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Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions

K. Nelissen® B. Partoend,and F. M. Peetefs
Departement Fysica, Universiteit Antwerpen (Campus Middelheim), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
(Received 20 October 2004; revised manuscript received 28 February 2005; published 6 June 2005

A system of classical charged particles confined in a two-dimensional trap and interacting through a com-
peting short-range attraction and long-range repulsion potential is studied. The structure of the system strongly
depends on the interaction range of the short-range attraction potential and the total number of particles.
Depending on the appropriate choice of parameters for the attractive potential, the particles organize them-
selves in bubbles, stripe phases, and ringlike configurations, or combinations of both of them. Detailed phase
diagrams are presented for systems consisting©2 up toN=6 particles. General rules are derived for the
different subsequent transitions between those configurations and how the ground state configuration of a large
system can be deduced from the one of a small number of particles.
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I. INTRODUCTION observed patterns. The goal of these simulations was to con-
) ) o ) trol these self-organized patterns by adjusting a small num-
Competing attractive and repulsive interactions generaiger of physical parameters. This is important in order to un-
domain patterns in a wide variety of two- and three-gerstand these self-assembled systems and to control the
dimensional systems in natuf@,2]. In biology, liquid re-  j;e orientation, and structure of the formed patterns. Notice
gions of biological membranes are formed by lipid bilayersiat a)| theoretical studies until now were done for infinite
and membrane proteins. The width of the liquid doma'nssystems.
depends on the competition between line tension and elec- |, our modern age of nanoscience, the study of finite size
trostatic dipolar repulsion. Theory predicts an exponentiagffects has become very important. Often the nanosystem is
scaling of this width as is confirmed by experimef@$ In  ut on a surface and motion is limited in two dimensions
magnetic materials the domain structure with alternating SPili2D). This motivated us to apply an extra confinement po-
orientation originates from the competition between shortigntial to a 2D system and study the effect of a boundary on
range exchange interaction and long-rang dipole interactioghe patterns generated by the competing interactions. The
[4]. In e.mtlferromag.nenc materials, or Iayer_ed transmonsystem under study in the present paper is composed of a
metal oxides, holes interact through a competing long-rangginite number of classical particles which interact through a
and short-range potentigh,6]. These competitions generate gpyisive Coulomb potential and an attractive exponential
charge ordering and have possible relations to the mechay,iential. The particles move in a 2D plane where the motion
nism of high-temperature superconductivity in doped Cus confined by a parabolic potential. The competition be-
prates[7] and bismuthatef8]. In materials science experi- yeen the short-range attraction and the long-range repulsion
ments with colloidal systems, combined with theoreticalygential will generate a spontaneous spatial modulation of
predictions, may lead to the design of novel soft materialgpe particles. We found that the particles will organize them-
and to a deeper understanding of the glass and gel states Qfjves in various different phases like bubble phapes-
matte_r[g]. Anothe_r example are the dlz_spersmn_propertles Oficles are organized in different bubblestripe phasegpar-
chemical synthesized cobalt nanoparticles which were studicies are organized in different lines on a ringings
ied experimentally in Ref.10]. Further experimental realiza- (particles are organized in different rings around the cgnter
tions of systems W!th competing interactions are the dynamig compination of those phases depending on the strength
self-assembly of rings of charged metallic sphel®512,  4ng interaction range of the shortrange potential, the
pattern formation in dynamical systerfs3] and crystalliza-  grength of the confinement potential, and the number of par-
tion and aggregation in a colloid-polymer suspengibd. ticles.
Recently, it became clear that the pattern formation in the e paper is organized as follows. In Sec. Il our model
above systems displays common structural features. Thesgstem is introduced. The results for a small system are pre-
common features, like the spatial modulation, suggests a Unkgnteq in Sec. Ill, those for intermediate systems in Sec. IV,

versal approach for explaining the behavior of these systemgq for large systems in Sec. V. Our conclusions are pre-
In recent molecular dynamics simulatioi$—18 simplified  gented in Sec. VI.

models with different types of interaction potential were per-
formed and lead to a good agreement with the experimental

Il. MODEL SYSTEM
With our model system we are interested to study the
*Electronic address: kwinten.nelissen@ua.ac.be effect of the competition of a short range attraction and a
"Electronic address: bart.partoens@ua.ac.be long range repulsion on the configurations in a finite system.
*Electronic address: francois.peeters@ua.ac.be We considered a system with pointlike classical particles
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interacting through a repulsive Coulomb potential and an
attractive exponential potential as in Ref$5,16]. The par-
ticles move in two dimensions where they are confined by a
parabolic potential trap centered at the origin. The general
dimensionless Hamiltonian of the system is written as

N N 1
H=>r2+ >, ( - Be‘Klfi-w), (1) -
i=1 i< |ri—rj\
using the following unitsr’ =(2g?/mew3)*'? for the length,
E’=mwrj/2 for the energy withm the mass of the particles
andw’ =wy/ 2 for the frequency witho, the strength of the
confinement potential. Note that the strength of the confine-
ment potential in combination with the strength of the Cou- . L TT——==
lomb repulsive part of the interparticle interaction determine 0 1 2 3 4 5 6 7 8 9 10
the length and energy scale. The first term is the confinement B
potential, the second the repulsive part of the interparticle
potential and the last the attractive part. The exponential term FIG. 1. Position of the extrema of the interparticle potential as
is determined by two parameteBsand k, whereB deter-  function of B for different « values. The full curves correspond to a
mines the strength and the interaction range of the attrac- minimum and the dashed curves to a maximum. The insets show
tive part of the interparticle potential. Notice that the repul-the potential energy as function of the distance between the par-
sive part is long range while the attractive part is short rangeficles forB=2 andB=6 with x=1.5.
But in the present work the ranges of the potentials should be
compared with the finite size of our system. structure of the system either. So one can expect a transition
To find the minimum energy configurations we used theregion in(«,B) space, where the attractive potential strongly
Monte Carlo simulation technique extended with a Newtoncompetes with the repulsive Coulomb potential resulting in
optimization techniqugl9]. This last technique increases the transitions between different particle configurations. Also
convergence and the accuracy of the obtained local minimane can expect that these transitions will appear around the
In order to be sure to have found the ground state configusame values irix,B) for different number of particles con-
ration, we run the Monte Carlo simulation routine manyfined in the parabolic trap. The reason is that the transitions
times, starting with different random configurations. To as-are determined by the mean interparticle distance and this
sume that the obtained configuration is a stable one, the eiean interparticle distance is approximately independent of
genvalues of the dynamical matrix, which are the squaredghe number of particles in a parabolic trap.
eigenfrequencies of the system, are calculated and we re- The configurations were studied as functionxofind B.
quired that they are positive. A negative eigenvalue impliesThe results for the ground state configurations are summa-
that the obtained extremum corresponds to a local energsized in phase diagrams fdé=2, ...,6 patrticles. In order to
maximum or a saddle point. label the configurations, we use the following notation
{n(k)$°:m(I,d)}, where the numbers between brackéts|
andd, give the number of particles per shell in a stripe or
bubble anch andm are the number of bubbles or stripes with
In the following, phase diagrams for the configuration ofthe same configuration. The letterandb stand respectively
small clusters are presented as a function of the interparticl®r the stripe and the bubble configuration. For example, the
potential parameters. In order to understand these phase dietation {2(2)%2(3)°} in Fig. 15 means that there are 2
grams better, it is useful to investigate the interaction potenstripes of two particles and 2 bubbles of 3 particles.
tial first. The curves in Fig. 1 show the positienof the Let us first discuss the result fof=2, presented in Fig. 2.
extrema of the interaction potential between two particles folFrom the analysis of the interparticle potential we know that
different x values as function oB. Each curve corresponds WhenB is sufficiently large, the interparticle potential has a
with two extrema, a minimum and a maximum, which join minimum and a maximum, and consequently two configura-
together at some minimum value Bf At this point the ex- tions are possible: one in which the particles are close to
trema disappears. F&values below this point the attractive each other and one in which they repel each other. The latter
part of the potential becomes too small to compete with thés only stable because of the presence of the confinement
repulsive part and the interparticle potential is purely repulfotential. The former we call the higlti) and the latter the
sive. The distance between both extrema is inversely propotew (L) density ring configuration, notated 62" and (2)",
tional to k. Notice that the qualitative behavior is similar for respectively. The first order phase boundary between both
low and highk. For k=0, the range of the attractive part of phases is given by the solid curve in Fig. 2, which to a good
the potential becomes independent of the distance betweapproximation can be represented by the Bre2.9«-5.0.
the particles and does not affect the structure of the systentThis line ends in a critical second order transition point
In the other limit, if« is very large, the range of the attractive («,B)=(5,8.6. Notice that for lowB values one can go
potential becomes too short and will be unable to affect thecontinuously from one configuration to the other.
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FIG. 2. Phase diagram for the ground state configurations of a
classical cluster witiN=2 particles. The insets shows the typical ~ FIG. 4. The energy of all stable configurations, of a classical
configurations in each region of the phase diagram. cluster withN=3 particles, as function of the amplitudof the
attractive potential.
In Fig. 3 we investigate a 3-particle system. The particles
are arranged on a ring with different densities on both sideare grouped in a bubble and separated from the third particle
of the transition line, i.e., thé3)- and the(3)" configuration. by the Coulomb potential. Figure 5 shows the distance be-
The thin lines in Fig. 3 are equiradius lines for the ring tween two particles in the bubble and the distance between
configuration. The configuration in the low density region isthe bubble and a third particle as functionofollowing the
determined by the Coulomb repulsive part of the interparticlebubble configuration on the triple line until the tri-critical
interaction as found in previous simulatiof®0]. The con-  point is reached. Ik increases following the transition line,
figuration in the high density region is determined by thethe distance between bubble and particle become equal to the
competition of the attractive and repulsive part of the inter-distance between a particle and another effective defect par-
particle interaction. The boundary between the low and highicle with double charge and mass. This limit is plotted in
density configuration regions is a triple lii®® a good ap- Fig. 5 and is equal t®=1.145. In the other limit ifx de-
proximation given byB=2.80«—5.40 which ends in a tri- creases and goes to the tri-critical point, the distance between
critical point («,B)=(4.1,6.8, below which no transitions the particles in the bubble and between the particle and the
occur. Exactly on the triple line, th§1),(2)°}-bubble con- bubble become equal or in other words the bubble configu-
figuration coexist with both ring configurations, as shown inration becomes equal to the ring configuration. One can con-
Fig. 4. For thisk value andB range, 3 stable configurations clude that the triple line does not end up in a triple point
are found which go through a single point on the triple line.where the high and low density ring configuration coexist
In the bubble configuration on the triple line, two particles with the bubble phase. Instead, all those phases become iden-
tical. In the eigenfrequency and radius plot in Fig. 6 for
25 — T T T B=8 we see that the transitions on the triple line are of first
order. Following the transition region to smallBrand «
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FIG. 3. Phase diagram for the ground state configurations of a 0'04 ‘ 5 6 7 ‘ 8 9 ‘ 10

classical cluster witiN=3 particles. The insets show typical con- K

figurations in each region of the phase diagram. At the phase bound-

ary three phases coexist and is therefore a triple line which ends up FIG. 5. The distance between the 2-particle stripe and a third
in a tri-critical point. The thin lines are equiradius lines for the ring particle and between the particles in the stripe following the transi-
configuration. tion line from highx to the tri-critical point.
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FIG. 6. Eigenfrequencie&up-
3 Bl per figure$ and distance of each
41 particle to the center of the con-
finement potentiallower figures
2 of a 3-particle system as function
o of « for three different values of
B. The insets show the corre-
sl sponding eigenmodes. The center
: of mass mode and the one shown
in the inset of the right figure are
X o4t

twofold degenerate. The curves
for B=6.8 are going through the

0.2} tri-critical point.

values, we found that the lowest nonzero eigenfrequencyhe interaction range of the attractive potential is too small
goes to zero at the critical point indicating a second ordeto compete with the Coulomb potential. The system behaves
transition as shown in Fig. 6 foB=6.8, which shows the as interacting through a Coulomb repulsion and trapped in a
eigenfrequencies foB values near the critical point. Note parabolic confinement potential. By decreasigghe short-
that not a single but two frequency branches become zermange potential becomes strong enough to compete with the
indicating that the second order derivative in the tri-critical Coulomb potential and bubble configurations are possible.
point is zero in more than one direction, which is consistenfThe bubble configuration, with two particles grouped into a
with the fact that the 3 configurations become the same ibubble, becomes the ground state by further decreasing
this point. Decreasing andB further leads to an increase in Such a bubble can be viewed as an effective defect particle
the lowest nonzero eigenfrequency and no transitions occuwith multiple charge and mass as was studied in Refs.
In this region one can go in a continuous way from (B¢ [21,22. Therefore the distance between the two other par-
configuration to th€3)™ configuration. The radii in Fig. 6 for ticles increases slightly and prevents them to group into an-
B=6 and equiradii lines in Fig. 3 illustrate the phase transi-other bubble. This process continues until all particles are
tion before and after this tri-critical point. The positions of grouped into a single bubble, i.e., the high den&ity’ state.
the particles exhibit a jump at the first order transition. No-Notice that the phase diagram only shows the ground state
tice also that the frequency of the breathing mode, the modeonfigurations, but several metastable configurations can ex-
where all particles vibrate simultaneously in the radial direc-st at the same time. These configurations are illustrated in
tion (see insets of Fig.)6 becomes large in the high density Fig. 8, where the energy of the different stable states are
region due to the strong mutual interaction. plotted as function of« for fixed B. Notice that the state

In the 4-particle systenfsee Fig. 7 we have a similar {2(2)} becomes the ground state only over a very small
high and low density region in which the particles are lo-
cated on a ring. But the transition region is much richer, due 25 T . r r
to the fact that we can combine different number of particles
in bubbles of different sizes. The first order phase boundaries 20l T vy
are given to a good approximation bB=2.7«-4.3, B Sl /
=2.8k—4.6 andB=3.0x—5.0 (the second expression repre- I A
sents two transition lines which are very close to each other, 15
see the circular inset in Fig.),7which join together in a o |
critical point at (x,B)=(4.0,6.9. Just like for the bubble 10l
phase in the 3-particle system, the 3 bubble phases of the
4-particle system can transform continuou&hlyrough a sec-
ond order transitioninto the same ring configuration. As a 5r
consequence all the phase boundaries must join in a single T
point, leading to the remarkable feature that in this point 4 0 oy, e e
phases become the same. The inclination of the lowest phase 0 2 4 6 8 10
boundary is almost the same as for the 3-particle system.
This behavior can be understood as follows: the formation of FIG. 7. Phase diagram for the ground state Conﬁgurations of a
a two particle bubble, by increasirg or decreasing, is classical cluster wittN=4 particles. The straight lines indicate the
independent of the number of particles but is determined byirst order transitions and the dashed line the second order transi-
the interaction between two particles in a bubble. At high tion. The insets depict typical configurations in each region of the
values the system is in the low density ring configuration.phase diagram.
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K FIG. 10. Phase diagram for the ground state configurations of a

classical cluster wittN=5 particles. The straight line shows the first

FIG. 8. The energy of all stable configurations, of a classicalorder transitions and the dashed lines the second order transition.
cluster withN=4 particles, as function of the interaction rangef ~ The insets show the typical configurations in each region of the
the attractive potential foB=30. phase diagram.

region which is shown in one of the insets of Fig. 8. Thisis N @ 5-particle system there is again a transition region

in contrast with a three particle system where we found &'hich separates a high and low density ring configuration
triple line where three phases coexist. with a second order transition line in the high density ring

In a 4-particle system, the critical point, i.e., the Secondconﬂguranon._The_flrst ordei phase boundfmes are given to a
order phase transition, is extended from a single point to gOOd approxlmatlon byB_Z'G_K_3'4’ B=2.7c-3.6, B
line in the high density region, which stops in the critical =2.8¢-4.0, B=2.%-4.5, andB—2;9K—4.7 which join to-
point (B, k)=(20.4,8.6. In the 4< k< 8.5 region this line is gether in a__crm(?al pomt a(K’B)_(&S’S'Z'. The second
closely approximates by the lind=2.4«—0.8. This line is orde_r transition Imc—_z in the region 2« <10 Is cIose]y ap-
absent in the 3-particle system because this system formspaﬁox"'r“”‘te‘j by.the_l|.neB-2.9f<—0.7. In 'ghe C.”t'?al point this
Wigner lattice in the ground state which is proven to be Verysecond order line joins the first order line similar to what was

stable. In a 4-particle system, the particles form a ring an
the triangular structure is lost. These particles on the ring ar
more free to move in comparison with particles in a triangu-
lar structure and this causes the system to undergo, in th
high density configuration, a second order transition bf
grouping two opposite particles in the center of the parabolié
confinement to minimize the energy. Figure 9 shows that thé
first nonzero eigenfrequency goes to zero at the second ordgf!
transition. The other transitions occur through first order

transitions.
15 . T . T . T

12+ TN
4

B=10 |

Jound for the 4-particle systefsee Fig. J. Making the com-

Barison between the 4- and 5-particle phase diagrams, the
inclination of the second order transition line in the phase
(gagram is increased and the first order transition region is
xtended to smallet-values. The first order transition region
s extended due to the increased number of possible configu-
ations which is proportional to the number of particles
uared. The inclination of the second order transition line is
ncreased due to the increasing diameter of the ring. This
increasing diameter results in a weaker confinement of the
particles on the ring and allows a second order transition at
lower k-values. Notice that all phase boundaries join to-
gether in a single critical pointx,B)=(3.5,5.7. We can
understand this as follows, if we follow the phase transition
lines for decreasing, the particle configurations resemble
more and more thé5)-ring configuration(this behavior is
similar to the one of a 3-particle system as seen in Fjg. 6
which is the configuration at the critical point. The different
phases in Fig. 10 can be easily understood intuitively as an
increased clustering of the particles and finally for snradl
collapse into a single bubble. The energies of all the states
are given as function of in Fig. 11. Notice that from all of
the 9 stable configurations only 6 are realized as ground state
configurations.

The phase diagram for thHd=6 system(see Fig. 12 is
qualitatively different from the previous cases. There is only
a short second order transition line, which at a first glance is

FIG. 9. The nonzero eigenfrequencies for a 4-particle system, agnexpected. In comparison with previous systems, there is
function of the interaction range with B=10.

one particle in the center of the configuration preventing a
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FIG. 11. The energy of all stable configurations, of a classical — : 58 . -
cluster with 5 particles, as function of the interaction rarg® the e & & 2 &
attractive potential. : : i ; ’
second order transitio.n in the grognd stqte configuration an 12) ") ) 15)
(1,5". However, the ring configuratio(s), without a par- . ST T :
ticle in the center(which is the ground state in a small re- * R B
gion), can go through a second order phase transition in : :

which the particles group themselves in bubbles of two. The FIG. 13. The energy of all stable configurations, of a classical

ground state configuration for a very large valuexos the ) . . . ;
(1,5" configuration. The first order phase boundaries aré:lusterwnh 6 particles, as function of the interaction rarge the

. . . attractive potential. The corresponding configurations are depicted
given to a good approximation bB=3.2¢-6.3, B=2.9% | he |0W£r figures. P g g .
-5.3, B=2.2«-3.0 (representing two phase linesnd B

=2.5x-2.6 ting t h lined trast to th
. (representing two phase linesn contrast to © -r?_onfiguration and the other to tli&,5 configuration. Finally

in Fig. 13 the energies of all the possible stable configura-
- - o tions are plotted as function ot. With increasingx we
(3.5,6.3 and(x,B)=(4.0,6.3. This is because also ) found the following ground states: 1, 2, 5, 6, 9, 10, 12 and

conflguratlo_n_ exists as a ground state In a s_mall reglor}LS, where the number corresponds to the curves in the upper
around the joining points of the phase transition lines. There:

fore, if one follows the phase transition region for decreasing};'ﬁure of 't:r']g |l3 ar}q the COfI'IESp(iI’:l))dlng configurations are
, the configuration can go in a continuous way to thg) own In the lower figures ot +1g. L.

or the (6)" configuration, leading to the critical point. One

can see that the most circulatory configurations go ta@he IV. INTERMEDIATE NUMBER OF PARTICLES

ing points for the first order phase transition lines(aiB)

In this section we want to see if we can infer the behavior
of larger systems from our knowledge of the few particle
systems of the previous section. Therefore, we will take a
closer look to the 10-, 20- and 30-particle systems. In the
previous section we found that the number of possible stable
states increases very rapidly with increasing number of par-
ticles, e.g., 9 in Fig. 11 foN=5 and 21 in Fig. 13 foN
=6. There is also a corresponding increase of the number of
possible phases as ground state. Therefore, for systems with
more particles it becomes almost impossible to construct a
detailed phase diagram. To obtain still information about the
; L] o influence of changind® on the system we make a cross
o’ ] section in(«,B) space aik=4.

00 > 4 6 &8 In this paragraph the influence of changiBgon the
ground state of a 10-particle system is studied ansl fixed
at 4. In Fig. 14, the number of stable states, the energy dif-

FIG. 12. Phase diagram for the ground state configurations of &rences of the metastable states with the ground state, the
classical cluster wititN=6 particles. The insets show the typical distance of the particles of the ground state configuration to
configurations in each region of the phase diagram. the center of the confinement potential, and the eigenfre-
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I 5 FIG. 15. Snapshots of the ground state configuration for a
| ] N=10-particle system withw=4. The different regions refer to
: [ ] Fig. 14.
0.1 o E . . . .
N P R I rations. The snapshots of Fig. 15 are labeled with the region

0o 2 4 6 8 10 12 14 number to which the configuration belongs. In region | the
ground state configurations are ring configurations. Different
ring configurations are found as function Bfand therefore
FIG. 14. (a) Number of stable state) energy difference of the ~r€gion | is subdivided, marked by the short dashed lines in
metastable states with respect to the ground staitéqe distance of ~ Fig. 14. ForB=0 the(2,8)"-ring configuration is the ground
the particles to the center, arid) eigenfrequencies of the ground state. If one increasds, the system changes slightly by ro-
state of a 10-particle system as functionBofor k=4. The vertical ~ tating the inner particles with respect to the other particles,
lines mark the different regions: | ring, I stripe, Il bubble, and IV through a second order transition. If one increa3dsrther,
cluster phases. Subdivisions in a region are marked with a shothe particles redistribute themselves over different rings in
dashed line. order to form first the1,9)" configuration and subsequently
the (10)--ring configuration by promoting particles from the
quencies of the ground state configuration are given as fundnner shell to the outer shell. Next, t{i&0)"-ring configura-
tion of B. We distinguished 4 main regions which are sepation undergoes a second order transition and the particles
rated by the full vertical lines: region | corresponds to low group themselves in stripes of two particles on a riog
density ring configurations, Il to stripe configurations, Ill to pentagohand form the{5(2)5}-stripe configuration, immedi-
bubble configurations, and IV to high density ring configu- ately followed by another first order transition and form the
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{2(2)3,2(3)%}-stripe configuratior(in which the particles are I I

grouped in stripes of 2 or 3 particles which are roughly situ- 2000 (N
ated on a rectangleThese stripe phases constitute region Il @ o[
In region 1ll bubble phases are formed: the particles in the
two 3-particles stripes form two 3-particles bubbles resulting
in the{2(2)3,2(3)"} configuration followed by a transition to
the {2(3)°, (4)?} configuration. The system consists now of
two bubbles of three particles and one bubble of four par-
ticles. This last configuration is very symmetric and is the
ground state over a relative lar@erange, indicated by the
two dashed lines in Fig. 14 arourg=8. Finally, if one in-
creases the amplitude of the attractive potential further, the 0
particles redistribute themselves over larger bubbles until all
particles are grouped in a single bubble in region IV in order 1
to form the(2,8)" deformed ringlike configuration. Also this

high density ring configuration undergoes a first order tran- 0.1
sition, marked by a dashed line in Fig. 14, to the final ground
state configuration3,7)". Notice, that qualitatively the tran-
sitions occur through the same mechanism as found in
smaller systems. Moreover, the clustering of the particles in 4
bubbles occurs around similar values for the parameters of 107
the attractive part of the interparticle potential as found in
smaller system.

Constructing a complete phase diagram from the Monte
Carlo simulations is very time consuming, as the number of
stable configurations can be very large. This is illustrated in
Fig. 14a) for N=10 andx=4 whereB is varied with steps of
AB=0.1. We preformed 50.000 trials and used the criterium
that two states are taken to be differenAEE=10". Around
B=8 a peak appears which occurs in the bubble phase region
[Il, where metastable states are easily formed by redistribut-
ing particles between the bubbles and rotating the bubbles
with respect to each other. For smBllregion |) the number
of stable states is small because the system is close to a
normal Coulomb cluster. For larger valuesB{region 1V),
the total number of stable states stays large. Notice that the
energy differences between the ground state and the meta-
stable stategshown in Fig. 14b)] become larger after region
[ll. This implies that the stability of the metastable states 8 o1
decreases for increasir) and the number of stable states
decreases. 0.01

The same quantities as in Fig. 14 are shown in Fig. 16 but
now for a 20-particle system. Note the increase, an order of 108
magnitude, in the number of stable states B 7 [Fig.

16(a)] as compared to the=10 case. Snapshots of configu- B
rations for differenB are shown in Fig. 17. As fdl=10, we

can distinguish four main types of configuratidihéow den- particles to the center an@) eigenfrequencies of the ground state

sity rings Il stripes, |Il bubbles, an(_j v _h|gh_den_S|ty rings of a 20-particle system as function &f with k=4. The vertical
are present and marked by full vertical lines in Fig. 16. Sub- . ) ; . ) X

L . . dashed lines mark different types of configurations in the ring and
divisions are marked by short dashed lines. From both fig: :

. . L the bubble region.

ures, one can see that the particles first redistribute them-
selves over different rings until the(3,17%ring ticles form almost a perfect ring, however a detailed investi-
configuration in region I. Notice that in contrastNe=10, for ~ gation of the interparticle distances shows the existence of
N=20 two well developed rings are observed. Next in regiontwo curved stripes of 3 particles and one long curved stripe
Il, the particles on the outer ring group themselves in stripe®f 11 particles. By further increasinB, particles group in
through a second order transition. Note that the stability obubbles in region Il through first order transitions. The
the stripe phase is reduced tremendously: in Fig. 16 it isvidth of this region has clearly increased in comparison with
marked by one vertical line. The only stripe phase in thisthe 10-particle case. The chaotic behavior of the radii of the

region is the{(3);2(3)S;(11)S} configuration. The outer par- particles in region Ill[shown in Fig. 16c)] indicates a fast
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FIG. 16. (a) Number of stable states arfd) the distance of the
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FIG. 18. The distance of the particles to the center of a 30-
particle system as function @ with x=4. The vertical dashed

lines mark the redistribution of the particles over different rings
(B<6.7) and the bubble regiof6.7<B<29).

tion (1,5,10,14" is reached arounB=29.

FIG. 17. Snapshots of the ground state configuration for a
N=20-particle system withk=4. The different regions refer to

Fig. 16. (510,15) reg-1  (410,1¢) reg. 1 (4917 reg.
4. B=0 1. B=37] -] B=54
redistribution of the particles between the different bubblesf »~, |, P ,/“ Sy,
with changingB. The number of particles with a radius | § & »f= % % TN i et
smaller than 1 clearly increases for increasiBg which N ET S e 48 s 8 N
shows that the number of particles in the central bubble *, =~ ,” Ca s’ R i
grows until all particles are grouped into thk, 7,123"-ring il T Mt Lot
configuration in region IV. Only arounB=9, a surprisingly  3,9,18) reg.1 (2,919 reg. 1 (1,920) reg.
stable configuration exists, which corresponds with the sma L. B=58 o9 B=6.0 L. B=6.1
dip in the number of stable configuratiofsee Fig. 169)]. ,,r’;,e,_:b\. ol s b &7 H‘x
This configuration is triangular and consists of 2 clusters of 7_? { ¢1a s 4 PR I T K ;
particles and one with 6 particlésee Fig. 1Y. On the other AN R p,‘ "!\t 1 ;’ 8 & S
hand, one can see from Fig. (b§ that aroundB=7.5 the e Yo | Lo tege®
energy difference of the 5-particle bubbles configuration is :
rather large. If one looks at the eigenfrequencies one can se(9.21) reg-I  (822) reg. 1 {(7) (13} reg
for higherB, that the first nonzero eigenfrequency becomesf .o-=--8=63 4. D58 092 B=6.7
larger. This means that the bonding between the particle} & .. *y 2 e, ' LN
becomes stiffer which can be explained by the higher particli{- : >3 R '} i
density of the system. , et s Ly LR B
For the 30-particle system we limit the discussion and ‘“to__q_yo" oo Poale
show the distances of the particles to the center as a functic b b b b H
of Bin Fig. 18 for k=4. Figure 19 shows a few snapshots of (878 @ } red- 1l 201,6) 20,7) 37€9- 1 (1,51014) sz oreQ.
ground state configurations for differeBtvalues. Again the . 7 ?=7'° g B=9:5 ,,_..._QB=3°
four regions are marked. Many more different low density; °° - SrECRy
ring configurations are found in region I: with increasiBg s :3 = Tgﬁ— _r%H’*L
. . . ; . ¥ Ve e 8
the particles jump from the inner rings to the outer ring. The[ .3 |, ¥ 5> o ¥
stripe phase region Il is again a very small region and on th " f

scale of Fig. 18 is reduced to a single line. The stripe phase
{(7)S;(13)} aroundB=6.7 consists of a bent stripe in the

FIG. 19. Snapshots of the ground state configuration for a

center and a closed ring around it. The stability region of theN=30-particle system with=4.
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bubble phase region Ill now has even more increased, be-
cause it takes longer before all particles are grouped into the
central bubble. Eventually, the high density ring configura-
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(3.9,15,21,26,26) (3.9,14,19,19,36) (9,9.9.29.44) 20). After the stripe phase, many different bubble phases are
[ et B0 | 499790, B=6.5] obtained. o _ _
! d?"a';;; :,‘_:a\:-,‘ fwﬁsg@_g’ %a, ] From previous analysis of intermediate size and large sys-
o 52 ;:;;:;ﬁz 5 FoaFFan® 3 ] tgms we can formula}te some general rules for d|.fferent trgn-
_;:;;3;;;3{;;; RS sitions be_twee_n regions from the I_ow to thg high density
L 5. ® :._‘:_'::»'_’::a,é 5‘ﬁi°a‘%“,a°° configuration:(i) the particles redistribute to higher and less
“1.:_9- r:_”;_a‘ 2003009" ] shells through first order transitiongi) the particles group
2L E— in stripes located on shells through a second order transition;
12(2,6),3(2,7),28).201,6)3),(1,5)1.7) (iii) the particles in these stripes collapse into bubbles
|g B9 through first order transitions(iv) the particles organize
g themselves in bubbles of different sizes and finally all par-
ticles are grouped in a single bubble through first order tran-
sitions. These transitions to bubbles occur for similar param-
eters of the attractive part of the inter-particle potential as
found for smaller systems.

Finally, we want to investigate if we can predict even
more properties of a large system with the obtained knowl-
edge about smaller systems. As an example we want to pre-
dict for which B value a 100 particle system consists mainly
of 3-particle bubbles ak=6. From the phase diagram for a

From the above it is clear that with increasing number °f6-particle systentFig. 12 we find that 3-particle bubbles are

particles the stability region of the stripe phases decreasqgrmed atx=6 for B=13.5. The ground state configuration

FIG. 20. Snapshots of configurations foNa 100-particle sys-
tem with k=4.

while it increases for the bubble phases. for 100 particles for the same parameters is shown in Fig. 21.
The ground state configuration was obtained from 100 dif-
V. LARGE SYSTEMS ferent trials. Note that the system is organized in small

The seriesN=10,20,30 already gives us an idea of thebgbbles._These bubbles can be seen as effective particles
richness of the possible realizable configurations which are f”th mult|ple_ charge a_nd mass Wh'c.h Interact through a Cou-
consequence of the competition between the confinement p me repulsive dpcr)]tentlal. Thefsi]partmleslorgafr_nze themselves
tential and the repulsive and attractive parts of the interpa n Ir'n%? around the centt)er 0 ft € qelrltra_ c?n mgmen; pgtig'
ticle interaction. To illustrate the increased complexity with 1@l- The average number of particles Is found to be 2.
N we consider as a final example the 100-particle system.\/\/BartICIeS per bubble which is very close to the predicted

show in Fig. 20 snapshots of ground state configurations fopumber of 3 part|cl_es per bubble using the phase diagram of
5 differentB values with fixed at 4. For smalB, we find a small system. This example shows that we can understand

again the low density ring configuratignote even the onset and predict some of the behaviors of larger systems starting

of the hexagonal structure in the centdncreasingB leads from our knowledge of small syste_ms. Fo.r Iarger.systemg, a
to a clustering of different rings in bands, as shown in thebUbee can be treated as an effective pgrtlcle ha\(lng muIt|pIg
configuration forB=6.5 in Fig. 21. With a further increase in charge and mass. The subsequent multitype particle system is

B, these bands break up, resulting in a phase which is equivéhe finite analogon of the alloy prablem.
lent to the stripe phadsee the configuration f@=7 in Fig.
VI. CONCLUSIONS

- - In this paper we investigated a finite size system of clas-

.---"" [y 1 sical charged particles with competing short-range attraction

i 9 5 1. "\30 and a long-range repulsion potential. A rich variety of differ-

[ 4 Rl RS figurations were obtained, the number of which in-

K o’ A ] ent configl d, b

I . v l creases with the number of particles. Transitions between the

o N N . ¥ - different configurations are centered around a strip located

Pe near B=2.5x—3.5. This strip separates two identical ring

y configurations with different density, i.e., the low and high

. 8 o ] density ring configuration. The inclination of the first order

Bt N B oS i phase boundary with smalleBtof this region does not de-

B L % ¥ /,.g . pend on the number of particles in the system, but only on

L 93, 3. I ; the individual interaction between the two particles. The

- Pl - width of the transition region is determined by the number of

R 1 particles in the system because a deeper local potential mini-

T mum is needed to group all particles together in a single

bubble. If one follows the ground state configuration starting
FIG. 21. Configuration for &l=100-particle system witk=6  from the low density configuration to the high density con-

andB=13.5. figuration through the transition region, we found that the
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particles are successively grouped into bubbles. This grougdensity ring configuration. The global qualitative behavior
ing is almost independent of the number of particles andan be deduced from systems with a small number of par-
occurs around the same parameters of the attractive part &itles for which we presented the fulB, «) phase diagram.
the interparticle potential. The existence of a second ordeThe transition between a stripe phase and a bubble phase
transition in this high density region depends on the structureccurs through a first order transition. The transition between
of the configuration. It does not appear in configurations witha ring configuration and the stripe phase occurs through a
a triangular arrangement of particles. For systems with morgecond order phase transition.

particles, the number of stable configurations grows very

rapidly with N. With increasing the attractive part of the ACKNOWLEDGMENTS

interaction potential, intermediate size and large systems

all pass through four main phases: low density ring configu- This work was supported by the Flemish Science Foun-
rations, stripe phases, bubble phases and finally the higthation (FWO-VI).
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