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Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties
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We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)].
The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the
interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for
the particle jump rates are derived from transition-state theory. Which expression should be used depends on the
strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived
when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied
numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations.
The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is
found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time
this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the
same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the
self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a
1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The
assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium

particle concentrations if the particles are not strongly interacting.
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I. INTRODUCTION

Nanoporous materials such as zeolites and metal-organic
frameworks (MOFs) are molecular-scale structures consisting
of interconnected channels or cavities. Particles diffusing
in these materials are tightly confined, leading to diffusive
behavior that can markedly differ from bulk diffusion [1]. Due
to their large surface area and molecular-scale structure they
are ideally suited for applications such as catalysis [2], particle
separation [3], and carbon dioxide storage [4]. Developments
in the synthesis of new porous materials [5,6] have yielded a
large increase in available materials, which could allow for a
fine-tuning of the properties of the material, depending on the
application.

New experimental techniques give a detailed look of
particle diffusion in nanoporous materials [7]. A theoretical
understanding has been achieved using different approaches.
Molecular dynamics (MD) simulations [3,8,9] can incorporate
the full atomic structure of the material in the simulations.
However, they can be computationally time-consuming. Be-
cause many nanoporous materials consist of discrete sorption
sites or cavities separated by narrow windows, particle
diffusion often can be described by a hopping process on a
lattice [10—15]. Another popular approach is continuum mod-
els where the particles follow a stochastic dynamics [16—18],
which has been used to study phenomena such as stochastic
resonance [19] and novel particle separation methods [20].

Diffusion in equilibrium 1is characterized by the
self-diffusion coefficient. It describes the average
mean-squared displacement (MSD) of a single particle. The
transport-diffusion coefficient, on the other hand, describes
the magnitude of the particle flux in response to a concentration

“thijsbecker @ gmail.com

1539-3755/2014/90(5)/052139(16)

052139-1

PACS number(s): 05.40.Jc, 02.50.—r, 05.60.Cd, 66.30.Pa

gradient. It is therefore the relevant quantity in nonequilibrium
conditions. In general, these two diffusion coefficients differ
because of particle interactions. Understanding their concen-
tration dependence and relation as a function of the particle
interaction is of both fundamental and practical interest. Re-
cently we introduced a lattice model [21] which describes the
diffusive hopping of particles in a compartmentalized system.
All interactions are defined by a single function, namely the
equilibrium free energy of the particles in a compartment (also
called a cavity). Using this model, we were able to provide
a simple interpretation of an experiment of methanol and
ethanol diffusion in the nanoporous material MOF zeolitic
imidazolate framework 8 (ZIF-8) [22]. In contrast to previous
experiments, the self-diffusion was found to exceed the
transport diffusion at certain particle concentrations. From
molecular dynamics simulations it was shown that this was the
result of particle clustering [23]. Because in our model particle
clustering is connected to the equilibrium free energy in a
straightforward way, the effect of clustering on the diffusion
could be understood from a simple analytical argument.
Combined with numerical simulations, it was shown that in
our model particle clustering is a necessary condition for the
self-diffusion to exceed the transport diffusion.

We present the following results. Particle clustering in
porous materials has a distinct effect on the adsorption
isotherm and the equilibrium fluctuations in particle num-
ber [23-25]. We discuss how this can be understood from
the shape of the equilibrium free energy in our model.
Particles jump between the cavities with rates that depend
on the interaction. Different forms of these jump rates are
calculated from transition-state theory (TST). It is explained
which rates should be applied for different kinds of systems.
Analytical expressions for the self- and transport diffusion
were derived in Ref. [21] for a system of length 1. We show
that these are the expressions for the diffusion coefficients if
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one ignores all dynamical correlations. The diffusive behavior
is investigated for different jump rates and interactions. The
effect of correlations is discussed in detail. In Ref. [21] a
quantitative agreement with the experimental results from
Ref. [22] was found. We discuss here the quality of the
assumptions made in our model, and when agreement with
experiments can be expected.

The paper is organized as follows. In Sec. II we introduce
the model. The necessary concepts of diffusion theory are
given in Sec. IIl. Section IV discusses the equilibrium
properties of the model. The distribution of particle occupation
in the cavities is investigated as a function of the interaction.
The behavior of the adsorption isotherms as a function of
both the interaction and the confinement (maximum number
of particles in each cavity) is studied. In Sec. V we present
an analysis of the dynamical properties of the model. Possible
forms of the transition rates are calculated in Sec. V A. The
analytical expressions for the self- and transport diffusion
when ignoring correlations are derived in Sec. VB. The
numerical simulations that are used to determine the self-
and transport diffusion are explained in Sec. V C. We discuss
the diffusive behavior for different interactions and rates
in Sec. VD. In Sec. VI we discuss when agreement with
experiments and simulations can be expected. A conclusion
is presented in Sec. VIL.

II. THE MODEL

The materials we consider consist of a large array of
cavities, which are connected to each other by narrow passages,
also called windows; see Fig. 1. In such a setup, it is natural to
assume that the time spent by a particle in a cavity before
moving to one of its neighbors is much larger than the
equilibration time of particles inside a cavity. This allows
us to coarse grain the intracavity degrees of freedom [26].
Interactions are described by the equilibrium free energy F(n),
depending only on the number of particles n in the cavity.
Contributions to F(n) are the result of particle-particle and
particle-wall interactions inside a cavity. When the system is
in equilibrium with a particle reservoir at chemical potential
w and temperature T, the probability to have n particles in any
cavity is equal to

PpA(p) = [Z(w)] e PEM = (1)

FIG. 1. The system, shown here between dashed lines, consists
of an array of cavities connected by narrow passages. On the bound-
aries it is connected to uncorrelated cavities with the equilibrium
distribution.
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with 8 = (kT)~!, k the Boltzmann constant, and Z the grand-
canonical partition function:

Tmax

Z(p) = Ze—ﬂ[F(n)—/w]' )
n=0

Averages over the equilibrium distribution Eq. (1) are denoted
by (), e.g.,

Mmax

(n) () =y npi(). 3)

n=0

Since the equilibrium distribution is known for any given F(n)
and p, all equilibrium quantities can be calculated analytically
in function of these two variables. For later reference, we
introduce the grand potential Q2(n,u) = F(n) — un, which
captures the n dependence of the probability. Confinement
limits the amount of particles in a cavity and is represented in
our model by np,x, which is the maximal number of particles
a cavity can contain.

A schematic representation of the model in one dimension
is given in Fig. 1. It consists of pairwise connected cavities
numbered from 1 to L. Because we integrate out the intracavity
degrees of freedom we can identify the cavities with sites on
a lattice. The center-to-center distance between two cavities
is equal to A. A particle jumps from a cavity containing n
particles to a cavity containing m particles with probability
per unit time k,,,. These rates satisfy local detailed balance:

knm P (P (1) @
km+1,n—l qu(,u)l’;q(li)
— e*ﬂ[F("*1)+F(m+1)*F(n)*F(m)]_ 3)

This ensures that, when the system is in equilibrium, there are
no net currents and that the probability distribution equals the
equilibrium distribution Eq. (1). Particles can enter or leave
the system through the boundaries, which are connected to
(particle) reservoirs. The left and right reservoirs have, respec-
tively, chemical potential x; and p,. A reservoir is modeled as
a cavity characterized by the equilibrium distribution py,*(x)
(u is either u; or w,), whose state is uncorrelated from the
cavity it is connected to. The rates at which a reservoir cavity
at chemical potential u adds (k;") or removes (k;, ) one particle
from a cavity containing n particles are

Nmax Nmax—1

ki =D kP k= D kanpii0). (6)
m=1 m=0

III. DIFFUSION THEORY

In this section we present the necessary theory that will
be used later. For simplicity, we assume that the diffusion is
isotropic. The average particle concentration at position r is
denoted by ¢ = c(r).

The self-diffusion coefficient Dy describes the average
MSD of a single particle in a system at equilibrium, in the
long-time limit:

| ————— 1l ——
— T _ 2 _ i 2
D; = tlggo i [r@®) —r(0)]* = tlggo 5 thr @, )
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FIG. 2. (Color online) Measuring the self-diffusion: A concen-
tration gradient of labeled particles (open green circles) is introduced
under overall equilibrium conditions.

where d is the dimension of the system, r the position of
the particle, and the overline denotes the average over all
equilibrium trajectories. A common way of measuring this
coefficient is by labeling a subset of the particles in the
system (denoted by *); see Fig. 2. Particles in the reservoir
cavities are labeled with different percentages, resulting in a
concentration gradient Vc* of labeled particles under overall
equilibrium conditions. The resulting flux j* of the labeled
particles reads [1]:

j* = —D,Vc*. (8)

The transport diffusion coefficient D;, also called Fick or
chemical diffusion, quantifies the particle flux j appearing in
response to a concentration gradient:

j=—-D,Ve. 9)

It is assumed that the concentration gradient is sufficiently
small so linear response is valid. One can rewrite Eq. (9)
in terms of the gradient of the chemical potential. The two
gradients are related by Ve = (dc¢/0u)Vu. Since ¢ = (n)/ %
with V the volume of one cavity, and d(n)/du = B((n

(n)?), as follows from Eq. (3), this yields:

. (n) (n?) — (n)?
=-D;f—————Vyu. 10
J B % ) M (10)
The Maxwell-Stefan (MS) diffusion coefficient Dy, is defined
as [27]

J = —DmsBcVpu. (1)
From Egs. (10) and (11) it follows that
D; =T Dy, (12)

where we have defined the thermodynamic factor:

(n)

(n?) — ()2’

From Eq. (12) one can see that the transport diffusion is
the product of a thermodynamic term I and a kinetic term
Dys. Because thermodynamic effects are “factored out,” or
corrected for, in Dy, it is sometimes called the corrected
diffusion. The Maxwell-Stefan diffusion coefficient can be
written as

L) = (13)

Dis = lim W (Z Ar; (r)) (14)

where the sum runs over all N particles in the system. This
definition is similar to the one for the self-diffusion Eq. (7),
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with the MSD of N times the center of mass of all particles
instead of the MSD of one particle. Dy, is therefore also
called the center-of-mass diffusion coefficient. From Eqgs. (12)
and (14) one finds the following relation between the self- and
transport diffusion:

— 1 A2 At - Ar,
D, = lim —— ZAri + Z Ar;-Ar; |, (15)
i i,j#i
=TD+ lim —— Z Ar(1) - Ar;(r).  (16)

t—o00 2d N =
For conciseness we do not write the time dependence in
Eq. (15).

Two types of correlation effects influence the diffusion.
The first type considers only a single particle. If the direction
and average rate of subsequent jumps of a single particle are
uncorrelated, the self-diffusion is equal to D, = A%k,,/2d,
with k,, the average jump rate. In general, however, subsequent
jumps are correlated. Consider, for example, the case where
only one particle can occupy each lattice site. If a particle
jumps, it is more likely to return to the site from where it
came, because this site is more likely to be empty. These
single-particle correlations influence the self-diffusion Dj.
The second type considers the correlation between jumps of
different particles. It is described by the second term on the
right-hand side of Eq. (16). If the particles have a tendency
to drag along other particles, then this term is positive. This
happens, for example, when there is interparticle friction. The
Maxwell-Stefan theory of diffusion is often used to study
diffusion in porous materials [27]. In this context one can
derive the relation:

S + ! (17)
DS Dms DCOI’ ’

Interparticle correlations are captured by the term 1/Dcor,
while single-particle correlations influence D;. 1/ D, is in-
terpreted as resulting from interparticle friction (in continuum
models) or correlations between jumps of different particles (in
lattice models [28]). It is positive if the interparticle correlation
term in Eq. (16) is positive and vice versa.

IV. EQUILIBRIUM PROPERTIES

In this section we discuss the equilibrium properties of the
model. Since the focus is here on the influence of the various
interactions as compared to the ideal case, we write the free
energy as

F(n) = Fn) + f(n), (18)

where F(n) is the free energy of an ideal gas:
F9n) = kT[In(n!) — nIn(V/A%)], (19)

with V the volume of a cavity and A the thermal de Broglie
wavelength. We call f(n) the interaction free energy, which
includes all interactions and confinement. The free energy can
be derived from the partition function, defined by

Z(n) = AT

——-z(n), (20)
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1
z2(n) = —/ drl.../ dr,e PUT T (21)
Vn v v

with r; the position of the ith particle and U(ry, ...,r,) the
interaction energy. The interaction free energy is then deter-
mined by the configurational integral z(n) through f(n) =
—kT In z(n).

Previous results [21] showed that particle clustering occurs
if the interaction free energy is concave. The effect of f(n)
on fluctuations in particle number, and the equivalence of a
concave f(n) and clustering, is discussed in more detail in
Sec. IVA.

An investigation of particle clustering in porous materials
using MD simulations can be found in Refs. [23-25]. If
particles cluster the inverse thermodynamic factor I'"! is
larger than 1, and there are steep adsorption isotherms. Porous
materials are classified by the characteristic dimensions of their
structure. If the pore dimensions are smaller than 2 nm, then the
material is called microporous; if the dimensions are between
2 and 50 nm, then it is called mesoporous; and even larger
pores are called macroporous. Steep isotherms and I'"! > 1
are more common in macro- and mesoporous materials than in
microporous materials, i.e., the more confining the geometry
the less likely particle clustering occurs. All these features are
present in our model and can be understood from the shape of
the interaction free energy, as discussed in this section.

A. Fluctuations in particle number

Fluctuations in particle number are encoded in the ther-
modynamic factor, Eq. (13). We discuss the behavior of I'"!
instead of I because the latter goes to infinity at maximum
loading, making it more difficult to interpret graphically. Let
us first consider noninteracting particles with zero volume,
ie., f(n) =0 and npy. = oo. The distribution p, (1) is then
a Poisson distribution,

n

P = U, 22)

for which (n?) — (n)?> = (n) and I" = 1 at all loadings. As
argued previously [21], the change in variance (n?) — (n)? is
caused by the convexity versus concavity of f(n). For better
insight into the dependence of the equilibrium distributions
on this convexity or concavity of f(n) we consider the grand
potential 2(n, 1), which we write as

Qn.p) = Fn) + f(n) — pn, (23)
or, by defining the constant o = kT In(V /A?),
Q(n,p) = kT In(n!) + f(n) — (1 + poln. (24)

1o changes the chemical potential for which a certain loading
is achieved; it does not change the behavior of Q2(n,u) at a
given loading. Because we only consider isothermal systems
kT is a constant, which we take to be equal to 1. We discuss
three situations: no interactions f(n) = 0; convex interactions,
with as an example f(n) = 0.2n%; and concave interactions,
with as an example f(n) = —0.2n>. For all interactions we
take nmax = 13, corresponding to f(n) = 0o for n > npax.

PHYSICAL REVIEW E 90, 052139 (2014)

To understand the effect of introducing an n,,x, we con-
sider the situation f(n) = 0 and np,, = 13. The probability
distributions of cavity occupation p,! at different loadings are
plotted in Fig. 3(a). As long as p,. =~ 0, p," is equal to the
Poisson distribution Eq. (22) and I" = 1. Once the probability
to be full becomes nonzero the variance decreases compared
to the Poisson distribution, resulting in ! < 1;see Fig. 4.

To understand the change in variance for different inter-
actions we plot Q(n,u) as a function of n at the chemical
potentials for which (n) =5; see Fig. 3(d). For graphical
clarity the three curves are shifted vertically so €2(5) = 0. For
f(n) = 0the minimum of Q(n) lies atn = (n). All other values
of Q(n) are higher, because Q2(n) = kT In(n!) — (1 + po)n
is a convex function of n. By adding a convex f(n), Q(n)
increases faster around its minimum, and therefore all states
that differ from n = (n) become less likely compared to
f(n) =0. This is clear from the probability distributions of
cavity occupation for f(n) = 0.2n%; see Fig. 3(b). As a result,
I'~! < 1 at all loadings, cf. Fig. 4. An example of a convex
f(n),and hence a concave z(n), is discussed in Ref. [29], where
it was attributed to excluded volume interactions between the
methane molecules.

Adding a concave f(n) gives the opposite behavior. Q(n)
increases more slowly around the average, and occupations
that differ from the average become more likely compared to
f(n) = 0.Foravery concave f(n), 2(n)no longer has a single
minimum around n = (n); there are two minima, at n = 0 and
n = nmay; see Fig. 3(d). The probability distributions of cavity
occupation for f(n) = —0.2n% are shown in Fig. 3(c). The
particles cluster: The cavities are mostly empty or full. As
aresult, I~! > 1 for low and medium loadings, after which
the effect of ny,.x becomes dominant; cf. Fig 4. An example
of a concave contribution to f(n) is the energy of a cluster
of particles feeling short-range attractive interactions, which
scales as oc n%/3 for large n [30]. An example of clustering is
found for particles undergoing hydrogen bonding [24].

B. Adsorption isotherm

Adsorption isotherms give the equilibrium concentration
of particles in the system as function of, e.g., the pressure
or chemical potential of the reservoir. Studies of adsorption
in porous materials which use the same model assumptions as
presented in this paper have been performed by several authors.
In these studies one tries to predict and explain the behavior
of the adsorption isotherm, using only a few microscopic
parameters that describe the particle-particle and particle-
cavity interaction. One of the first such analyses was performed
by Ruthven [31]. Similar studies have been performed both
analytically [32-37] and numerically [29,38,39]. We refer to
Ref. [40] for an introduction. We discuss here the qualitative
influence of f(n) and npn. on the adsorption isotherm.
The particle concentration is equal to (n)/A? (with d the
dimension). Since the term A only rescales the adsorption
isotherm by a constant, we study (n)(u).

The adsorption isotherms (n)(u) for the three considered
interactions are plotted in Fig. 5(d). The grand potentials at
different loadings are shown in Figs. 5(a)-5(c). The adsorption
isotherm for the concave f(n) is steeper than the one for
f(n) =0, which is steeper still than the one for the convex
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FIG. 3. (Color online) The probability distribution of cavity occupation pi4, Eq. (1), at different loadings and with ny. = 13, for (a)
f(m)=0(b) f(n) =0.2n2 (c) f(n) = —0.2n>. (d) Q(n) for different interactions, at (n) = 5. The lines are a guide to the eye.

yyyyyyy
.

6r S| e fn) = 0202

10 11 12 13

FIG. 4. (Color online) The inverse thermodynamic factor I'~! =
((n?) — (n)*)/{n) for nma = 13 and different interactions.

f(n). Such behavior can be understood from (rn)(u):

S~ )~ = o
n
A concave f(n) leads to a larger value of ' !, which means a
steeper adsorption isotherm. Steep isotherms occur if there is
a first-order phase transition, for example, when there is capil-
lary condensation [41]. They have also been found for systems
where the particles cluster; see Ref. [23] and references therein.
The connection among clustering, first-order phase transitions,
and steep isotherms can be understood from Fig. 5. For
noninteracting and repulsive particles [Figs. 5(a)-5(c)] only
the average concentration (n) is stable (i.e., a local minimum).
Increasing the chemical potential gradually shifts this local
minimum to higher concentrations. For the concave f(n),
Fig. 5(b), there are in contrast two stable concentrations, at
n = 0 and n = ny,y. Increasing the chemical potential causes
a sudden shift of the global minimum fromn = 0to n = nyy,
resulting in a steep isotherm.

While stepped isotherms are commonly encountered in
mesoporous materials, they are quite rare in microporous ma-
terials [23]. This can be seen as the result of the confinement,

(25)
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FIG. 5. (Color online) [(a)—(c)] Q(n) for different interactions and loadings, with ., = 13. For f(n) = 0 and f(n) = 0.2n> the curves
are shifted vertically so Q({n)) = 0. For f(n) = —0.2n? the curves are shifted vertically so £2(0) = 0. The lines are a guide to the eye. (d)
Adsorption isotherms (n)(u). The curves are shifted horizontally so (7)(0) = 0.57 .-

which prevents the formation of stable macroscopic
phases [41-43]. We discuss how such behavior is reproduced
in our model.

We take the diameter of the cavities as the characteristic
dimension of the system (i.e., nyax). Consider the same type
of particles in materials with cavities of different size. The
smaller the volume of the cavities the lower n,,x. To study the
transition from micro- to macroporous for clustering particles,
we consider the interaction f(n) = —0.2n2 for Ry = 5,13,
and 40. The adsorption isotherms are presented in Fig. 6.

Their steepness decreases with decreasing cavity size. For
an interpretation of this behavior we plot p,’! and Q(n) at
loading (n)/nmax = 0.5 for nyx = 40 and npy,, = 5 in Fig. 7.
For nn,x = 40 a stable cluster consists of 40 particles, and the
thermodynamic barrier between the stable phases n = 0 and
n = 40is very large, cf. Fig. 7(a). Fluctuations between the two
phases are highly unlikely, as can be seen from p,” in Fig. 7(c).
This resembles the situation where there is a macroscopic

L0 7 e T —
--- Mpax =9 /,—"
0.8F | == Nmax = 13 ,'/
Nmax = 40 ,/'
’
>e 5L ) .
(00T fn) = —0m?
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10k f(n) = —0.2n?
0 ‘ ‘ ‘ ~0.2
0 10 20 30 40
0.6 ‘ 04
05 (c) Nanax = 40
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2503 f(n)=—02n 0.2}
0.2 —_—
. 0.1F
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0-0 n L L L n 0-0
0 10 20 30 40

n

n

FIG. 6. Adsorption isotherms (n)(u)/nm.x for different values
of nmax for the interaction f(n) = —0.2n%. The curves are shifted
horizontally to have (n)(0) = 0.57 .

FIG. 7. (a) Q(n) and (c) p39 for npa = 40, (n) = 20, and f(n) =
—0.2n2. (b) Q(n) and (d) PR for nya =5, (n) =2.5, and f(n) =
—0.2n2.
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FIG. 8. The inverse thermodynamic factor I'! = ((n?) —

(n)?)/(n) for different np,, and f(n) = —0.2n>.

phase separation (i.e., in the thermodynamic limit), where
moving on the infinitely steep part of the adsorption isotherm
corresponds to changing the relative portion of the two phases
of the system. For n,,x = 5 the maximum size of a cluster is
5 particles. Such a cluster is easily broken by fluctuations. In
fact, the grand potential does not show the typical structure
of two stable minima [see Fig. 7(b)], and the adsorption
isotherm shows no real steepness. nn,x = 13 is an intermediate
case of these two situations; see Figs. 3(c) and 5(b). The
inverse thermodynamic factors are plotted in Fig. 8. For
Nmax = 40, T'~!((n)) is approximately a straight line between
I'1(0) & npax and '~ () = 0. This can be understood by
making the approximation that cavities are either empty or
full. In this case, p,,, = (7)/fmax, Po = 1 — (n)/Amax, and

E nmax(l _ ) (26)
nmax
If particle clustering occurs the inverse thermodynamic factor
goes from showing almost no increase above 1 for microporous
materials, to a straight line between ny,,x at (n) = 0 and O at
(n) = nmax for macroporous materials, cf. Fig. 8.

V. DYNAMICAL PROPERTIES

In this section we discuss the dynamical properties of the
model. In Sec. V A we use transition-state theory to calculate
possible forms for the rates k,,. In Ref. [21] we obtained
analytical expressions for Dy and D, for asystem of length L =
1. In Sec. V B we show that the same expressions are obtained
in an infinitely long system if one ignores all correlations. In
Sec. VD we investigate the diffusion properties of the model.

A. Transition rates

The free energy F(n) does not fully specify the dynamics,
contained in the rates k,,,, because only local detailed balance
Eq. (4) has to be obeyed. For example, all rates of the form

e—Belf(n=D=fm)]
e—BU—=o)f(m)—f(m+1)]

27)

kyn = vn
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FIG. 9. Two cavities, A and B, divided by a transition-state
surface TS. A particle is in the transition state.

obey local detailed balance for any ¢ € R (v denotes a positive
constant throughout this paper). As discussed in Appendix A,
the physically relevant rates are found for 0 < ¢ < 1, where ¢
measures the importance of the interaction of the two cavities
participating in the jump. We use TST [44] to calculate possible
forms of the jump rates. The details of the calculations can be
found in Appendix A.

Consider two connected cavities, called A and B, containing
respectively n and m particles. In the middle of the window we
define a transition-state (TS) surface. If the center of a particle
is located on the TS surface, it is said to be in the transition
state. The setup is illustrated in Fig. 9. The jump rate k,,
is equal to the probability that a particle from cavity A is in
the transition state, multiplied by its average velocity towards
cavity B.

Consider, first, particles which have no long-range interac-
tions. An example is when the particles only feel hard-core
repulsion. As a result, the particle in the TS has no influence
on the interaction of the particles in cavities A and B. The rates
then have the form:

Ky = kyge P D= Ol BLF D= fn=D)]. (28)

As always we require that k,, , = 0 for all n. This jump rate
only depends on the change in free energy of cavity A. Note
that it corresponds to ¢ = 1 for the rate given in Eq. (27).

Consider now particles with long-range interactions. The
particle in the TS interacts with the particles of both cavities A
and B. k,,,,, therefore depends on the change in interaction free
energy of both cavities A and B. We study rates of the form
(see Appendix A):

Ky = kyone™ B/ =D+ fontD=f=fm] - (9gy

These are the rates used in Ref. [21], with k;y = v. Note that
the change in free energy of cavities A and B is of equal
importance. This rate corresponds to ¢ = 1/2 in Eq. (27).

B. Dynamical mean-field approximation

Consider an infinitely large equilibrium system at chemical
potential p. The lattice is cubic and has dimension d, i.e.,
each cavity has 2d neighbors. We tag one particle at time
t =0 and calculate its average MSD in the limit ¢ 1 oco.
Subsequent jumps of the tagged particle are correlated because
of memory effects in the environment (i.e., the other particles),
as already explained in Sec. III. For example, for nnx = 1,
the tagged particle is more likely to jump back to its previous
position, because this cavity is more likely to be empty. The
influence of such memory effects is discussed in detail in
Sec. V D. In the dynamical mean-field (DMF) approximation
all memory effects, or correlations between particle jumps, are
neglected [45]. This assumption is equivalent to assuming that,
after a jump of the tagged particle, the environment loses its
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memory instantly. Because the environment is memoryless,
the cavities connected to the cavity containing the tagged
particle have the equilibrium distribution p;,’(11) at all times.
We calculate p,, the probability that the cavity containing
the tagged particle has n particles in total (including the
tagged particle). The tagged particle jumps away from a cavity
containing n particles to a cavity containing m particles with
rate ky,,/n. In the DMF approximation, the master equation
for p, reads:

Mmax Nmax —1 k
nm

ko
=D Pupl2d =" = 3 pupii2d ="

m=1 m=0

Tmax Nmax—1 _1

+ an lp qQ'dkm n—1 — Z pnpqudknm

m=0
Nmax— 1 Nmax
+ Z pn+1pm 2dknJrl m - Z pnpm demn-
m=0
(30)

The positive terms are transitions toward the state p,: a jump
of the tagged particle to a cavity containing n — 1 particles
(first line), a particle jump to the cavity containing the tagged
particle from the state p,_; (second line), and a particle jump
away from the cavity containing the tagged particle from the
state p,+; (third line). The negative terms are transitions away
from p,: a jump of the tagged particle to another cavity
(first line), a particle jump away from the cavity containing
the tagged particle (second line), and a particle jump to the
cavity containing the tagged particle (third line). The stationary
solution is

Pn = Upnq(,u) €29
This can be checked by filling in Eq. (31) in the master equation
and realizing that the two terms on each line cancel each other
because of local detailed balance Eq. (4). The average jump
rate k,y of the tagged particle is equal to:

Mmax Mmax — 1

by =2d% " > ”’"ﬁn (32)

n=1 m=0

Mmax Rmax— 1

eq
=23 )" kum przn(;” €9 _ Zd% (33)

The particle is performing a random walk on a d-dimensional
lattice with average jump rate k,,. The self-diffusion is in this
case equal to:

PN A2 (k)

Dy = —hy = —2.
2d " (n)

(34)
Because all particle jumps are assumed to be uncorrelated, the
interparticle correlation term in Eq. (16) is zero and one finds:

A% (k)

T

(35)

As a result, D,y = D, in the DMF approximation. The self-
diffusion Eq. (34) and transport diffusion Eq. (35) obtained
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from the DMF approximation are the same as calculated for a
system of length L = 1 [21].

If there is no nyax and if the jump rates only depend on the
number of particles in the cavity from which the particle jumps
(kym = ky), the model is a zero-range process (ZRP) [46]. The
rates then have the form [47]:

k, = vneflfe—fa=D1, (36)

Systems with the rates of Eq. (28) that have no np,x are
therefore ZRPs. If a stationary solution exists the DMF
results Egs. (34) and (35) are correct for all lengths and all
interactions [47]. A stationary solution does not exist if there
is particle condensation, i.e., if the number of particles in the
cavities grows indefinitely in time. This could, e.g., occur if
there is a concave interaction free energy.

C. Numerical simulations

We discuss how the self- and transport diffusion are
numerically simulated. The Markov dynamics of the system is
simulated using the kinetic Monte Carlo method. The chemical
potential corresponding to a certain loading (n) can be found
numerically via Eq. (3). This chemical potential determines
the rates at which particles are injected or removed at the
boundaries; see Eq. (6).

To measure the self-diffusion at loading (n)(u) both
reservoirs are put at the chemical potential . A concentration
gradient of labeled particles is introduced by labeling particles
that enter from the left or right reservoir with different
percentages. D, can then be found using Eq. (8). In the
simulations, all particles coming from the left reservoir are
labeled (100%), and none of the particles coming from the
right reservoir are labeled (0%). Taking different percentages
gives the same D;. We are interested in the situation where
the boundary cavities have negligible influence. The length
dependence of Dy in a one-dimensional system for the
parameters f(n) = —0.2n2, nma = 13, the rates of Eq. (29),
at loading (n)/nmax = 0.8, is shown in Fig. 10(a). Once
L > 1 the diffusion is influenced by correlations, and one
observes a sharp decrease of D;. The influence of the boundary
cavities decreases with increasing length. For large L the
length dependence scales as o« 1/L. This 1/L dependence
can be increasing, decreasing, or (approximately) constant,
depending on the loading of the system (data not shown).

The transport diffusion atloading (r) is measured by putting
the left and right reservoirs at different chemical potentials
corresponding to, respectively, (n) 4+ §(n) and (n) — §(n),
where §(n) should be small to ensure that one is in the regime
of linear response. By measuring the particle flux through
the system one can calculate D, using Eq. (9). The length
dependence of the transport diffusion for the same parameters
as Dy is plotted in Fig. 10(b). It also shows a sharp decrease
for small L and remains almost constant after L = 15. The
time needed to achieve good statistics is much larger for
the transport diffusion than for the self-diffusion. This is
because the transport diffusion is measured for a small
concentration gradient. For large L the particle flux becomes
very small, and the error bars on the transport diffusion are very
large. This is in contrast to D, where a concentration gradient
of labeled particles is applied, which can be made arbitrarily
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FIG. 10. One-dimensional system with f(n) = —0.2n2%, Ny =
13, (n)/nm = 0.8, and the rates of Eq. (29). (a) Self-diffusion as
a function of the length L of the system. The inset shows the same
data, plotted as a function of 1/L. The analytical fit is obtained
using MATHEMATICA and was done for all lengths except L = 1. (b)
Transport diffusion.

high (100% in the left reservoir and 0% in the right reservoir).
The problem of a very small labeled particle flux occurs much
later compared to the transport diffusion. We have therefore
not studied the length dependence of D, for large lengths.

D. Diffusion and correlations

We discuss the diffusion for the two rates, Eqgs. (28)
and (29), for different interactions. We take k;ge A/ (D—f 1=
for the rates of Eq. (28) and k;o = 1 for the rates of Eq. (29).
In all cases kT = A = 1. The other parameter values, and an
explanation of how the error bars are determined, can be found
in Appendix B. We first discuss one-dimensional systems.
Diffusion in two- and three-dimensional systems is considered
at the end of the section.

Memory effects are studied by measuring directional
correlations of subsequent jumps of a single particle, similarly
to, e.g., Ref. [48]. We tag one particle and record the direction
of its first jump. We measure the probability p(m) that its
m" jump has the same direction as its first jump. If the
jumps are uncorrelated one has for a one-dimensional system

PHYSICAL REVIEW E 90, 052139 (2014)

that p(m) = 1/2 for all m > 1. We also measure p(n|ii), the
probability that a neighboring cavity has n particles given
there are 71 particles in the cavity of the tagged particle. In
the DMF approximation one has that p(n|i) = p,'. When we
say that correlations increase or decrease the diffusion this is
always with reference to the DMF situation. The self-diffusion
is influenced by correlations of subsequent jumps of a single
particle. By comparing the ratio of the self- and transport
diffusion with I' we have access to interparticle correlations,
cf. Eq. (16).

For ny.x = 1 our model reduces to the well-known Lang-
muir gas model [49]. In an infinitely long one-dimensional
equilibrium system single-file diffusion occurs [50,51], result-
ingin (x(t)) o< 4/t and Dy = 0. In higher-dimensional systems
the diffusion is normal. The self-diffusion is lowered because
of the back-correlation mechanism: If a particle jumps, the
cavity it came from is more likely to be empty, making it more
likely that the particle jumps back. The transport diffusion is
equal to the DMF value for all loadings: D; = kjp = 1 [52].

We first discuss the diffusion for f(n) = 0. In this case
the two rates are the same. Figure 11(a) shows the diffusion
for nmax = 2. Single-particle correlations are caused by the
back-correlation mechanism and lower the self-diffusion
significantly. This can be seen in Fig. 12(a), where we plot
p(m) at loading (n) = 1. Figure 11(a) shows that interparticle
correlations are positive (I'"! > D;/D;), signifying that a
particle drags along other particles. This can be understood
as follows. Suppose a tagged particle has diffused in a certain
direction. The vacancies it leaves behind can be occupied by
other particles. In front the other particles have had to “make
way” for the tagged particle. Both effects cause particles in
the environment to diffuse in the same direction as the tagged
particle. The transport diffusion is almost equal to the DMF
value (different from n,x = 1, for which it is exactly equal).
The Maxwell-Stefan diffusion is higher than the self-diffusion
and almost equal to the DMF result.

Figure 11(b) shows the diffusion for f(n) = 0 and nyx =
13. The diffusive behavior was discussed previously [21].
Correlations have a small influence on the self-diffusion, even
at high loading. This is because jumps of other particles erase
the memory of the environment. The only type of correlations
in the system are back-correlations, which occur at loadings
where pnt  # 0. For npa = 2, if the tagged particle jumps
from a full cavity, the cavity it jumps to contains at most one
other particle. For n,x = 13 atloadings (n) & nnax, a particle
that jumps from a full cavity will arrive in a cavity containing
around 12 other particles. If one of these other particles
jumps back, the memory effect of the environment on the
tagged particle is lost. The back-correlation effect is therefore
smaller compared to the case nm,x = 2; see p(m) at loading
(n) = 11inFig. 12(a). Similarly to single-particle correlations,
interparticle correlations are also small (I'"' &~ D,/D,). Since
the back-correlation mechanism is small, this is what one
would expect. In all graphs where I' ! &~ D /D, one has that
Dy & Dy; we do not plot the MS diffusion for these cases.

We now discuss the diffusion for f(n) =0.2n%> and
Nmax = 13. Figure 11(d) shows the diffusion for the rates
of Eq. (28). The self-diffusion shows an increasing trend
with increasing concentration and a decrease near (n) ~ nyx-
This is typical behavior observed in MD simulations [9,53].
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FIG. 11. (Color online) Dy, D,, and I'"!. (a) f(n) =0 and np = 2; (b) f(n) =0 and e = 13; (¢) f(n) = 0.2n%, nype = 13, and
the rates of Eq. (29); (d) f(n) = 0.2n%, ny. = 13, and the rates of Eq. (28); (e) f(n) = —0.2n%, nye = 13, and the rates of Eq. (29); (f)
f(n) = 0.000642n> — 0.0083n°, ny = 13, and the rates of Eq. (28).
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Similar behavior is obtained for repulsive particles in other
lattice models [12,54,55]. For convex f(n)’s with the rates of
Eq. (28) this behavior always occurs, as can be understood
as follows. The difference [ f(n — 1) 4+ frs] — f(n) measures
the change in interaction free energy when a particle moves
to the TS (frs is the interaction free energy of a particle in
the TS, cf. Appendix A). Since f(n) is convex the difference
f(n) — f(n — 1) grows with increasing n: It becomes easier
to jump to the TS for higher loadings, increasing the diffusion.
This interpretation of such behavior is well known [8,54,56].
As long as the system does not feel that there is an 7,y
(pn.. & 0) the dynamics is a ZRP and the DMF solution is
exact; see Sec. VB. When the presence of ny,x is felt there
are correlations because of the back-correlation mechanism.
We can conclude that the rates of Eq. (28) provide the correct
qualitative behavior for repulsive particles, as observed in MD
simulations [9,53,54].

Figure 11(c) shows the diffusion for f(n) = 0.2n%, npay =
13, and the rates of Eq. (29). A close-up of the self-diffusion
is shown in Fig. 16. The diffusive behavior was discussed
previously [21] and qualitatively differs from Fig. 11(d). It
was noted that correlations have a small influence on the
diffusion. Because the rates depend on the number of particles
in both cavities there are correlations caused by the interaction,
besides the back-correlation mechanism. This can be seen by
comparing the self-diffusion (Fig. 16) with the self-diffusion
for f(n) = 0 and ny, = 13 [Fig. 11(b)]. While correlations
only have an influence for f(n) = 0 if the presence of ny,x is
felt, correlations are also present at loadings where 71y« 1S not
felt for f(n) = 0.2n%. We investigate correlations at loading
(n) = 6. The probability to be full is then negligible [see p;’
in Fig. 13(a)], and all correlation effects are caused by the
interaction. Single-particle correlations due to the interaction
can be understood as follows. Consider two cavities containing
six particles. If the tagged particle hops, (6,6) — (5,7), the
average number of particles in the cavity it came from is
smaller compared the average of p, . Because the free energy
favors a homogeneous density distribution, this increases
the rate at which the particle jumps back, lowering the
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self-diffusion compared to the DMF approximation. If the
tagged particle makes the jump (8,4) — (7,5), the rate to
jump back is smaller compared to the DMF approximation,
thereby enhancing the diffusion. p,, ~ 1/2 for all m > 1 and
is slightly smaller for m = 1; see Fig. 12(b). Memory effects
are small on average: The self-diffusion is around 2.6% lower
than the DMF value. p(n|#) for different /2 and p;, are shown
in Fig. 13(a). There is a clear difference between p(n|i) and
pad for fi # (n). There are two reasons why the effect of
correlations on the diffusion is small. Because there are on
average 6 particles per cavity, jumps of other particles tend
to erase the memory effect of the environment, as discussed
previously. The effect on the diffusion is further diminished
because correlations contribute both positively and negatively.
They therefore partly cancel each other.

Figure 11(e) shows the diffusion for f(n)= —0.2n2,
nmax = 13, and the rates of Eq. (29). We refer to Ref. [21]
for a discussion of the diffusive behavior. There are strong
memory effects; see p(m) for (n) = 6 in Fig. 12(c). Not only
is p(1) much smaller than 1/2, the memory effect is also long
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lived. These strong correlations are caused by the clustering
of the particles. An example of a strongly correlated event is
when the tagged particle jumps from a full to an empty cavity.
The probability to jump back is then large; see the difference
between p,! and p(12|i = 1) at (n) = 6 in Fig. 13(b). For
this event there are no other particles in the cavity where the
tagged particle jumps to whose presence could decrease the
memory effect. Even though correlations have a strong effect
on the self- and transport diffusion, interparticle correlations
are small (I ™! ~ D,/ D;). To understand why particles do not
drag along other particles, we examine the dynamics more
carefully. For all n < ny,y one has that &, ,_; = nkjo, which
is the same rate as for f(n) = 0. In other words, particle
exchange between cavities that are both almost full or both
almost empty follows a dynamics similar to the situation for
noninteracting particles. In this case, particles do not drag
along other particles; see Fig. 11(b). As can be seen from p,
[Figs. 3(c) and 13(b)], this type of transition occurs a lot. The
other type of transition that often occurs is a particle jump from
a full to an empty cavity. These are strongly correlated events,
but they influence only the diffusion of a single particle.

We now discuss the diffusion for the concave free energy
f(n) = 0.000642n% — 0.0083n3 with 1, = 13, which was
obtained by fitting the analytical I' from our model with the
experimental I of methanol in ZIF-8 [22]. The experimental
I" is calculated from the experimentally measured adsorption
isotherm. However, f(n) does not specify the type of rates
that should be used, as discussed in Sec. V A. For the rates of
Eq. (29) a good agreement with the experimental diffusion data
was found; see Fig. 3 in Ref. [21]. In contrast, Fig. 11(f) shows
the diffusion for the same parameters, with the rates of Eq. (28).
The diffusive behavior qualitatively differs: both self- and
transport diffusion become much smaller for high loadings,
and'~! > D,/D;,. Thisisin contrast to the experiments where
'~ D, /D, [22], which is also reproduced by the rates
of Eq. (29) [21]. We therefore conclude that for clustering
particles the rates of Eq. (29) give the correct qualitative
behavior of the diffusion. This is further supported by the
discussion of the calculation of the transition rates in Sec. V A
and Appendix A. Correlations have a strong effect on the
diffusion, cf. Fig. 11(f). Because the rates only depend on the
number of particles in the cavity of the tagged particle, these
correlations are caused by the back-correlation mechanism.
Since the probability to be full is non-negligible even at low
loadings, this is not surprising. ' "! > D, /D, i.e., interparticle
correlations are positive. Since the back-correlation mecha-
nism has a strong impact on the self-diffusion one expects
significant interparticle correlations, as discussed for f(n) =0
and npn.x = 2. The Maxwell-Stefan diffusion is higher than
the self-diffusion but still significantly smaller than the DMF
result. Note that because p,. # 0 even at low loadings, the
dynamics can never be approximated by a ZRP.

Figure 14(a) shows the diffusion for ny,,x = 13, the rates of
Eq. (29), and the f(n) from Table I. We study this interaction
because it switches among concave, convex, and concave. This
in contrast to the previous interactions, which are concave,
convex, or constant over the whole concentration range. We
again refer to Ref. [21] for a discussion of the diffusion. We
focus here on the factthat I'™! < D,/D, for6 < (n) < 10[see
Fig. 14(b)], implying negative interparticle correlations. The
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FIG. 14. (Color online) f(n) of Table I, n,,,x = 13, and the rates
of Eq. (29). (a) Dy, D,, and ' "', (b) Close-up of diffusion curves for
5< (n) < 12.(c) Qn) and pd at (n) = 6and (n) =9.

grand potential (n) and p,* at loadings (n) = 6 and (n) =9
are plotted in Fig. 14(c). The crucial property to obtain I'! <
Dy / Dy is that the cavity occupation n = 6 is very stable, while
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TABLE I. f(n) that switches among concave, convex, and concave.

n 0123 4 5 6 7 8 910 11 12 13

f@m) 0000 —02 -06 —40 06 =020 0 0 O O

all other occupations around it are not. Consider a tagged
particle that has diffused in a certain direction, in a system
at loading (n) = 6. In this case almost all cavities contain six
particles. When the tagged particle jumps to a neighboring
cavity, (6,6) — (5,7), it immediately pushes one of the other
particles in its new cavity to the cavity it came from to restore
the situation where every cavity has six particles. A particle
that has diffused in a certain direction therefore pushes other
particles in the opposite direction. The interparticle correlation
term in Eq. (16) is then negative and I'"! < D,/D;. In the
theory of Maxwell-Stefan diffusion this means that 1/ Do <
0 and Dps < Dy, as shown in Fig. 14(b). We are unaware
of any previous studies where Dy < D, was found (or at
least explicitly mentioned). Indeed, it is often assumed that
the self-diffusion is always higher than the Maxwell-Stefan
diffusion [27].

We now discuss the diffusion in two- and three-dimensional
systems. The two-dimensional lattice has a square geometry
and the three-dimensional lattice is cubic. For these geometries
the DMF results Eqgs. (34) and (35) are equal to the one-
dimensional case; see Sec. V B. In Fig. 15 we plot the self-
and transport diffusion for f(n) = —0.2n%, nypa = 13, and
the rates of Eq. (29) in one, two, and three dimensions. The
qualitative behavior stays the same. The effect of correlations
decreases with increasing dimension, which can be understood
as follows. If a tagged particle has jumped, most of the memory
of the environment comes from the cavity from which it came.
The relative influence of this cavity decreases if there are
more cavities connected to the cavity of the tagged particle.
One therefore expects the effect of correlations to decrease
proportionally to the number of neighbors of each cavity. Also
plotted is the diffusion in the x direction in a three-dimensional
system, where the rates in the y and z directions are 10 times
faster than the rates in the x direction (i.e., there is anisotropy
in the dynamics). The effect of correlations is further reduced:
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FIG. 15. (Color online) D, and D, for f(n) = —0.2n%, Ny =
13, and the rates of Eq. (29) for dimensions 1, 2, and 3.
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FIG. 16. (Color online) Self-diffusion for f(n) = 0.2n%, np.y =
13, and the rates of Eq. (29) for dimensions 1, 2, and 3.

If a particle jumps in the x direction, the memory of the
environment is erased faster by particles jumping the y and
z directions. In Fig. 16 we plot the self-diffusion for f(n) =
0.2n2, nma = 13, and the rates of Eq. (29) in one, two, and
three dimensions. Also here the qualitative behavior stays the
same, with the effect of correlations decreasing with higher
dimensionality. The effect of correlations on the transport
diffusion is already negligible in one dimension, so we do
not plot the data for higher dimensions.

VI. CORRESPONDENCE WITH SIMULATIONS
AND EXPERIMENTS

In Ref. [21] quantitative agreement with experimental
results of methanol and ethanol diffusion in MOF ZIF-8 was
found. In this case the particles undergo strong (attractive)
interactions via hydrogen bonding [24]. The behavior of both
the self- and transport diffusion was reproduced correctly
over the whole concentration range. This was achieved for
an interaction free energy that correctly reproduced the
experimentally measured thermodynamic factor. We now
examine the assumptions underlying our model and discuss
when agreement with experiments and molecular dynamics
simulations can be expected.

We assume that particles in neighboring cavities do not
interact with each other. The only exception is when a particle
is in the transition state, in which case it can interact with
particles in both cavities, as discussed in Sec. V A. The same
assumption has been made when modeling the behavior of
adsorption isotherms; see Sec. IV B. A good agreement with
experiments can be achieved for apolar molecules at low and
medium loadings [40]. For high loadings and polar molecules
this assumption is generally not quantitatively correct. The
importance of intercavity interactions on equilibrium prop-
erties was investigated using simulations in Refs. [29,57]. It
was found that at high loadings this interaction is in general
non-negligible. At low temperature intercavity interactions can
be important at low loadings, cf. Ref. [57]. In Ref. [56] the
average jump rate of a particle between two cavities (ky,) was
calculated numerically using dynamically corrected TST. It
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was found that if all other cavities (differing from cavities A
and B as defined in Sec. V A) connected to the cavity of the
particle that jumps are closed off, the calculated self-diffusion
can differ by as much as 60%. From these results it is clear that
agreement with experiments can, in general, only be expected
for low and medium loadings. The agreement with experiment
was found for strongly interacting particles, using the rates
of Eq. (29). For these rates, the particle in the transition state
interacts with the particles in both cavities. Hence, the most
important intercavity interaction, when one of the particles is
in the transition state, is taken into account in the dynamics.

We did not include a dynamical correction factor in the
rates, i.e., we assumed that all particles crossing the TS
equilibrate in cavity B (see the discussion in Appendix A).
A quantitative influence of the correction factor was found
for particles feeling repulsive interactions [53,56]. This is
understandable for repulsive interactions, because particles in
cavity B tend to push back the particle that jumps. Agreement
was found with experiments of clustering particles, which are
attractive. It can be expected that recrossing of the TS on
short time scales are of less importance in this case, because
a particle that has crossed the TS is attracted by the other
particles in cavity B.

Flexibility of the material can have an influence, as was
found for ethane diffusion in MOF ZIF-8 [58]. It remains
an open question if it is important for ethanol and methanol
diffusion. We note that cavity windows whose size depends
on the loading, as found in Ref. [58], can be accounted for by
making the interaction free energy of the TS depend on the
number of particles: frs = frs(n).

From the above discussion one can conclude that in general
a qualitative agreement can be expected with experimental
systems. For the case of clustering particles, our model seems
to allow for a quantitative agreement of both dynamical and
equilibrium properties over the whole concentration range.
Both the free energy F(n) and the rates &, can be determined
numerically using MD simulations [29,59,60]. The quality of
our assumptions and choice of rates could be verified using
these techniques. Such a study would also be of interest
to investigate memory effects. Beerdsen, Dubbeldam, and
Smit have studied diffusion in microporous materials using
dynamically corrected TST [9,56,61]. In their work it is
assumed that, after the particle has equilibrated in the cavity
it has jumped to, memory effects are negligible. Abouelnasr
and Smit presented a study where these memory effect are
included [59] for a system showing behavior similar to that
in Fig. 11(d). In this case memory effects in the environment
can be expected to be negligible, as was found in Ref. [59].
For clustering particles this memory effect is, however, much
stronger, especially in a one-dimensional system, cf. Fig. 1 1(e).

VII. CONCLUSION

To conclude, we have studied a lattice model of interacting
particles. It is assumed that particles are in equilibrium on
the lattice sites (also called cavities). The equilibrium free
energy F(n) of n particles in a cavity then describes all the
interactions. The equilibrium properties, such as the adsorption
isotherm and the thermodynamic factor, only depend on F(n)
and the maximum number of particles in a cavity npy.x. The
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qualitative behavior observed in experiments and molecular
dynamics simulations is reproduced in the model, while allow-
ing for a simple physical interpretation. Different forms of the
transition rates are calculated using transition-state theory. The
qualitative diffusive behavior of both clustering (attractive)
and repulsive particles is reproduced in our model, where
both cases require the use of different rates. Memory effects
in the environment lead to correlations in the dynamics. If
these correlations are neglected analytical expressions for the
self- and transport diffusion can be derived for all interactions
and loadings. Correlations are studied by comparing these
expressions with the diffusion coefficients obtained from
kinetic Monte Carlo simulations. For certain interactions the
self-diffusion can exceed the Maxwell-Stefan diffusion. We
are unaware of any previous studies that have found this.
The higher the dimension of the system the smaller the effect
of correlations on the diffusion. This is because the number
of neighboring cavities grows with increasing dimension,
thereby lowering the memory effect of the environment. The
assumption that particles in different cavities do not interact
is in general only valid at low and medium concentrations for
particles that are not strongly interacting. The choice of rates
has a strong influence on the diffusion. For the reproduction
of experimental data of clustering particles, it is important
that the dynamics depends on the free energy of both cavities
participating in the particle jump.
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APPENDIX A: TRANSITION-STATE-THEORY
CALCULATIONS

Because the window separating the two cavities is a perfect
choice for the transition state, the system under study is ideally
suited for a TST calculation; see, e.g., Refs. [13,62-66]. We
use the expression given by Tunca and Ford [66]:

KIST — (2 mpy S 2 = LLm)
Vo z(n)z(m)
where M is the mass of one particle, S the area of the TS
surface, and V the volume of the cavity. z(n,1,m) is the
configurational integral with a particle in the TS:

1
/ / / drSdrtdrBe Pl (A2)
SVn+m sJvy Jvg

The labels r™, r4, and r? denote the positions of all the
particles in, respectively, the TS, cavity A, and cavity B. Uy is
the total interaction energy of the particles in the TS and both
cavities. It is assumed that the TS can hold at most one particle.
The TST rate of Eq. (A1) has a simple physical interpretation:
The second term gives the probability that a particle from
cavity A is in the TS, while the first term (2 MB)~'/? is the
average velocity towards cavity B of a particle in the TS. Their

, (AD)

z(n,1,m) =
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product gives the rate at which a particle jumps from cavity A
to cavity B. Note that these rates always satisfy local detailed
balance.

The total interaction energy can be written as follows:

Ut = Urs(™) + U@ + VA r™) + U@?) + ve? ¢ ™).
(A3)

Urs(r'™) is the energy of the particle in the TS due to
interactions with the cavity wall. The interaction energy in
cavity A is equal to U(r4) + V(r4,r™). U@?) is the same
function as in Eq. (21), i.e., the total interaction energy in
cavity A if there is no particle in the TS. V(r4,r™) is the
contribution to the interaction energy of cavity A caused by
the particle in the TS.

We now derive the transition rate of Eq. (28). Since there are
no long-range interactions, one can make the approximation
that the particle in the TS does not influence the particles in
the cavities: V(r4,r"™) = V(r?,r™) = 0. Using Eq. (A3) one
finds that the configuration integral Eq. (A2) can be written as
z(n,1,m) = zrsz(n)z(m), with the definition:

trs = 1 / drTSe=PUssE™), (A4)
4 s /s
Writing frs = —kT In zts one finds the transition rate:
kyy = (27-[M13)*1/2Ee*ﬂfTSneﬂ[f(")*f(”*I)]_ (A5)
Vv

Rewriting this as a function of ko gives Eq. (28).

For long-range particle interactions the assumption that
V(r,r™) =0 no longer holds true. The specific form of
V (r,r™) depends on the interparticle interactions. An analyti-
cal calculation of z(n,1,m) is difficult in this case. It also can no
longer be expected that z(n,1,m) can be written as a function
of f(n). We can, however, put upper and lower bounds on
f(n,1,m) = —kT Inz(n,1,m) as a function of f(n). Consider
f(n,m|TS) = f(n,1,m) — frs, with frs the interaction free
energy of a particle in the TS that has no interaction with
particles in the cavities: frs = —k7 Inz(0,1,0). All interparti-
cle interactions are then included in f(n,m|TS). This function
must lie in between:

f)+ fm) < f(n,m|TS) < f(n+ 1D+ f(m +1).

The lower bound becomes an equality if the particle in the TS
does not interact with the particles in the cavities, in which
case one finds Eq. (AS5) for k,,,,. This corresponds to ¢ = 1 in
Eq. (27). The upper bound becomes an equality if the particle
in the TS interacts with the particles in the cavities in exactly
the same way as if it was located in the cavities. This gives
the rates with ¢ = 0 in Eq. (27). The rates of Eq. (29) are
found for the choice f(n — 1,m|TS)=[f(n—1)+ f(n)+
f(m)+ f(m + 1)]/2, which is the average of the lower and
upper bound. This choice takes the interaction free energy

(A6)
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in both cavities as the average of the situation where the TS
particle is present or absent in the cavity. Since half of the
particle in the TS is physically in contact with the particles in
cavities A and B, this is a reasonable choice. Equal importance
is given to the change in free energy of both cavities, and the
rate is a function of f(n):

Sne—B/DLf (n=D+fn+1)—f ()= f(m)]
kB =
i V(2w MB)!/2ebfrs

(AT)

Rewriting this as a function of ko gives Eq. (29). Note that
this rate corresponds to ¢ = 1/2 in Eq. (27).

We finally remark that the expression Eq. (A1) assumes
that all particles crossing the TS equilibrate in cavity B.
This is generally not the case: The particle can recross the
TS surface on short time scales and equilibrate in cavity A.
Recrossings can be accounted for by including a dynamical
correction factor in the rates, which is determined from short
MD simulations [61]. Studies of diffusion in microporous
materials using dynamically corrected TST can be found in
Refs. [29,53,56].

APPENDIX B: COMPUTATIONAL DETAILS

The computational details of the kMC simulations are
given in the Supplementary Material of Ref. [21]. In one
dimension, all self-diffusions are simulated for length L = 50.
The transport diffusions are simulated for L = 20, except for
Figs. 14(a) and 11(a) (L = 50) and Fig. 11(f) (L = 15). For
the two- and three-dimensional systems, the concentration
gradient of (labeled) particles is applied in the x direction. The
length in the x direction is always L, = 15. Periodic boundary
conditions are imposed in the y and z directions. In Fig. 15, the
self-diffusion is simulated for L, = 4 in two dimensions and
L, = L, = 6 in three dimensions. The transport diffusion is
measured for L, = 12 in two dimensionsand L, = L, = 6in
three dimensions. In Fig. 16 the two-dimensional system has
L, = 12. For the three-dimensional system, the self-diffusion
is simulated for L, = L, = 6 and the transport diffusion for
L,=L,=5.

The error bars are measured differently than in Ref. [21].
We measure the value of the self- and transport diffusion each
103 MC steps and store these values in a list A. Error bars are
found by calculating @ = /(§A2)/n, where n is the number
of elements in the list and

(8A%) =

| 5
D (A — (A, (B1)
i=1

n—14

with (A) the average of the list. The error bars have value
(A) 0. The error bars are generally encompassed by the
symbol sizes.
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