|
Record |
Links |
|
Author |
Bercx, M.; Partoens, B.; Lamoen, D. |
|
|
Title |
Quantitative modeling of secondary electron emission from slow-ion bombardment on semiconductors |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
99 |
Issue |
8 |
Pages |
085413 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT) |
|
|
Abstract |
When slow ions incident on a surface are neutralized, the excess potential energy is passed on to an electron inside the surface, leading to emission of secondary electrons. The microscopic description of this process, as
well as the calculation of the secondary electron yield, is a challenging problem due to its complexity as well
as its sensitivity to surface properties. One of the first quantitative descriptions was articulated in the 1950s by
Hagstrum, who based his calculation on a parametrization of the density of states of the material. In this paper, we
present a model for calculating the secondary electron yield, derived from Hagstrum’s initial approach. We use
first-principles density functional theory calculations to acquire the necessary input and introduce the concept of
electron cascades to Hagstrum’s model in order to improve the calculated spectra, as well as remove its reliance
on fitting parameters. We apply our model to He+ and Ne+ ions incident on Ge(111) and Si(111) and obtain
yield spectra that match closely to the experimental results of Hagstrum. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000458367800010 |
Publication Date |
2019-02-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
We would like to thank Prof. D. Depla for the useful discussions on the secondary electron yield. Furthermore, we acknowledge financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWOVlaanderen and the Flemish Government-department EWI. |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
EMAT @ emat @UA @ admin @ c:irua:157174 |
Serial |
5154 |
|
Permanent link to this record |