
Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions

K. Nelissen,* B. Partoens,† and F. M. Peeters‡

Departement Fysica, Universiteit Antwerpen (Campus Middelheim), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
sReceived 20 October 2004; revised manuscript received 28 February 2005; published 6 June 2005d

A system of classical charged particles confined in a two-dimensional trap and interacting through a com-
peting short-range attraction and long-range repulsion potential is studied. The structure of the system strongly
depends on the interaction range of the short-range attraction potential and the total number of particles.
Depending on the appropriate choice of parameters for the attractive potential, the particles organize them-
selves in bubbles, stripe phases, and ringlike configurations, or combinations of both of them. Detailed phase
diagrams are presented for systems consisting ofN=2 up toN=6 particles. General rules are derived for the
different subsequent transitions between those configurations and how the ground state configuration of a large
system can be deduced from the one of a small number of particles.
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I. INTRODUCTION

Competing attractive and repulsive interactions generate
domain patterns in a wide variety of two- and three-
dimensional systems in naturef1,2g. In biology, liquid re-
gions of biological membranes are formed by lipid bilayers
and membrane proteins. The width of the liquid domains
depends on the competition between line tension and elec-
trostatic dipolar repulsion. Theory predicts an exponential
scaling of this width as is confirmed by experimentsf3g. In
magnetic materials the domain structure with alternating spin
orientation originates from the competition between short-
range exchange interaction and long-rang dipole interaction
f4g. In antiferromagnetic materials, or layered transition
metal oxides, holes interact through a competing long-range
and short-range potentialf5,6g. These competitions generate
charge ordering and have possible relations to the mecha-
nism of high-temperature superconductivity in doped cu-
pratesf7g and bismuthatesf8g. In materials science experi-
ments with colloidal systems, combined with theoretical
predictions, may lead to the design of novel soft materials
and to a deeper understanding of the glass and gel states of
matterf9g. Another example are the dispersion properties of
chemical synthesized cobalt nanoparticles which were stud-
ied experimentally in Ref.f10g. Further experimental realiza-
tions of systems with competing interactions are the dynamic
self-assembly of rings of charged metallic spheresf11,12g,
pattern formation in dynamical systemsf13g and crystalliza-
tion and aggregation in a colloid-polymer suspensionf14g.

Recently, it became clear that the pattern formation in the
above systems displays common structural features. These
common features, like the spatial modulation, suggests a uni-
versal approach for explaining the behavior of these systems.
In recent molecular dynamics simulationsf15–18g simplified
models with different types of interaction potential were per-
formed and lead to a good agreement with the experimental

observed patterns. The goal of these simulations was to con-
trol these self-organized patterns by adjusting a small num-
ber of physical parameters. This is important in order to un-
derstand these self-assembled systems and to control the
size, orientation, and structure of the formed patterns. Notice
that all theoretical studies until now were done for infinite
systems.

In our modern age of nanoscience, the study of finite size
effects has become very important. Often the nanosystem is
put on a surface and motion is limited in two dimensions
s2Dd. This motivated us to apply an extra confinement po-
tential to a 2D system and study the effect of a boundary on
the patterns generated by the competing interactions. The
system under study in the present paper is composed of a
finite number of classical particles which interact through a
repulsive Coulomb potential and an attractive exponential
potential. The particles move in a 2D plane where the motion
is confined by a parabolic potential. The competition be-
tween the short-range attraction and the long-range repulsion
potential will generate a spontaneous spatial modulation of
the particles. We found that the particles will organize them-
selves in various different phases like bubble phasesspar-
ticles are organized in different bubblesd, stripe phasesspar-
ticles are organized in different lines on a ringd, rings
sparticles are organized in different rings around the centerd
or combination of those phases depending on the strength
and interaction range of the short-range potential, the
strength of the confinement potential, and the number of par-
ticles.

The paper is organized as follows. In Sec. II our model
system is introduced. The results for a small system are pre-
sented in Sec. III, those for intermediate systems in Sec. IV,
and for large systems in Sec. V. Our conclusions are pre-
sented in Sec. VI.

II. MODEL SYSTEM

With our model system we are interested to study the
effect of the competition of a short range attraction and a
long range repulsion on the configurations in a finite system.
We considered a system withN pointlike classical particles
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interacting through a repulsive Coulomb potential and an
attractive exponential potential as in Refs.f15,16g. The par-
ticles move in two dimensions where they are confined by a
parabolic potential trap centered at the origin. The general
dimensionless Hamiltonian of the system is written as

H = o
i=1

N

ri
2 + o

i, j

N S 1

ur i − r ju
− Be−kur i−r j uD , s1d

using the following units:r8=s2q2/mev0
2d1/2 for the length,

E8=mv0
2r0

2/2 for the energy withm the mass of the particles
andv8=v0/Î2 for the frequency withv0 the strength of the
confinement potential. Note that the strength of the confine-
ment potential in combination with the strength of the Cou-
lomb repulsive part of the interparticle interaction determine
the length and energy scale. The first term is the confinement
potential, the second the repulsive part of the interparticle
potential and the last the attractive part. The exponential term
is determined by two parametersB and k, whereB deter-
mines the strength andk the interaction range of the attrac-
tive part of the interparticle potential. Notice that the repul-
sive part is long range while the attractive part is short range.
But in the present work the ranges of the potentials should be
compared with the finite size of our system.

To find the minimum energy configurations we used the
Monte Carlo simulation technique extended with a Newton
optimization techniquef19g. This last technique increases the
convergence and the accuracy of the obtained local minima.
In order to be sure to have found the ground state configu-
ration, we run the Monte Carlo simulation routine many
times, starting with different random configurations. To as-
sume that the obtained configuration is a stable one, the ei-
genvalues of the dynamical matrix, which are the squared
eigenfrequencies of the system, are calculated and we re-
quired that they are positive. A negative eigenvalue implies
that the obtained extremum corresponds to a local energy
maximum or a saddle point.

III. SMALL NUMBER OF PARTICLES

In the following, phase diagrams for the configuration of
small clusters are presented as a function of the interparticle
potential parameters. In order to understand these phase dia-
grams better, it is useful to investigate the interaction poten-
tial first. The curves in Fig. 1 show the positionr of the
extrema of the interaction potential between two particles for
different k values as function ofB. Each curve corresponds
with two extrema, a minimum and a maximum, which join
together at some minimum value ofB. At this point the ex-
trema disappears. ForB values below this point the attractive
part of the potential becomes too small to compete with the
repulsive part and the interparticle potential is purely repul-
sive. The distance between both extrema is inversely propor-
tional tok. Notice that the qualitative behavior is similar for
low and highk. For k=0, the range of the attractive part of
the potential becomes independent of the distance between
the particles and does not affect the structure of the system.
In the other limit, ifk is very large, the range of the attractive
potential becomes too short and will be unable to affect the

structure of the system either. So one can expect a transition
region insk ,Bd space, where the attractive potential strongly
competes with the repulsive Coulomb potential resulting in
transitions between different particle configurations. Also
one can expect that these transitions will appear around the
same values insk ,Bd for different number of particles con-
fined in the parabolic trap. The reason is that the transitions
are determined by the mean interparticle distance and this
mean interparticle distance is approximately independent of
the number of particles in a parabolic trap.

The configurations were studied as function ofk and B.
The results for the ground state configurations are summa-
rized in phase diagrams forN=2, . . . ,6 particles. In order to
label the configurations, we use the following notation
hnskds,b;msl ,ddj, where the numbers between brackets,k, l
and d, give the number of particles per shell in a stripe or
bubble andn andm are the number of bubbles or stripes with
the same configuration. The letterss andb stand respectively
for the stripe and the bubble configuration. For example, the
notation h2s2ds;2s3dbj in Fig. 15 means that there are 2
stripes of two particles and 2 bubbles of 3 particles.

Let us first discuss the result forN=2, presented in Fig. 2.
From the analysis of the interparticle potential we know that
whenB is sufficiently large, the interparticle potential has a
minimum and a maximum, and consequently two configura-
tions are possible: one in which the particles are close to
each other and one in which they repel each other. The latter
is only stable because of the presence of the confinement
potential. The former we call the highsHd and the latter the
low sLd density ring configuration, notated ass2dH ands2dL,
respectively. The first order phase boundary between both
phases is given by the solid curve in Fig. 2, which to a good
approximation can be represented by the lineB=2.9k−5.0.
This line ends in a critical second order transition point
sk ,Bd=s5,8.6d. Notice that for lowB values one can go
continuously from one configuration to the other.

FIG. 1. Position of the extrema of the interparticle potential as
function ofB for differentk values. The full curves correspond to a
minimum and the dashed curves to a maximum. The insets show
the potential energy as function of the distance between the par-
ticles for B=2 andB=6 with k=1.5.
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In Fig. 3 we investigate a 3-particle system. The particles
are arranged on a ring with different densities on both sides
of the transition line, i.e., thes3dL and thes3dH configuration.
The thin lines in Fig. 3 are equiradius lines for the ring
configuration. The configuration in the low density region is
determined by the Coulomb repulsive part of the interparticle
interaction as found in previous simulationsf20g. The con-
figuration in the high density region is determined by the
competition of the attractive and repulsive part of the inter-
particle interaction. The boundary between the low and high
density configuration regions is a triple linesto a good ap-
proximation given byB=2.80k−5.40d which ends in a tri-
critical point sk ,Bd=s4.1,6.8d, below which no transitions
occur. Exactly on the triple line, thehs1d ,s2dbj-bubble con-
figuration coexist with both ring configurations, as shown in
Fig. 4. For thisk value andB range, 3 stable configurations
are found which go through a single point on the triple line.
In the bubble configuration on the triple line, two particles

are grouped in a bubble and separated from the third particle
by the Coulomb potential. Figure 5 shows the distance be-
tween two particles in the bubble and the distance between
the bubble and a third particle as function ofk following the
bubble configuration on the triple line until the tri-critical
point is reached. Ifk increases following the transition line,
the distance between bubble and particle become equal to the
distance between a particle and another effective defect par-
ticle with double charge and mass. This limit is plotted in
Fig. 5 and is equal toD=1.145. In the other limit ifk de-
creases and goes to the tri-critical point, the distance between
the particles in the bubble and between the particle and the
bubble become equal or in other words the bubble configu-
ration becomes equal to the ring configuration. One can con-
clude that the triple line does not end up in a triple point
where the high and low density ring configuration coexist
with the bubble phase. Instead, all those phases become iden-
tical. In the eigenfrequency and radius plot in Fig. 6 for
B=8 we see that the transitions on the triple line are of first
order. Following the transition region to smallerB and k

FIG. 2. Phase diagram for the ground state configurations of a
classical cluster withN=2 particles. The insets shows the typical
configurations in each region of the phase diagram.

FIG. 3. Phase diagram for the ground state configurations of a
classical cluster withN=3 particles. The insets show typical con-
figurations in each region of the phase diagram. At the phase bound-
ary three phases coexist and is therefore a triple line which ends up
in a tri-critical point. The thin lines are equiradius lines for the ring
configuration.

FIG. 4. The energy of all stable configurations, of a classical
cluster withN=3 particles, as function of the amplitudeB of the
attractive potential.

FIG. 5. The distance between the 2-particle stripe and a third
particle and between the particles in the stripe following the transi-
tion line from highk to the tri-critical point.
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values, we found that the lowest nonzero eigenfrequency
goes to zero at the critical point indicating a second order
transition as shown in Fig. 6 forB=6.8, which shows the
eigenfrequencies forB values near the critical point. Note
that not a single but two frequency branches become zero
indicating that the second order derivative in the tri-critical
point is zero in more than one direction, which is consistent
with the fact that the 3 configurations become the same in
this point. Decreasingk andB further leads to an increase in
the lowest nonzero eigenfrequency and no transitions occur.
In this region one can go in a continuous way from thes3dL

configuration to thes3dH configuration. The radii in Fig. 6 for
B=6 and equiradii lines in Fig. 3 illustrate the phase transi-
tion before and after this tri-critical point. The positions of
the particles exhibit a jump at the first order transition. No-
tice also that the frequency of the breathing mode, the mode
where all particles vibrate simultaneously in the radial direc-
tion ssee insets of Fig. 6d, becomes large in the high density
region due to the strong mutual interaction.

In the 4-particle systemssee Fig. 7d we have a similar
high and low density region in which the particles are lo-
cated on a ring. But the transition region is much richer, due
to the fact that we can combine different number of particles
in bubbles of different sizes. The first order phase boundaries
are given to a good approximation byB=2.7k−4.3, B
=2.8k−4.6 andB=3.0k−5.0 sthe second expression repre-
sents two transition lines which are very close to each other,
see the circular inset in Fig. 7d, which join together in a
critical point at sk ,Bd=s4.0,6.6d. Just like for the bubble
phase in the 3-particle system, the 3 bubble phases of the
4-particle system can transform continuouslysthrough a sec-
ond order transitiond into the same ring configuration. As a
consequence all the phase boundaries must join in a single
point, leading to the remarkable feature that in this point 4
phases become the same. The inclination of the lowest phase
boundary is almost the same as for the 3-particle system.
This behavior can be understood as follows: the formation of
a two particle bubble, by increasingB or decreasingk, is
independent of the number of particles but is determined by
the interaction between two particles in a bubble. At highk
values the system is in the low density ring configuration.

The interaction range of the attractive potential is too small
to compete with the Coulomb potential. The system behaves
as interacting through a Coulomb repulsion and trapped in a
parabolic confinement potential. By decreasingk, the short-
range potential becomes strong enough to compete with the
Coulomb potential and bubble configurations are possible.
The bubble configuration, with two particles grouped into a
bubble, becomes the ground state by further decreasingk.
Such a bubble can be viewed as an effective defect particle
with multiple charge and mass as was studied in Refs.
f21,22g. Therefore the distance between the two other par-
ticles increases slightly and prevents them to group into an-
other bubble. This process continues until all particles are
grouped into a single bubble, i.e., the high densitys4dH state.
Notice that the phase diagram only shows the ground state
configurations, but several metastable configurations can ex-
ist at the same time. These configurations are illustrated in
Fig. 8, where the energy of the different stable states are
plotted as function ofk for fixed B. Notice that the state
h2s2dbj becomes the ground state only over a very smallk

FIG. 6. Eigenfrequenciessup-
per figuresd and distance of each
particle to the center of the con-
finement potentialslower figuresd
of a 3-particle system as function
of k for three different values of
B. The insets show the corre-
sponding eigenmodes. The center
of mass mode and the one shown
in the inset of the right figure are
twofold degenerate. The curves
for B=6.8 are going through the
tri-critical point.

FIG. 7. Phase diagram for the ground state configurations of a
classical cluster withN=4 particles. The straight lines indicate the
first order transitions and the dashed line the second order transi-
tion. The insets depict typical configurations in each region of the
phase diagram.
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region which is shown in one of the insets of Fig. 8. This is
in contrast with a three particle system where we found a
triple line where three phases coexist.

In a 4-particle system, the critical point, i.e., the second
order phase transition, is extended from a single point to a
line in the high density region, which stops in the critical
point sB,kd=s20.4,8.6d. In the 4,k,8.5 region this line is
closely approximates by the lineB=2.4k−0.8. This line is
absent in the 3-particle system because this system forms a
Wigner lattice in the ground state which is proven to be very
stable. In a 4-particle system, the particles form a ring and
the triangular structure is lost. These particles on the ring are
more free to move in comparison with particles in a triangu-
lar structure and this causes the system to undergo, in the
high density configuration, a second order transition by
grouping two opposite particles in the center of the parabolic
confinement to minimize the energy. Figure 9 shows that the
first nonzero eigenfrequency goes to zero at the second order
transition. The other transitions occur through first order
transitions.

In a 5-particle system there is again a transition region
which separates a high and low density ring configuration
with a second order transition line in the high density ring
configuration. The first order phase boundaries are given to a
good approximation byB=2.6k−3.4, B=2.7k−3.6, B
=2.8k−4.0, B=2.9k−4.5, andB=2.9k−4.7 which join to-
gether in a critical point atsk ,Bd=s3.5,5.7d. The second
order transition line in the region 2,k,10 is closely ap-
proximated by the lineB=2.9k−0.7. In the critical point this
second order line joins the first order line similar to what was
found for the 4-particle systemssee Fig. 7d. Making the com-
parison between the 4- and 5-particle phase diagrams, the
inclination of the second order transition line in the phase
diagram is increased and the first order transition region is
extended to smallerk-values. The first order transition region
is extended due to the increased number of possible configu-
rations which is proportional to the number of particles
squared. The inclination of the second order transition line is
increased due to the increasing diameter of the ring. This
increasing diameter results in a weaker confinement of the
particles on the ring and allows a second order transition at
lower k-values. Notice that all phase boundaries join to-
gether in a single critical pointsk ,Bd=s3.5,5.7d. We can
understand this as follows, if we follow the phase transition
lines for decreasingk, the particle configurations resemble
more and more thes5d-ring configurationsthis behavior is
similar to the one of a 3-particle system as seen in Fig. 6d
which is the configuration at the critical point. The different
phases in Fig. 10 can be easily understood intuitively as an
increased clustering of the particles and finally for smallk a
collapse into a single bubble. The energies of all the states
are given as function ofk in Fig. 11. Notice that from all of
the 9 stable configurations only 6 are realized as ground state
configurations.

The phase diagram for theN=6 systemssee Fig. 12d is
qualitatively different from the previous cases. There is only
a short second order transition line, which at a first glance is
unexpected. In comparison with previous systems, there is
one particle in the center of the configuration preventing a

FIG. 8. The energy of all stable configurations, of a classical
cluster withN=4 particles, as function of the interaction rangek of
the attractive potential forB=30.

FIG. 9. The nonzero eigenfrequencies for a 4-particle system, as
function of the interaction rangek with B=10.

FIG. 10. Phase diagram for the ground state configurations of a
classical cluster withN=5 particles. The straight line shows the first
order transitions and the dashed lines the second order transition.
The insets show the typical configurations in each region of the
phase diagram.
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second order transition in the ground state configuration
s1,5dH. However, the ring configurations6d, without a par-
ticle in the centerswhich is the ground state in a small re-
giond, can go through a second order phase transition in
which the particles group themselves in bubbles of two. The
ground state configuration for a very large value ofk is the
s1,5dL configuration. The first order phase boundaries are
given to a good approximation byB=3.2k−6.3, B=2.9k
−5.3, B=2.2k−3.0 srepresenting two phase linesd and B
=2.5k−2.6 srepresenting two phase linesd. In contrast to the
previous systems, one can see two critical second order join-
ing points for the first order phase transition lines atsk ,Bd
=s3.5,6.3d andsk ,Bd=s4.0,6.5d. This is because also thes6d
configuration exists as a ground state in a small region
around the joining points of the phase transition lines. There-
fore, if one follows the phase transition region for decreasing
k, the configuration can go in a continuous way to thes1,5d
or the s6dH configuration, leading to the critical point. One
can see that the most circulatory configurations go to thes6d

configuration and the other to thes1,5d configuration. Finally
in Fig. 13 the energies of all the possible stable configura-
tions are plotted as function ofk. With increasingk we
found the following ground states: 1, 2, 5, 6, 9, 10, 12 and
15, where the number corresponds to the curves in the upper
figure of Fig. 13 and the corresponding configurations are
shown in the lower figures of Fig. 13.

IV. INTERMEDIATE NUMBER OF PARTICLES

In this section we want to see if we can infer the behavior
of larger systems from our knowledge of the few particle
systems of the previous section. Therefore, we will take a
closer look to the 10-, 20- and 30-particle systems. In the
previous section we found that the number of possible stable
states increases very rapidly with increasing number of par-
ticles, e.g., 9 in Fig. 11 forN=5 and 21 in Fig. 13 forN
=6. There is also a corresponding increase of the number of
possible phases as ground state. Therefore, for systems with
more particles it becomes almost impossible to construct a
detailed phase diagram. To obtain still information about the
influence of changingB on the system we make a cross
section insk ,Bd space atk=4.

In this paragraph the influence of changingB on the
ground state of a 10-particle system is studied andk is fixed
at 4. In Fig. 14, the number of stable states, the energy dif-
ferences of the metastable states with the ground state, the
distance of the particles of the ground state configuration to
the center of the confinement potential, and the eigenfre-

FIG. 11. The energy of all stable configurations, of a classical
cluster with 5 particles, as function of the interaction rangek of the
attractive potential.

FIG. 12. Phase diagram for the ground state configurations of a
classical cluster withN=6 particles. The insets show the typical
configurations in each region of the phase diagram.

FIG. 13. The energy of all stable configurations, of a classical
cluster with 6 particles, as function of the interaction rangek of the
attractive potential. The corresponding configurations are depicted
in the lower figures.
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quencies of the ground state configuration are given as func-
tion of B. We distinguished 4 main regions which are sepa-
rated by the full vertical lines: region I corresponds to low
density ring configurations, II to stripe configurations, III to
bubble configurations, and IV to high density ring configu-

rations. The snapshots of Fig. 15 are labeled with the region
number to which the configuration belongs. In region I the
ground state configurations are ring configurations. Different
ring configurations are found as function ofB and therefore
region I is subdivided, marked by the short dashed lines in
Fig. 14. ForB=0 thes2,8dL-ring configuration is the ground
state. If one increasesB, the system changes slightly by ro-
tating the inner particles with respect to the other particles,
through a second order transition. If one increasesB further,
the particles redistribute themselves over different rings in
order to form first thes1,9dL configuration and subsequently
the s10dL-ring configuration by promoting particles from the
inner shell to the outer shell. Next, thes10dL-ring configura-
tion undergoes a second order transition and the particles
group themselves in stripes of two particles on a ringsor
pentagond and form theh5s2dsj-stripe configuration, immedi-
ately followed by another first order transition and form the

FIG. 14. sad Number of stable states,sbd energy difference of the
metastable states with respect to the ground state,scd the distance of
the particles to the center, andsdd eigenfrequencies of the ground
state of a 10-particle system as function ofB for k=4. The vertical
lines mark the different regions: I ring, II stripe, III bubble, and IV
cluster phases. Subdivisions in a region are marked with a short
dashed line.

FIG. 15. Snapshots of the ground state configuration for a
N=10-particle system withk=4. The different regions refer to
Fig. 14.
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h2s2ds,2s3dsj-stripe configurationsin which the particles are
grouped in stripes of 2 or 3 particles which are roughly situ-
ated on a rectangled. These stripe phases constitute region II.
In region III bubble phases are formed: the particles in the
two 3-particles stripes form two 3-particles bubbles resulting
in the h2s2ds,2s3dbj configuration followed by a transition to
the h2s3db,s4dbj configuration. The system consists now of
two bubbles of three particles and one bubble of four par-
ticles. This last configuration is very symmetric and is the
ground state over a relative largeB range, indicated by the
two dashed lines in Fig. 14 aroundB=8. Finally, if one in-
creases the amplitude of the attractive potential further, the
particles redistribute themselves over larger bubbles until all
particles are grouped in a single bubble in region IV in order
to form thes2,8dH deformed ringlike configuration. Also this
high density ring configuration undergoes a first order tran-
sition, marked by a dashed line in Fig. 14, to the final ground
state configurations3,7dH. Notice, that qualitatively the tran-
sitions occur through the same mechanism as found in
smaller systems. Moreover, the clustering of the particles in
bubbles occurs around similar values for the parameters of
the attractive part of the interparticle potential as found in
smaller system.

Constructing a complete phase diagram from the Monte
Carlo simulations is very time consuming, as the number of
stable configurations can be very large. This is illustrated in
Fig. 14sad for N=10 andk=4 whereB is varied with steps of
DB=0.1. We preformed 50.000 trials and used the criterium
that two states are taken to be different ifDE=10−7. Around
B=8 a peak appears which occurs in the bubble phase region
III, where metastable states are easily formed by redistribut-
ing particles between the bubbles and rotating the bubbles
with respect to each other. For smallB sregion Id the number
of stable states is small because the system is close to a
normal Coulomb cluster. For larger values ofB sregion IVd,
the total number of stable states stays large. Notice that the
energy differences between the ground state and the meta-
stable statesfshown in Fig. 14sbdg become larger after region
III. This implies that the stability of the metastable states
decreases for increasingB and the number of stable states
decreases.

The same quantities as in Fig. 14 are shown in Fig. 16 but
now for a 20-particle system. Note the increase, an order of
magnitude, in the number of stable states forB.7 fFig.
16sadg as compared to theN=10 case. Snapshots of configu-
rations for differentB are shown in Fig. 17. As forN=10, we
can distinguish four main types of configurationssI low den-
sity rings II stripes, III bubbles, and IV high density ringsd
are present and marked by full vertical lines in Fig. 16. Sub-
divisions are marked by short dashed lines. From both fig-
ures, one can see that the particles first redistribute them-
selves over different rings until thes3,17dL-ring
configuration in region I. Notice that in contrast toN=10, for
N=20 two well developed rings are observed. Next in region
II, the particles on the outer ring group themselves in stripes
through a second order transition. Note that the stability of
the stripe phase is reduced tremendously: in Fig. 16 it is
marked by one vertical line. The only stripe phase in this
region is thehs3d ;2s3dS; s11dSj configuration. The outer par-

ticles form almost a perfect ring, however a detailed investi-
gation of the interparticle distances shows the existence of
two curved stripes of 3 particles and one long curved stripe
of 11 particles. By further increasingB, particles group in
bubbles in region III through first order transitions. The
width of this region has clearly increased in comparison with
the 10-particle case. The chaotic behavior of the radii of the
particles in region IIIfshown in Fig. 16scdg indicates a fast

FIG. 16. sad Number of stable states andsbd the distance of the
particles to the center andscd eigenfrequencies of the ground state
of a 20-particle system as function ofB with k=4. The vertical
dashed lines mark different types of configurations in the ring and
the bubble region.
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redistribution of the particles between the different bubbles
with changing B. The number of particles with a radius
smaller than 1 clearly increases for increasingB, which
shows that the number of particles in the central bubble
grows until all particles are grouped into thes1,7,12dH-ring
configuration in region IV. Only aroundB=9, a surprisingly
stable configuration exists, which corresponds with the small
dip in the number of stable configurationsfsee Fig. 16sadg.
This configuration is triangular and consists of 2 clusters of 7
particles and one with 6 particlesssee Fig. 17d. On the other
hand, one can see from Fig. 16sbd that aroundB=7.5 the
energy difference of the 5-particle bubbles configuration is
rather large. If one looks at the eigenfrequencies one can see,
for higherB, that the first nonzero eigenfrequency becomes
larger. This means that the bonding between the particles
becomes stiffer which can be explained by the higher particle
density of the system.

For the 30-particle system we limit the discussion and
show the distances of the particles to the center as a function
of B in Fig. 18 fork=4. Figure 19 shows a few snapshots of
ground state configurations for differentB values. Again the
four regions are marked. Many more different low density
ring configurations are found in region I: with increasingB
the particles jump from the inner rings to the outer ring. The
stripe phase region II is again a very small region and on the
scale of Fig. 18 is reduced to a single line. The stripe phase
hs7dS; s13dj around B=6.7 consists of a bent stripe in the
center and a closed ring around it. The stability region of the

bubble phase region III now has even more increased, be-
cause it takes longer before all particles are grouped into the
central bubble. Eventually, the high density ring configura-
tion s1,5,10,14dH is reached aroundB=29.

FIG. 17. Snapshots of the ground state configuration for a
N=20-particle system withk=4. The different regions refer to
Fig. 16.

FIG. 18. The distance of the particles to the center of a 30-
particle system as function ofB with k=4. The vertical dashed
lines mark the redistribution of the particles over different rings
sB,6.7d and the bubble regions6.7,B,29d.

FIG. 19. Snapshots of the ground state configuration for a
N=30-particle system withk=4.
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From the above it is clear that with increasing number of
particles the stability region of the stripe phases decreases
while it increases for the bubble phases.

V. LARGE SYSTEMS

The seriesN=10,20,30 already gives us an idea of the
richness of the possible realizable configurations which are a
consequence of the competition between the confinement po-
tential and the repulsive and attractive parts of the interpar-
ticle interaction. To illustrate the increased complexity with
N we consider as a final example the 100-particle system. We
show in Fig. 20 snapshots of ground state configurations for
5 differentB values withk fixed at 4. For smallB, we find
again the low density ring configurationsnote even the onset
of the hexagonal structure in the centerd. IncreasingB leads
to a clustering of different rings in bands, as shown in the
configuration forB=6.5 in Fig. 21. With a further increase in
B, these bands break up, resulting in a phase which is equiva-
lent to the stripe phasessee the configuration forB=7 in Fig.

20d. After the stripe phase, many different bubble phases are
obtained.

From previous analysis of intermediate size and large sys-
tems we can formulate some general rules for different tran-
sitions between regions from the low to the high density
configuration:sid the particles redistribute to higher and less
shells through first order transitions;sii d the particles group
in stripes located on shells through a second order transition;
siii d the particles in these stripes collapse into bubbles
through first order transitions;sivd the particles organize
themselves in bubbles of different sizes and finally all par-
ticles are grouped in a single bubble through first order tran-
sitions. These transitions to bubbles occur for similar param-
eters of the attractive part of the inter-particle potential as
found for smaller systems.

Finally, we want to investigate if we can predict even
more properties of a large system with the obtained knowl-
edge about smaller systems. As an example we want to pre-
dict for whichB value a 100 particle system consists mainly
of 3-particle bubbles atk=6. From the phase diagram for a
6-particle systemsFig. 12d we find that 3-particle bubbles are
formed atk=6 for B=13.5. The ground state configuration
for 100 particles for the same parameters is shown in Fig. 21.
The ground state configuration was obtained from 100 dif-
ferent trials. Note that the system is organized in small
bubbles. These bubbles can be seen as effective particles
with multiple charge and mass which interact through a Cou-
lomb repulsive potential. These particles organize themselves
in rings around the center of the central confinement poten-
tial. The average number of particles is found to be 2.77
particles per bubble which is very close to the predicted
number of 3 particles per bubble using the phase diagram of
a small system. This example shows that we can understand
and predict some of the behaviors of larger systems starting
from our knowledge of small systems. For larger systems, a
bubble can be treated as an effective particle having multiple
charge and mass. The subsequent multitype particle system is
the finite analogon of the alloy problem.

VI. CONCLUSIONS

In this paper we investigated a finite size system of clas-
sical charged particles with competing short-range attraction
and a long-range repulsion potential. A rich variety of differ-
ent configurations were obtained, the number of which in-
creases with the number of particles. Transitions between the
different configurations are centered around a strip located
near B<2.5k−3.5. This strip separates two identical ring
configurations with different density, i.e., the low and high
density ring configuration. The inclination of the first order
phase boundary with smallestB of this region does not de-
pend on the number of particles in the system, but only on
the individual interaction between the two particles. The
width of the transition region is determined by the number of
particles in the system because a deeper local potential mini-
mum is needed to group all particles together in a single
bubble. If one follows the ground state configuration starting
from the low density configuration to the high density con-
figuration through the transition region, we found that the

FIG. 20. Snapshots of configurations for aN=100-particle sys-
tem with k=4.

FIG. 21. Configuration for aN=100-particle system withk=6
andB=13.5.
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particles are successively grouped into bubbles. This group-
ing is almost independent of the number of particles and
occurs around the same parameters of the attractive part of
the interparticle potential. The existence of a second order
transition in this high density region depends on the structure
of the configuration. It does not appear in configurations with
a triangular arrangement of particles. For systems with more
particles, the number of stable configurations grows very
rapidly with N. With increasing the attractive part of the
interaction potential, intermediate size and large systems
all pass through four main phases: low density ring configu-
rations, stripe phases, bubble phases and finally the high

density ring configuration. The global qualitative behavior
can be deduced from systems with a small number of par-
ticles for which we presented the fullsB,kd phase diagram.
The transition between a stripe phase and a bubble phase
occurs through a first order transition. The transition between
a ring configuration and the stripe phase occurs through a
second order phase transition.
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