P.; Partoens, B.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 021501,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228245700023 Publication Date 2005-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62445 Serial 3251  
Permanent link to this record
 

 
Author Tomecka, D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Multistep radial melting in small two-dimensional classical clusters Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 062401,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on a molecular dynamics study of small classical two-dimensional clusters with ringlike configurations. We focus on the particles motion at low temperatures before the radial and angular melting sets in. It is shown that in magic number configurations a local radial melting of subshells occur, which is related to the intershell rotation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230274500084 Publication Date 2005-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62447 Serial 2241  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 066204,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230275000049 Publication Date 2005-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62446 Serial 258  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Structure and spectrum of anisotropically confined two-dimensional clusters with logarithmic interaction Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 72 Issue Pages 046122,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We studied the structural and spectral properties of a classical system consisting of a finite number of particles, moving in two dimensions, and interacting through a repulsive logarithmic potential and held together by an anisotropic harmonic potential. Increasing the anisotropy of the confinement potential can drive the system from a two-dimensional (2D) to a one-dimensional (1D) configuration. This change occurs through a sequence of structural transitions of first and second order which are reflected in the normal mode frequencies. Our results of the ground state configurations are compared with recent experiments and we obtained a satisfactory agreement. The transition from the 1D line structure to the 2D structure occurs through a zigzag transition which is of second order. We found analytical expressions for the eigenfrequencies before the zigzag transition, which allowed us to obtain an analytical expression for the anisotropy parameter at which the zigzag transition occurs as a function of the number of particles in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000232931200034 Publication Date 2005-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62448 Serial 3295  
Permanent link to this record
 

 
Author Nelissen, K.; Matulis, A.; Partoens, B.; Kong, M.; Peeters, F.M. url  doi
openurl 
  Title Spectrum of classical two-dimensional Coulomb clusters Type A1 Journal article
  Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 73 Issue 1 Pages 016607,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235008800095 Publication Date 2006-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 33 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:56611 Serial 3075  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Inhomogeneous melting in anisotropically confined two-dimensional clusters Type A1 Journal article
  Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 74 Issue 3 Pages 031107,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240870100019 Publication Date 2006-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.366; 2006 IF: 2.438  
  Call Number UA @ lucian @ c:irua:60998 Serial 1668  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Tatyanenko, D.V.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of scattering on a classical two-dimensional artificial atom Type A1 Journal article
  Year 2007 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 75 Issue 3 Pages 036606,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A classical two-dimensional (2D) model for an artificial atom is used to make a numerical exact study of elastic and nonelastic scattering. Interesting differences in the scattering angle distribution between this model and the well-known Rutherford scattering are found in the small energy and/or small impact parameter scattering regime. For scattering off a classical 2D hydrogen atom different phenomena such as ionization, exchange of particles, and inelastic scattering can occur. A scattering regime diagram is constructed as function of the impact parameter (b) and the initial velocity (v) of the incoming particle. In a small regime of the (b,v) space the system exhibits chaos, which is studied in more detail. Analytic expressions for the scattering angle are given in the high impact parameter asymptotic limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000245324700062 Publication Date 2007-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.366; 2007 IF: 2.483  
  Call Number UA @ lucian @ c:irua:64290 Serial 782  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
  Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 84 Issue 3 Pages 031405,1-031405,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000296495000007 Publication Date 2011-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.366 Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255  
  Call Number UA @ lucian @ c:irua:93612 Serial 1615  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties Type A1 Journal article
  Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 90 Issue 5 Pages 052139  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000345251500004 Publication Date 2014-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 8 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G.0388.11. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, Department EWI. ; Approved Most recent IF: 2.366; 2014 IF: 2.288  
  Call Number UA @ lucian @ c:irua:122134 Serial 700  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C. url  doi
openurl 
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 93 Issue 93 Pages 046101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374962100019 Publication Date 2016-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ lucian @ c:irua:141060 Serial 4591  
Permanent link to this record
 

 
Author Payette, C.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S. url  doi
openurl 
  Title Coherent three-level mixing in an electronic quantum dot Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 2 Pages 026808,1-026808,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We observe magnetic-field-induced level mixing and quantum superposition phenomena between three approaching single-particle states in a quantum dot probed via the ground state of an adjacent quantum dot by single-electron resonant tunneling. The mixing is attributed to anisotropy and anharmonicity in realistic dot confining potentials. The pronounced anticrossing and transfer of strengths (both enhancement and suppression) between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance, an effect resembling coherent population trapping in a three-level-system of quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000262535900060 Publication Date 2009-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 26 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:76019 Serial 382  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107201  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700015 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 41 Open Access  
  Notes ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101849 Serial 3094  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; van den Broeck, C. url  doi
openurl 
  Title Diffusion of interacting particles in discrete geometries Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 11 Pages 110601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000324233800001 Publication Date 2013-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 22 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111176 Serial 699  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: