
PHYSICAL REVIEW B 94, 144506 (2016)

Anisotropic type-I superconductivity and anomalous superfluid density in OsB2
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We present a microscopic study of superconductivity in OsB2, and discuss the origin and characteristic length
scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different
Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the
found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations
to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare
property among compound materials. We show that the found coherence length and penetration depth corroborate
the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using
anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but
anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional
behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals
that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed
solely to a two-gap nature of superconductivity.
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I. INTRODUCTION

The question of particular types of superconductivity
emerged in the early years of the Ginzburg-Landau (GL) theory
[1,2]. In type-I superconductors under applied magnetic field,
an interface between normal (N) and superconducting (S)
domains is energetically costly, causing normal domains to
merge, whereas type-II superconductors minimize the normal
domains to single vortices (which repel and organize in an
Abrikosov lattice [2]). Type-I superconductivity mainly occurs
in elemental metals (Pb, Sn, In, Al, etc.), but is very rare in com-
pounds. The fact that virtually all superconducting compounds
discovered since the early 1960s are type-II superconductors
[3] (with a few notable exceptions such as YbSb2, TaSi2,
etc. [4,5]) reduced the interest in type-I superconductors, until
modern experimental and numerical techniques enabled more
careful investigations of their rich intermediate state due to
demagnetization effects in applied magnetic field: topological
hysteresis of tubular/laminar domains depending on sample
shape [6–8], the “suprafroth” ground-state [9], mesoscopic
effects [10,11], intricate dynamics of normal domains under
applied current [12], etc. Moreover, a transitional regime
between standard types I and II exists, that has been noted in
both experiment [13,14] and microscopic theory [15–17]. Its
rich physics can become accessible by adding a controlled rate
of nonmagnetic impurities in a type-I superconductor [14,18].

One recently studied superconducting compound of which
the length scales remained elusive is osmium diboride (OsB2).
Its rather low critical temperature (2.1 K) and the recently
measured magnetization and heat capacity of single-crystal
samples [19] pointed at possible type-I superconducting
behavior, but that was not corroborated by simplified estimates
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of the superconducting length scales and the Ginzburg-Landau
parameter κ ∼ 1–3 � 1/

√
2. OsB2 displayed additional un-

conventional properties, notably the temperature dependence
of the superfluid density that deviates from the Bardeen-
Cooper-Schrieffer (BCS) result. In order to explain this
observation, a two-gap model was proposed for supercon-
ductivity in OsB2 [19]. Although two-gap superconductivity
was predicted theoretically already in 1959 [20], it was first
identified unequivocally in MgB2 only in 2001-2002 [21,22].
Other materials that are candidates for multi-gap supercon-
ductors are NbSe2 [23,24] and FeSe [25,26]. A successful
extension of the Bardeen-Cooper-Schrieffer (BCS) theory for
conventional superconductivity, with which the gap structure
of superconductors can be studied, is (Migdal-)Eliashberg
theory [27]. In this theory, the electron-phonon interaction
is not assumed instantaneous, but is retarded on the time
scales determined by the phonons. In its most general form,
the full reciprocal space dependence of the electron-phonon
coupling is taken into account; we will refer to this treatment
as fully anisotropic Eliashberg theory from here on. The
technique is particularly important for identifying and studying
multigap as well as anisotropic superconductors. One of the
greatest successes of Eliashberg theory is the definitive proof of
multigap superconductivity in MgB2, from first principles, as
delivered first by Choi et al. [22], and confirmed independently
several times thereafter [28,29].

Here, we present an extensive theoretical study that clarifies
all of the anomalous properties of OsB2 outlined above.
Based on a combination of first-principles calculations and
mean-field theory, we provide proof of deeply type-I behavior
in OsB2. Detailed knowledge of microscopic parameters and
superconducting length scales obtained in this study enabled
us to perform a very accurate analysis of the experimental data
of Ref. [19], notably the critical magnetic field, supporting
this conclusion. Furthermore, we reveal, based on Eliashberg
calculations, that the superconducting gap spectrum of OsB2 is
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FIG. 1. (a) The orthorhombic crystal structure of OsB2. (b) The hexagonal crystal structure of MgB2. In both cases, the unit cells are
indicated by grey boxes.

anisotropic rather than multigap as previously proposed [19].
These revisions of both the superconducting spectra and the
length scales of OsB2, starting from first principles, make an
exemplary case for the interaction between experiment and
theory in the field of nanostructured superconductivity.

The paper is organized as follows: first, we discuss the
crystal structure and ground state electronic structure of
OsB2 in Secs. II and III, thoroughly making the comparison
with available experimental data such as Shubnikov-de Haas
measurements. We proceed by presenting in Sec. IV all
properties related to superconductivity, namely the phonon
structure, electron-phonon coupling and the gap spectrum,
for which we show an excellent comparison with superfluid
density measurements in Sec. V. Finally, in Sec. VI, we derive
the length scales of OsB2 from the calculated microscopic
properties using Ginzburg-Landau relations, and the resulting
interaction with applied magnetic fields. Throughout, we make
the comparison between the OsB2 and MgB2, the archetypical
two-gap superconductor, pointing out both similarities and
differences. Section VII summarizes our findings and conclu-
sions.

II. CRYSTAL STRUCTURE

OsB2 adopts the orthorhombic space group Pmmn (No. 59)
[30], depicted in Fig. 1(a). One should note a very good
agreement between calculated and experimental [19] lattice
parameters, displayed in Table I, with relative deviations below
1%. Os occupies Wyckoff position 2a depending on one
internal parameter zOs and B Wyckoff position 4f depending
on internal parameters xB and zB, giving a total of 6 atoms in
the OsB2 unit cell. The internal parameters compare equally
well with experimental values (added between parentheses):
zOs = 0.155 (0.153), xB = 0.056 (0.049), and zB = 0.638
(0.641). For comparison, we show in Fig. 1(b) the crystal
structure of MgB2 (hexagonal space group P6/mmm), that is

TABLE I. Lattice parameters of OsB2: a comparison between
calculations and experiment [19], including the relative deviation
between them.

Parameter Calc. (Å) Exp. (Å) [19] relative dev. (%)

a 2.893 2.870 +0.8
b 4.098 4.079 +0.5
c 4.705 4.673 +0.7

clearly layered in consecutive planes of Mg and B, as opposed
to the structure of OsB2.

III. ELECTRONIC PROPERTIES AND SHUBNIKOV-DE
HAAS MEASUREMENTS

We start from a first-principles study of the electronic
structure of OsB2 based on density functional theory (DFT),
implemented in VASP [31]. In this study—for which computa-
tional details can be found in Appendix—we take into account
spin-orbit coupling, in view of the high atomic number of Os.
The band structure according to orbital character, shown in
Fig. 2(a), reveals predominant Os-d character of the bands
crossing the Fermi level (EF). A fraction of B-p states also
contributes to the band we denote M because of this mixed
character. A total of three bands is present at EF, so the
resulting Fermi surface, depicted in Fig. 2(b), consists of three
sheets. First, there are two nested quasiellipsoidal sheets with
pure Os-d character, centered around X, the inner one denoted
E1 and the outer one E2. The third sheet M, with central axis
along direction Y-S, is more anisotropic. One of the most
successful experimental techniques to probe Fermi surfaces is
the one of quantum oscillations, utilizing the Shubnikov-de
Haas (SdH) effect. In this effect, the conductivity of a metal
shows oscillations with frequencies proportional to the areas
of extremal orbits of the Fermi surface A(EF), perpendicular
to the applied magnetic field [32]. The amplitude of the SdH
oscillations depends on the cyclotron mass of the electrons
dressed with phonon interaction m∗

c . The extremal orbits in
the case of OsB2 are indicated in Fig. 2(b) for two different
magnetic fields. We calculated the SdH frequencies f and
bare cyclotron masses mc (i.e. without phonon dressing),
respectively as f = �

2πe
A(EF) and mc = �

2

2π
( ∂A
∂E

)|
E=EF

, where
the derivative with respect to (w.r.t.) E is treated within central
difference approximation. In our simulation, we account for
the fact that the applied field was not exactly parallel to unit cell
vector c in the corresponding experiment (noted in Ref. [19]).
The agreement between theoretical and experimental SdH
frequencies, displayed in Fig. 2(c), is excellent (for field angle
23◦ with respect to c in the ac plane, in the simulations),
validating the electronic structure of OsB2 presented in
Figs. 2(a) and 2(b). Through the mass renormalization relation
[27] m∗

c = (1 + λ)mc, the electron-phonon (e-ph) coupling
λ in specific orbits can also be estimated. This reveals that
the e-ph coupling in E1 and E2 is strongly anisotropic. The
coupling is strong in E1 in the orbit perpendicular to b, while
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FIG. 2. (a) The calculated band structure of OsB2 around the
Fermi level EF. The color code denotes the character of the band (s,
p, or d), while the line thickness denotes the band character varying
between pure Os (thickest) and pure B (thinnest). (b) The Fermi
surface, consisting of three sheets: two quasiellipsoidal sheets E1

(red) and E2 (blue) and an anisotropic sheet M (green). Shubnikov-
de Haas orbits in applied magnetic fields H ‖ b and H ‖ c are also
indicated, b and c being unit cell vectors. (c) A comparison between
our theoretical calculations for Shubnikov-de Haas frequencies [in
units of kilotesla (kT)] and the experimental values from Ref. [19].
The resulting electron-phonon coupling values λ are added in red.
Slashes indicate that the experimental cyclotron masses were not
available.

it is very small in E2. The orbits of E1 and E2 perpendicular to
c show similar, moderate e-ph coupling. Band M has no closed
orbits perpendicular to b, but the e-ph coupling in the other
direction ranges from almost zero to quite strong, depending
on the orbit. The most important conclusion from this analysis

is that all bands contribute to the e-ph coupling. The question
of how the superconducting gap is distributed over the bands
will be treated in the following sections.

IV. PHONONS AND ELECTRON-PHONON INTERACTION

In order to analyze the mechanism leading to supercon-
ductivity in OsB2, we carried out a first-principles calculation
of the e-ph interaction. To this end we used Eliashberg theory
combined with density functional perturbation theory (DFPT),
as implemented in ABINIT [33,34], and details on which are
specified in Appendix. The phonon band structure, shown in
Fig. 3(a) is characterized by a distinct gap of ∼ 25 meV. The
characteristic Debye temperature is obtained from the speed
of sound vs in the material:

�D = hvs

2kB

3

√
6

π
N (EF), (1)

where N (EF) is the total density of states at the Fermi level.
The effective speed of sound is calculated as the following
average of the values due to the transversal and longitudinal
acoustic modes, vt and vl (the slope of the phonon dispersions
near �) [35]:

vs = 3
√

3

(
2

v3
t

+ 1

v3
l

)− 1
3

. (2)

We find �D = 471 K, in good accordance with the experimen-
tal value of 550 K [36]. The origin of the gap in the phonon band
structure becomes clear in the phonon density of states (DOS)
shown in Fig. 3(c). Owing to the high mass of Os, its phonons
are low-energy ones, in contrast with B-related phonons
extending up to energies of ∼ 100 meV. The Eliashberg
function and e-ph coupling shown in Fig. 3(c) point at the
dominance of Os-related phonons in the coupling constant.
Therefore, both the fermionic and the phononic features of
superconductivity in OsB2 are driven by Os. The total isotropic
coupling amounts to λtot = 0.52. Using the McMillan-Dynes
formula [37], critical temperature Tc = 2.1 K is found (taking
as Coulomb pseudopotential μ∗ = 0.13).

A comparison of the electron-phonon interaction in OsB2

to the case of the well-known two-gap superconductor MgB2
is instructive. As shown in Fig. 3(b), the contributions of Mg
and B to the phonon DOS are again quite distinguishable,
due to the mass difference, similar to the case of OsB2. In
the latter, the Os modes are even lower in energy because of
the high atomic number of Os. From the Eliashberg function,
shown in Fig. 3(d), we find coupling constant λtot = 0.81
for MgB2, compared to λtot = 0.52 for OsB2. This yields
Tc = 24 K for MgB2, significantly higher than for OsB2.
The main contribution to this strong coupling in MgB2 is the
pronounced peak in the Eliashberg function around ∼ 75 meV,
stemming from B-related phonon modes, in contrast with what
we established for OsB2. Tc = 24 K is still an underestimation
of the experimental Tc = 39 K for bulk MgB2, due to the
limitations of the isotropic Eliashberg theory. In reality, the
electron-phonon coupling is very anisotropic in MgB2 and
this anisotropy has a pronounced effect on Tc [38]. This
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FIG. 3. (a) and (b) The phonon band structure calculated using density-functional perturbation theory, for OsB2 and MgB2, respectively.
(c) and (d) (Top) The phonon DOS of OsB2 and MgB2 respectively, split into contributions of Os/Mg and B. (Bottom) The Eliashberg function
α2F describing the energy-dependent electron-phonon coupling, and the resulting isotropic electron-phonon coupling constant λtot.

fact has been established by combined anisotropic Eliashberg
theory and DFT calculations that have been very successful
in explaining superconductivity in this material [22,28,29]
and also made predictions for further experiments [29]. The
anisotropic electron-phonon coupling and the particular Fermi
surface of MgB2 result in two distinct superconducting gaps
over different Fermi surface sheets in this material. Therefore
it is possible to obtain an effective isotropic two-band
model that captures the essential characteristics of two-gap
superconductivity in MgB2 [39]. In this case, the coupling
is described by a 2 × 2 matrix of coupling constants. For

MgB2, it has been measured to be [40] 	 = (0.84 0.19
0.19 0.39

)
,

with the largest eigenvalue of this matrix playing the role
of an effective coupling constant in the multigap case [41]:
λeff = 0.91. In this approach, the multigap effect accounts for
a higher Tc = 37 K (using μ∗ = 0.1). As we show in the next
section, the application of a similar effective two-gap model
to OsB2 leads to incorrect conclusions about the nature of the
superconducting state of the material.

In MgB2, the dominant phonon mode in the e-ph coupling
is the in-plane hexagon deformation mode E2g of the B
atoms [22]. In OsB2, on the other hand, 80% of all e-ph

coupling is contributed by Os-related modes. The strongest
coupling resides in the three optical modes of Os, with energy
values between 9 and 26 meV, cf. Fig. 3. Although spread
over q space,1 the coupling in these modes is strongest at
q = (0,0,0) = �, thus promoting intraband coupling. In its
turn, it bears important consequences for the superconducting
gap spectrum, as we will show in the next section. The atomic
displacements corresponding to the different optical modes of
Os (with mode numbers n = 4,5,6) at � are shown in Fig. 4.
The displacements are directed along the three crystal axes,
along c, a, and b for n = 4,5,6 respectively. The mode with the
lowest energy (the softest mode), n = 4, carries the strongest
e-ph coupling λq=�,n=4 = 0.69, compared to λq=�,n=5 = 0.19
and λq=�,n=6 = 0.21 for the other two modes. The residual
20% of the total e-ph coupling is contributed by B-related
optical modes. It is strongest in mode n = 14, at �, and
corresponds to a displacement of the B atoms along b, as
shown in Fig. 4, and leads to the peak in α2F at 81 meV.

1For the definition of the q-point grid, see Appendix.
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λq=Γ,n=4 = 0.69 λq=Γ,n=5 = 0.19

λq=Γ,n=6 = 0.21 λq=Γ,n=14 = 0.14

FIG. 4. Atomic displacements of phonon modes that couple strongly to electrons in OsB2. In each case λq,n is given. Modes n = 4,5,6 are
optical modes of Os, along the three crystal axes. Mode n = 14, with displacements along axis b, is the optical B-mode with strongest coupling
to electrons. The inset shows the legend for the atom types and the crystal axes.

V. ANISOTROPIC SUPERCONDUCTING GAP AND
ANOMALOUS SUPERFLUID DENSITY

Starting from the electron-phonon interaction obtained in
the previous section, we can calculate the superconducting gap
spectrum using fully anisotropic Eliashberg theory. Technical
aspects of this calculation can be found in Appendix and
in Ref. [29]. The resulting superconducting gap spectrum

(k) of OsB2, at an intermediate temperature of T = 1 K,
is displayed in Fig. 5. The distribution ρ(
) shows that the
gap varies continuously over all Fermi sheets. Therefore OsB2

is identified as an anisotropic, due to the spread of the gap
spectrum, but single-gap superconductor. It is apparent that
the gap spectrum is entirely symmetric within the bc planes,
but has a strong evolution along the a axis. We find a rather
strong electron-electron interaction to be at play between the
condensed electrons, since a high Coulomb pseudopotential,
μ∗ = 0.215, is needed to get the correct Tc in the Eliashberg
calculations. As a result of this and the moderate electron-
phonon coupling, the gap values are on the low side, ranging
between 0.15 and 0.37 meV at 1 K.

This result of a single, anisotropic gap in OsB2 seems
to contradict the findings in Ref. [19] at first sight, where
two-gap superconductivity in OsB2 was suggested based on
a successful fit of the two-gap γ model [36]. We show in
Fig. 6 an updated version of this fit, using the calculated
density of states per band. The obtained coupling constant
matrix, shown as inset in Fig. 6(a), is subsequently used in
Bardeen-Cooper-Schrieffer (BCS) gap equations to calculate

the evolution of both gaps with temperature, displayed in
Fig. 6(b). The obtained values of the gaps at zero temperature
are 
1(0) = 0.36 meV and 
2(0) = 0.24 meV. It follows
thus that a two-gap superconductivity model is sufficient to fit
the superfluid density measurements, but is it necessary? To
answer this question, we calculate the superfluid density within
anisotropic Eliashberg theory. The normalized superfluid
density tensor is then given by

ρ
αβ
s (T )

ρ
αβ
s (0)

= T
∑
ωn

〈
(∇αEk∇βEk)


2
k,n

Zk,n

[
ω2

n + 
2
k,n

] 3
2

〉
kF

, (3)

where ωn are the Matsubara frequencies, Ek signifies the
normal-state electronic spectrum, Zk,n is the mass renor-
malization in Eliashberg theory [27] and 〈...〉kF denotes the
Fermi surface average. We plot the evolution of the different
elements of the superfluid density tensor as a function of
temperature in Fig. 6(c). For OsB2, all off-diagonal terms of
the superfluid density tensor are zero. In the isotropic approx-
imation, ∇αEk∇βEk (product of Fermi velocity components)
is pulled out of the Fermi surface average in Eq. (3). Within
this approximation, the superfluid density matches ρbb

S = ρcc
S .

Along the b and c directions, the superfluid density is the
same, due to the bc symmetry of the superconducting gap
spectrum that we pointed out earlier. The superfluid density
along the a direction, however, is significantly different and
matches the experimental measurement extremely well. In
the case of OsB2, the convex shape of ρaa

S is not a result
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a
b

c

FIG. 5. The superconducting gap spectrum of OsB2 on the
Fermi surface, calculated using fully anisotropic Eliashberg theory
at T = 1 K, using the electron-phonon coupling obtained from
first-principles as input. ρ(
) is the distribution of the gap, thus
showing a single anisotropic gap.

of the multigap character [20], but follows naturally from
the temperature evolution of the anisotropic condensate. This
comparison of Eliashberg theory to the experiment provides
a clear example of an anomalous superfluid density of a
single gap superconductor, and hence a caveat for future
identifications of multigap superconductors.

VI. TYPE-I BEHAVIOR

To further understand the superconducting behavior of
OsB2, particularly under applied magnetic field, we calculate
the characteristic length scales of superconductivity, i.e.,

coherence length ξ (0) = �vF
4πTc

√
7ζ (3)

3 , and London penetration

depth λL(0) =
√

3c2

16πe2v2
FN(EF)

[43]. There are significant differ-

ences between the quasiellipsoids and sheet M with regard to
the microscopic parameters. The former account for a density
of states of 0.23 states/eV per formula unit, whereas the latter
occupies 0.39 states/eV per formula unit. On the other hand,
the quasiellipsoidal sheets are more highly curved than sheet
M, with respective average Fermi velocities of 6.5 × 105 m/s
and 3.7 × 105 m/s. Nevertheless, since a single condensate in
OsB2 was found in the previous section, we perform a weighted
average over the whole Fermi surface within mean-field theory.
This leads to N (EF) = 0.62 states/eV per formula unit and
vF = 4.7 · 105 m/s. The resulting length scales are λL(0) = 27
nm and ξ (0) = 229 nm. The GL parameter κ = λL/ξ = 0.12
is therefore far below κ = 1/

√
2, the value separating type-I

from type-II superconductors [2], indicating that OsB2 is
deeply in the type-I regime. The small penetration depth and
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FIG. 6. (a) The two-gap γ fit of the superfluid density ρs

from Ref. [19] (normalized with the superfluid density at zero
temperature ρs,0), using the microscopic parameters calculated here
from first principles. The matrix of coupling constants obtained
from the fit is shown as inset. (b) The gap profiles as a function
of temperature, obtained by solving the BCS gap equations for
two coupled condensates. Dashed line shows the weaker gap (
2)
in the absence of interband coupling, with Tc2 = 1.35 K. (c) The
superfluid density calculated from anisotropic Eliashberg theory, both
isotropic and along specific directions. Component ρaa

S matches the
experimental data extremely well.

large coherence length in OsB2 occur due to the large vF,
comparable to the high Fermi velocities in elemental metals,
and due to the rather low Tc.

To further corroborate our findings, we show the compli-
ance of our conclusions with available experimental data.
Specifically, we look at the experimental critical magnetic
fields [19], to determine whether they correspond to the
thermodynamic critical field Hc or the upper critical field
Hc2. To calculate Hc, we use the expression from the
recently developed Extended Ginzburg-Landau (EGL) theory,
demonstrated to be in very good accordance with BCS results
even quite far from Tc [42,44]. The thereby obtained Hc of
OsB2 is presented in Fig. 7—revealing a very good agreement
with the experimental values, in a broad temperature range.
The nonlinearity of Hc away from Tc is captured by the
EGL theory. As expected for a pure type-I superconductor,
the calculated upper critical field Hc2 = �0

4πξ 2(0)τ , where τ =
1 − T

Tc
, is much lower, since Hc2/Hc ∝ κ . The fact that

EGL theory, in combination with the calculated microscopic
parameters, predicts Hc so well, yields another proof of the
type-I behavior of OsB2, be it indirect. For direct experimental
proof, imaging of the intermediate state of OsB2 should
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FIG. 7. The thermodynamic critical magnetic field Hc calculated
using the extended Ginzburg-Landau formalism [42], compared to
experimental data from Ref. [19]. To further illustrate the strong
type-I character of OsB2, we include the calculated upper critical
field Hc2 to visualize that Hc2 � Hc.

be performed, which may show the large normal domains
characteristic of type-I materials, but may also reveal surprises
related to the anisotropy of the gap spectrum.

VII. CONCLUSION

In summary, we presented solid and multiscale proofs
for anisotropic type-I superconductivity in OsB2, combining
first-principles calculations, mean-field theory and recent
experimental data. The Fermi surface of OsB2 consists of
two nested quasiellipsoidal Fermi sheets with Os-d character
and a third sheet with mixed band character. From a first-
principles calculation of the electron-phonon coupling, we
found that OsB2 has very moderate coupling amounting to
the isotropic value λ = 0.52. The main contribution to this
value (80%) stems from the low-energy Os-related modes.
This is a very different situation from the coupling in MgB2,
due to the entirely different crystal structure of the two
compounds, where a particular optical vibration of B atoms
couples strongly with the electrons. From the electron-phonon
coupling, we calculated the superconducting gap spectrum
using fully anisotropic Eliashberg theory. The result is a
single, anisotropic gap at odds with the available two-gap fit
of the superfluid density in Ref. [19]. To settle this issue,
we calculated the superfluid density within Eliashberg theory,
taking into account the anisotropy in the Fermi surface. We
found that the superfluid density along the shortest lattice axis
(a in Fig. 4) matches the experimental data with excellent
accuracy. Thus, OsB2 provides an instructive example of an
anomalous temperature dependence of the superfluid density
due to a single, anisotropic gap, that cannot be fitted within
the simplest BCS model.

The Fermi velocities in OsB2 are high for a compound
material, while its Tc is rather low, resulting in a very
low Ginzburg-Landau parameter—setting OsB2 deeply in the
type-I superconducting regime. Moreover, we showed that
this complies with the available measurements of the critical
magnetic field. The here revealed characteristics of OsB2

provide a general recipe for other type-I superconducting
compounds to be discovered, combining moderate electron-

phonon coupling (thus low Tc, and long coherence lengths),
and a highly curved Fermi surface (thus high Fermi velocities,
diminishing κ with a squared dependence). Such materials
will in turn provide more direct access to the scarcely studied
regimes of superconductivity away from the standard type-
II, especially interesting in multigap superconductors and
superconductors with an anisotropic gap.
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APPENDIX: COMPUTATIONAL DETAILS

Our density functional theory (DFT) calculations make use
of the Perdew-Burke-Ernzerhof (PBE) functional, including
spin-orbit interaction, implemented within a plane-wave basis
in the VASP code [31]. Electron-ion interactions are treated
using projector augmented wave (PAW) potentials, taking into
account Os 5p66s25d6 and B 2s22p1 as valence electrons.
The energy cutoff for the plane-wave basis is set to 500 eV, to
achieve convergence of the total energy below 1 meV per atom.
To obtain a very accurate description of the Fermi surface,
also needed for accurate calculation of the Fermi velocities
and electronic density of states per band, a very dense 40 ×
32 × 24 �-centered Monkhorst-Pack k-point grid is used. For
high-symmetry k points, we use the notational convention
established in Ref. [45]. The optimized crystal structure was
obtained using a conjugate-gradient algorithm so that forces
on each atom were below 1 meV/Å.

Density functional perturbation theory (DFPT) calculations
were carried out within the framework of ABINIT [34], keeping
the same valence electrons as in VASP, and also using the
PBE functional. The crystal structure was optimized again
in ABINIT, with no significant differences with the values
reported in Table I. The total number of perturbations due to
atomic displacements (in other words, the number of phonon
branches) amounts to 3 · Natoms = 18. In order to calculate the
Eliashberg function

α2F (ω) = N (EF)
∑
kqν

∣∣gν
k,k+q

∣∣2
δ(ω − ωqν),

one needs the total density of states N (EF), the electron-
phonon coupling coefficients gν

k,k+q and the phonon spectrum
ωqν , the latter two obtained within DFPT. The electron-phonon
coupling coefficients gν

k,k+q are proportional to the matrix
elements 〈k + q|δV |k〉, where δV is the perturbative part of
the Hamiltonian [33]. We carried out the summation to obtain
the Eliashberg function over a 21 × 15 × 15 k-point grid and
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a 7 × 5 × 5 q-point grid (a subgrid of the k-point grid). The
isotropic electron-phonon coupling function is the first inverse
moment of the Eliashberg function:

λ(ω) = 2
∫ ω

0
dω′ω′−1α2F (ω′).

The electron-phonon coupling constant is λtot = λ(ωmax),
where ωmax is the maximum phonon frequency. Moreover,
one defines

ωlog = exp

(
2

λtot

∫ ∞

0
dωω−1ln(ω)α2F (ω)

)
,

with which ultimately the critical temperature can be cal-
culated with the McMillan-Dynes formula (solution to the
Eliashberg equations in the weak to intermediate coupling

limit):

Tc = �ωlog

1.2kB
exp

(
− 1.04(1 + λtot)

λtot − μ∗(1 + 0.62λtot)

)
,

where μ∗ is the renormalized Coulomb repulsion between
Cooper pair electrons, the so-called “Coulomb pseudopoten-
tial” [27].

The Eliashberg calculations were performed with the Upp-
sala Superconductivity code (UPPSC). The anisotropic Eliash-
berg equations were solved self-consistently in Matsubara
space, starting from the electron and phonon band structures
and electron-phonon coupling obtained with DFPT. In this
scheme, we iterated until convergence better than 10−3 on the
relative gap values between each iteration step was reached.
In all calculations, we employed standard μ∗ = 0.215 for the
Coulomb pseudopotential, in order to match the experimental
Tc. For the sums over Matsubara frequencies a cut-off energy
of up to 0.7 eV was used (total of 2592 Matsubara frequencies).
In order to find the superconducting gap-edge, the converged
solutions were analytically continued to real frequencies with
a Padé approximation procedure.
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