|
Record |
Links |
|
Author |
Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V. |
|
|
Title |
Anisotropic type-I superconductivity and anomalous superfluid density in OsB2 |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
94 |
Issue |
94 |
Pages |
144506 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length
scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different
Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the
found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations
to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare
property among compound materials. We show that the found coherence length and penetration depth corroborate
the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using
anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but
anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional
behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals
that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed
solely to a two-gap nature of superconductivity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000385622500009 |
Publication Date |
2016-10-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
19 |
Open Access |
|
|
|
Notes |
Fonds Wetenschappelijk Onderzoek; European Cooperation in Science and Technology, MP1201 ; Vetenskapsrådet; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
CMT @ cmt @ c:irua:139020 |
Serial |
4338 |
|
Permanent link to this record |