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Structure and spectrum of two-dimensional clusters confined in a hard wall potential

Minghui Kong, B. Partoens, A. Matulis,* and F. M. Peeters†
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The structural and dynamical properties of two-dimensional~2D! clusters of equally charged classical
particles, which are confined in an external hard wall potential, are investigated through the Monte Carlo
simulation technique. The ground-state configuration is investigated as a function of the interparticle interac-
tion ~Coulomb, dipole, logarithmic, and screened Coulomb!. The excitation spectrum corresponding to the
ground-state configuration of the system is discussed. The eigenmodes are investigated and the corresponding
divergence and rotor are calculated, which indicates the ‘‘shearlike’’ and ‘‘compressionlike’’ aspects of the
different modes. Both small and large clusters are considered.

DOI: 10.1103/PhysRevE.69.036412 PACS number~s!: 52.27.Lw, 36.40.Sx, 82.70.Dd
a
ue
m

r
ch
ir

on

te
o
o
u
n
m
p
ic
is
tin

i
a
n
e

m
ua

e
n
t
rd

be
ste

f

s
if-
ses

of
in-

rre-
rre-
he
e

the
bed.
ith
de
rlike
are
he
ness

for
the
ard

ng
I. INTRODUCTION

In 1934, Wigner predicted@1# that electrons crystallize
and form a lattice if the density of the three-dimension
~3D! electron gas is lowered beyond a certain critical val
Such Wigner crystals have been observed in 2D syste
such as electrons on the surface of liquid helium@2#, elec-
trons in quantum dots@3#, colloidal suspensions@4#, and in
confined plasma crystals@5#. When the classical Wigne
crystal forms, the Coulomb interaction potential is mu
larger than the thermal energy, which is a necessary requ
ment for the system to self-organize into an ordered c
densed phase.

Recently, such Wigner-like ordering has been investiga
in systems consisting of a finite number of particles. Most
such studies focus on systems with an external parab
confinement, which is similar to the action of a uniform ne
tralizing background of charges. Other type of confineme
which have also been considered are those residing fro
fixed positive charge. Such a positive charge keeps the re
ling charged particles together, and is in fact the class
analog for atoms@6,7#. An extreme case of confinement
the one consisting of hard walls. Interesting reentrant mel
behavior was observed for colloidal particles dissolved
water@8,9# in such a hard wall potential, which is absent in
parabolic confined system. The radial particle fluctuatio
are responsible for an enhanced locking of adjacent sh
@10#. In fact the short-range interparticle interaction in co
bination with the hard wall confinement leads to the unus
reentrant behavior in its orientational order. In Refs.@10,11#
the melting of some specific clusters was investigated th
retically, but no systematic study of the ground state a
normal modes was made. Such a study will be presen
here, which is further motivated by the fact that in a ha
wall confined system the physics is very different, e.g.,~1!
there is a very inhomogeneous distribution of particles
cause many of them are pushed to the edge of the sy
where they create a nonparabolic confinement potential
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the other particles; and~2! the average particle density i
unaltered with varying interparticle interaction which is d
ferent for parabolic confinement where the density increa
with decreasing interparticle interaction strength.

The purpose of this work is to present a detailed study
the ground-state properties of 2D clusters with different
terparticle interactions~Coulomb, dipole, logarithmic, and
screened Coulomb, i.e., the Yukawa potential!, which are lat-
erally confined in ahard wall potential. Both small and large
systems will be discussed. The excitation spectrum co
sponding to the ground-state configuration and the co
sponding divergence and rotor of it, which describe t
amount of ‘‘shearlike’’ and ‘‘compressionlike’’ nature of th
modes, are investigated.

The present paper is organized as follows. In Sec. II,
model system and the numerical approach are descri
Sec. III is devoted to the ground-state configuration w
different interparticle interactions. In Sec. IV, the eigenmo
spectrum for these clusters is discussed, and the shea
and compressionlike character of the different modes
shown in Sec. V. Our conclusions are given in Sec. VI. T
dependence of the normal mode frequencies on the steep
of the confinement potential is discussed in Appendix A
the two-particle system. Appendix B gives an analysis of
radial motion of particles situated at the border of the h
wall confinement potential.

II. NUMERICAL APPROACH

The potential energy of a 2D system ofN charged par-
ticles in a hard wall confinement potential and interacti
through a repulsive 1/r n8 potential is given by

E5(
i 51

N

V~r i !1
e2

«R (
i . j

N
Rn8

urW i2rW j un8
, ~1!

with the hard wall potential

V~r !5H 0 for r ,R

` for r>R,
~2!
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andR the radius of the hard wall,e the particle charge,« the
dielectric constant of the medium the particles are moving
and rW i5(xi ,yi) the position of thei th particle with r i
[urW i u.

As the above potential energy depends only on two
rameters which depend on the experimental setup~namely,R
ande2/«) and we have to choose also two units~namely, for
the length and the energy! it is possible to scale out all ex
perimental dependent parameters. For the natural choic
r 05R as unit of length andE05(e2/«)/R as unit of energy,
the potential energy in dimensionless form becomes

E5(
i 51

N

V~r i !1(
i . j

N
1

urW i2rW j un8
, ~3!

with the hard wall potential

V~r !5H 0 for r ,1

` for r>1.
~4!

Note that this Hamiltonian only depends on the number
particlesN and not on the radius of the hard wall.

In the present paper, we mainly present results for p
ticles interacting through the Coulomb potential~i.e., n8
51). We also consider other interactions such as 1/r i j

3 ,
exp(2rij /lD)/rij5exp@2(rij /R)(R/lD)#/rij5exp(2krij /R)/rij
(lD is the screening length andk5R/lD) and2 ln rij for the
cases of dipole, screened Coulomb, and logarithmic inter
ticle interaction, respectively (r i j [urW i2rW j u).

The Monte Carlo simulation technique@12# extended with
a gradient method is used to obtain the ground state con
ration. The eigenmode frequencies are obtained from the
genvalues of the dynamical matrix@13#

Eab,i j 5
]2E

]r a,i]r b, j
U

r a,i5r
a,i
n

, ~5!

where$r a,i
n % is the ground-state configuration. The eigenf

quencies in this paper are expressed in the unitv8
5AE0 /(mr0

2).
A special situation arises for the outer-shell particles

they can only move along the perimeter, and radial outw
movement of the outer-shell particles is forbidden. Theref
it is convenient to diagonalize the dynamical matrix e
pressed in polar coordinates. The oscillations of the parti
around their equilibrium positions have a component alo
ther direction and one along theu direction. In the hard wall
limit, the particles in the outer-shell can have only one co
ponent, namely, along theu direction, and we neglect th
eigenmodes along ther direction, since the correspondin
eigenfrequencies are infinite.

As an illustration we present in Appendix A the analytic
results of the two-particle problem for a generalr n confine-
ment potential.
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III. GROUND-STATE CONFIGURATIONS

Unlike for the parabolic confinement case with Coulom
interparticle interactions, the particles are not attracted to
center of the confinement potential but they repel each o
such that they move to the edge of the system. In this c
the previously@11# found simple polygons are formed at th
edge. For a cluster with a small number of particles, o
concentric shell at the edge will form and the center reg
will be empty, while for a large number of particles the ce
ter region will resemble a triangular lattice, however the sh
structure stays more pronounced than for the parabolic c

Table I shows the packing sequences of the ground s
for N52,3, . . . ,50with different interparticle interactions
including the Coulomb, dipole, and screened Coulomb~for
k50.5,2.0,4.0! cases. The configuration is indicated by t
number of particles in the different rings. The energy p
particleE/N is also given. This table is rather exhaustive a
should be compared with a similar one published in Re
@11,14# for the parabolic confinement potential.

First, we discuss the case for Coulombic interparticle
teraction. From Table I, we can see how shells are filled
the particles and new shells appear. For smallNP$2 –11%,
the particles are situated at the edge of the wall. Whe
critical number of particles at the edge is achieved, a n
shell appears. This occurs forN512 and is, as said above
independent of the radius of the confinement potential. Fr
NP$12–29%, the system has a two-shell structure. One
teresting phenomenon can be observed in such a hard
case. When there are two shells, the edge is always the
erable position for the new particles. New particles will b
gin to join into the center shell only if the edge reaches
critical number of particles. When the inner ring has six p
ticles a third ring is created. This occurs forNP$30–50%.
Note that this is different from the parabolic confineme
case where a new shell forms when the inner ring is fil
with five particles.

It was shown in Ref.@14# that for a system with parabolic
confinement the configurations do not differ very strongly
short- or long-range interactions, contrary to what we fi
for the hard wall case. This is nicely illustrated in Table I
we compare the dipole and Yukawa~with different screening
lengths! with the Coulomb case. Note also that the config
ration for N529 in the case of dipole interaction, name
(3,9,17), corresponds with the experimentally observed c
figuration in Refs.@8,9#. For the Yukawa system, the struc
ture is strongly dependent on the screening strengthk. For a
small value ofk50.5 the structure of the system is qui
similar to the pure Coulomb case~see the third and sixth
columns in Table I!. When increasingk, one can see tha
more and more particles can appear in the center region.
table also shows that for more short-range interparticle in
actions new shells are formed for lowerN values. This is not
surprising because the interparticle interaction is diminish
while the size of the system is not~in contrast to the para
bolic case where the size of the system becomes smaller
increasingk @15,16#!.

We investigated in more detail how many particles can
placed at the edge before one of the particles is placed in
2-2
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TABLE I. The ground state forN52,3 . . . ,50particles confined in a 2D hard wall with Coulomb, dipol
and screened Coulomb interparticle interactions, respectively. The energies (E/N) and the shell structures
(N1 ,N2 , . . . ) of theground-state configuration are shown.

E/N Configuration E/N Configuration Configuration~Yukawa!
N ~Coulomb! ~Coulomb! ~dipole! ~dipole! k50.5 k52.0 k54.0

2 0.25000 2 0.06250 2 2 2 2
3 0.57735 3 0.19245 3 3 3 3
4 0.95711 4 0.41605 4 4 4 4
5 1.37639 5 0.76085 5 5 5 5
6 1.82735 6 1.25495 6 6 6 6
7 2.30477 7 1.92680 7 7 7 1,6
8 2.80487 8 2.56095 1,7 8 1,7 1,7
9 3.32483 9 3.38223 1,8 9 1,8 1,8
10 3.86245 10 4.42647 1,9 10 1,9 1,9
11 4.41597 11 5.63037 2,9 1,10 1,10 2,9
12 4.96464 1,11 6.84760 2,10 1,11 2,10 2,10
13 5.52365 1,12 8.14532 3,10 1,12 2,11 3,10
14 6.09624 1,13 9.55674 3,11 1,13 2,12 3,11
15 6.68141 1,14 11.11835 4,11 1,14 3,12 4,11
16 7.27826 1,15 12.73777 4,12 2,14 3,13 4,12
17 7.87157 2,15 14.60145 5,12 2,15 4,13 5,12
18 8.47100 2,16 16.44619 5,13 3,15 4,14 5,13
19 9.07868 3,16 18.56347 1,5,13 3,16 4,15 5,14
20 9.68150 3,17 20.61187 1,6,13 3,17 5,15 1,5,14
21 10.29425 3,18 22.62037 1,6,14 4,17 5,16 1,6,14
22 10.91463 4,18 24.96092 1,6,15 4,18 1,5,16 1,6,15
23 11.53049 4,19 27.26438 1,7,15 4,19 1,5,17 1,7,15
24 12.15533 4,20 29.87944 1,7,16 5,19 1,6,17 1,7,16
25 12.78663 5,20 32.54436 1,8,16 5,20 1,6,18 1,7,17
26 13.41427 5,21 35.27964 2,8,16 5,21 1,7,18 1,8,17
27 14.05013 5,22 38.10941 2,8,17 6,21 1,7,19 2,8,17
28 14.69087 6,22 40.97470 3,8,17 1,6,21 1,7,20 2,8,18
29 15.32924 6,23 43.81985 3,9,17 1,6,22 1,8,20 3,8,18
30 15.96932 1,6,23 46.82763 3,9,18 1,6,23 1,8,21 3,9,1
31 16.61023 1,6,24 50.03572 4,9,18 1,7,23 2,8,21 3,9,1
32 17.25843 1,6,25 53.20328 4,10,18 1,7,24 2,8,22 3,9,2
33 17.90323 1,7,25 56.45537 4,10,19 1,7,25 3,8,22 4,9,2
34 18.55396 1,7,26 59.96733 4,11,19 1,8,25 3,9,22 4,10,2
35 19.20978 1,8,26 63.51491 5,11,19 1,8,26 3,9,23 4,10,2
36 19.86301 1,8,27 67.00782 5,11,20 2,8,26 3,10,23 4,11,2
37 20.52278 1,8,28 70.81054 1,5,11,20 2,8,27 3,10,24 5,11,2
38 21.18212 2,8,28 74.53620 1,6,11,20 2,9,27 4,10,24 5,11,2
39 21.84389 2,8,29 78.22570 1,6,12,20 2,9,28 4,10,25 1,5,11
40 22.50297 2,9,29 81.89272 1,6,12,21 3,9,28 4,11,25 1,5,11
41 23.16711 2,9,30 85.98871 1,6,12,22 3,9,29 4,11,26 1,6,11
42 23.82918 3,9,30 90.01315 1,6,13,22 3,10,29 5,11,26 1,6,12
43 24.49545 3,9,31 94.05687 1,7,13,22 3,10,30 5,11,27 1,6,12
44 25.16090 3,10,31 98.43269 1,7,13,23 4,10,30 5,12,27 1,6,13
45 25.82957 3,10,32 102.7506 1,7,14,23 4,10,31 1,5,12,27 1,6,13
46 26.49958 4,10,32 107.3208 1,8,14,23 4,11,31 1,5,12,28 1,7,13
47 27.17037 4,10,33 111.7210 2,8,14,23 4,11,32 1,6,12,28 1,7,13
48 27.84116 4,11,33 116.2977 2,8,14,24 5,11,32 1,6,12,29 1,7,14
49 28.51431 4,11,34 120.9331 3,8,14,24 5,11,33 1,6,13,29 1,8,14
50 29.19165 5,11,34 125.5184 3,8,15,24 5,12,33 1,6,13,30 2,8,14
036412-3
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center, in case of a screened Coulomb interparticle inte
tion. The energy of the configuration withN particles equi-
distantly placed on a single ring at the edge is given by

Es5 (
i 51

N21

(
j 5 i 11

N
e22kusin@p~ i 2 j !/N# u

2Usin
p~ i 2 j !

N U , ~6!

and the energy ofN21 particles at the edge with 1 in th
center is given by

E(5 (
i 51

N22

(
j 5 i 11

N21
e22kusin@p~ i 2 j !/~N21!# u

2Usin
p~ i 2 j !

N21 U 1~N21!e2k.

~7!

The maximum value ofN for which Es,E( is the maxi-
mum number of particles at the edge. This value is show
Fig. 1 as a function ofk. Fork.8.2 the sixth particle always
goes to the center.

Another pronounced difference in the configuration fo
Yukawa system can be observed. In the parabolic case
ground-state configuration changes from a shell-like str
ture into a hexagonal lattice with increasingk @15,16#. For
hard wall confinement the radius of the system does
change and the configuration stays shell-like, even up
largek values.

The case with logarithmic interparticle interaction w
considered as well. We did not add the result to Table I, si
the configuration is always a single shell, which is a con
quence of Earnshaw’s theorem@17,18# in two dimensions.
The interaction potential is long range, and all particles
situated at the edge of the hard wall.

For large systems the configuration is determined by
competing effects, namely, circular symmetry and triangu
structure~Wigner lattice!. The radial distributions togethe

FIG. 1. The maximum number of particles at the edge of
hard wall confinement before one particle is situated in the cente
a function of the interaction strengthk.
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with the configurations forN550,100, 150, and 300 ar
shown in Fig. 2 and this shows that for 50, 100 and 1
particles a clear shell structure is present. ForN550 par-
ticles @see Fig. 2~a!#, there are three shells and the config
ration is~5, 11, 34!. ForN5100 particles@see Fig. 2~b!#, one
particle is situated in the center with four shells around
with the configuration~1, 7, 14, 22, 56!, and forN5150 @see
Fig. 2~c! with configuration (1,8,15,22,31,73)] one mo
ring is present. Figure 2~d! shows the configuration forN
5300. Notice that only the outer shells have a well-defin
radius while the inner shells have no clear radius, reflect
that the inner region has a more triangular-lattice-like str
ture which can also be seen from the Voronoi construction
the inset of Fig. 2~d!. In the parabolic case~and for Coulom-
bic interaction!, a triangular structure starts to appear in t
center already for about 100 particles@11,19#, while for the
hard-wall system a triangular lattice appears in the cen
region for N*300. Also the outer-shell structure is mo
pronounced than for parabolic confinement. Note howe
that in our hard wall system many particles are situated at
edge, for example, for theN5300 system the outer ring
consists ofNE5116 particles. By excluding these edge pa
ticles, the triangular lattice in the center starts to appear fr
3002NE5184, which is already closer to but still large
than for the parabolic confinement case.

It was shown before that the topological charge in case
a parabolically confined system is always26 and that the
position of the defects for large systems is in the transit
region between the outer rings and the central triangular
tice @19#. The number of defects for the hard wall system
much larger, and are now also situated near the edge, but
the total topological charge always equals26.

On each shell, the particles are equally distributed. Unl
the parabolic confinement case with Coulomb interaction,
hard wall confinement the interparticle spacing in a sh
decreases with increasing shell number. Those results
shown in Fig. 3~a!. The inset in Fig. 3~a! shows the distance
between shells forN550,100,150, and 300 particles. On

e
as

FIG. 2. The radial distribution for systems withN550,100,150,
and 300 particles. The insets show the configurations and t
Voronoi structures.
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can see that the distance between shells always decre
from the inner shell to the outer shell. Both effects toget
make the density increase from the center to the edge
contrast to the parabolic confinement case@11#.

It is interesting to compare the results for our hard w
system with Coulomb interacting particles with a more sho
range interaction such as the dipole interparticle poten
Figure 3~b! shows the interparticle spacing in the differe
shells for the dipole system. One can see that it does
depend strongly on the shell number. The same is true for
distance between the shells, as shown in the inset of
3~b!. As a result, the particles are more uniformly distribut
in the case of the short-range dipole interaction than for
long-range Coulomb interaction. This is again a conseque
of the fact that for more short-range interparticle interactio
particles appear in the center at lowerN values.

IV. THE EIGENMODE SPECTRUM

In this section, we discuss the excitation spectrum of
ground-state configuration of the Coulomb system with

FIG. 3. The interparticle spacing within the shell as a funct
of the shell number forN550, 100, 150, and 300 particles interac
ing through the~a! Coulomb and~b! dipole interaction potential for
hard wall confinement. The insets show the distance between s
as a function of the shell number.
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hard wall confinement. The spectral properties of the grou
state configurations for parabolic confinement were p
sented in Ref.@13#. The excitation of the normal modes of
2D Coulomb clusters in laboratory complex plasmas w
recently observed@20,21#. All the previous theoretical calcu
lations and experimental results are for systems with a p
bolic confinement.

Since the particles at the edge are practically frozen at
wall, they can only move along the perimeter. A detail
analysis of the radial motion of the particles situated at
edge of the hard wall is given in Appendix B. Notice that t
number of particles at the edge is a considerable part of
whole system. There are 2N normal modes for anN-particle
system. In the hard wall case, the radial motion of particle
the edge has a large energy and consequently the numb
relevant modes of the hard wall system is 2N2NE , with NE
the total number of particles at the edge. We plot the exc
tion spectrum of the normal modes as a function of the nu
ber of particles for hard wall confinement and Coulomb
terparticle interaction in Fig. 4. For the parabolic confin
system, there are three eigenfrequencies which are inde
dent ofN @13#: v50,A2, andA6, which correspond to the
rotation of the system as a whole, the center-of-mass m
~CM!, and the breathing mode~BM!, respectively. In the
hard wall case only thev50 frequency is still present. Fo
N52 –11, the particles are all situated at the edge, and th
is no sense of discussing the CM or BM frequency for ha
wall confinement. Starting fromN.16, more than one par
ticle is situated in the central region. It is then possible
assign approximately those two eigenmodes~i.e., the CM
and BM mode! to some of the eigenmodes of the particles
the central region. Examples of the CM-like and breathin
like modes forN535 are shown in the insets of Fig. 4, an
Figs. 6~g! and 6~h! show the corresponding CM-like an
breathinglike modes for the central particles forN5100, re-
spectively. While for the parabolic case, the amplitudes

lls

FIG. 4. Excitation spectrum of normal modes as a function
the number of particles forN52 – 40 for the hard wall confinement
The CM-like and breathing-like modes are marked by symbols. T
insets show the four CM-like modes and the breathing-like mo
for N535.
2-5
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all particles are equal, now the particles which are closes
the center have the largest amplitudes. The frequencies
responding with these CM-like and breathinglike modes
the central particles are marked in Fig. 4 by symbols. N
that the degeneracy of the CM-like modes is slightly lift
and that for some clusters it is possible to find four CM-li
modes. Comparing Fig. 4~b! with Fig. 4~c! one can see tha
in these cases the direction of the motion of the outer p
ticles with respect to the direction of the motion of the ce
tral particles is different.

It was previously found that for small Coulomb system
the lowest nonzero frequency mode~LNF! corresponds to
intershell rotation, whereas for larger number of particle
corresponds to the excitation of a vortex-antivortex pair@13#.
This is not the case anymore for the hard wall system. Fig
5 shows the LNF up toN550 particles. When there is mor
than one particle at the center, the LNF mode correspo
always, also for large systems, with the rotation of all cen
particles as a whole in the direction opposite to the one
the particles at the edge@see insets of Fig. 5 forN525,26,
and 39 and Fig. 6~b! for N5100]. ForN,12 all particles are
at the edge and the LNF modes are similar to the one sh
for N511 in the inset of Fig. 5, namely, the two halves of t
wide ring move in opposite direction. The reason why t
LNF for N525 @configuration (5,20)] andN526 @configu-
ration (5,21)] differ by two orders of magnitude is similar
for the parabolic confinement system@13#: for N525 the
number of particles in the outer shell is a multiple of t
number of particles in the inner shell, resulting in a mo
stable configuration against intershell rotation~i.e., due to a
commensurability effect!, and N525 corresponds to magi
number clusters. Most of the other peaks in Fig. 5 can
explained in a similar way.

As in the system withN5100 particles in a hard wal
confinement, most particles are situated at the edge,
therefore it may be wrong to consider it already as a la
system. Therefore we also looked at the LNF of a lar

FIG. 5. The lowest nonzero eigenfrequency forN52, . . . ,50.
The insets show the corresponding eigenmodes forN511,25,26,
and 39.
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system, namely, forN5300. Still the LNF corresponds with
the rotation of the central particles as a whole and the vor
antivortex motion appears only for higher frequencies.

It is also interesting to have a look at the higher excit
modes as they are much more easy to interpret than in
parabolic case. Figure 6 shows nine modes forN5100. With
increasing frequency, after the rotation of the cluster a
whole @Fig. 6~a!# and the rotation of the central particles as
whole @Fig. 6~b!#, particles with larger amplitudes appe
close to the center of the system, resulting in many differ
types of intershell rotations@Figs. 6~c! and 6~d!#. Higher ex-
citations may consist of a vortex-antivortex pair, or multipl
of such pairs@Figs. 6~e! and 6~f!#. The highest frequency
mode for parabolic confinement was discussed in R
@19,21#. In these modes the inner particles have larger a
plitudes than the outer particles. We found the opposite
havior in the hard wall case. In Fig. 6~i!, one can see the
largest amplitude for the particles at the edge where the n
est particles at the edge move in opposite directions whic
typical for the case of an optical mode.

V. PROPERTIES OF THE NORMAL MODES

In previous results for a 2D classical infinite system@22#,
two types of waves with dispersion relationsv'k ~lateral
sound waves! andv'Ak ~longitudinal plasma waves!, were
observed. The latter one arises from the long-range natur
the Coulomb interaction@23#. These waves are related to th
compressionlike and shearlike modes observed in finite c
fined cluster. The compressional and shearlike properties
be extracted from the divergence and rotor of the veloc
field, respectively. In this paper, we will associate a sin
number to the shearlike and compressionlike character of
different modes by calculating the spatial average of
square of the divergence¹W •vW and the vorticity (¹W 3vW )z of
the velocity field, following the approach of Ref.@13#.

FIG. 6. Some eigenvectors for the cluster withN5100 particles.
2-6
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Thez components of the rotorc r(k)5ezW •rotc(k) and the
divergencecd(k)5divc(k) of the field of eigenvectors o
modek are

cd~k!5
1

N (
i 51

N

cd,i
2 ~k!, ~8a!

c r~k!5
1

N (
i 51

N

c r ,i
2 ~k!, ~8b!

where the values ofcd,i(k) and c r ,i(k) for the i th particle
are given by

cd,i~k!5
1

M (
m51

M

~rW i2rWm!•@AW i~k!2AW m~k!#/urW i2rWmu2,

~9a!

c r ,i~k!5
1

M (
m51

M

u~rW i2rWm!3@AW i~k!2AW m~k!#u/urW i2rWmu2,

~9b!

Here,m andM denote the index and number of neighbori
particles of particlei, rWm is the positional coordinate of
neighboring particle, andAW i(k) is the eigenvector of particle
i for modek. We will show two kinds of results in which we
make the summation in Eqs.~8a! and ~8b!: ~i! over all par-
ticles and ~ii ! only over the central particles. So we ca
clearly see which particles contribute to the compression
and shearlike character of the motion. In the latter case, if
sum in Eqs.~8a! and~8b! only over the central particles, w
sum over all the neighbors in Eqs.~9a! and ~9b! ~as was
recently done also in Ref.@21#!, in contrast to Ref.@13#
where only the nearest neighbor particle was used. This t
out to be the correct approach to get information about
compressional and shearlike properties of the modes of
central particles because the position and direction of
nearest neighbor are strongly influenced by small variati
of the local environment of particlei. However, we noticed
that if we also include the outer particles, it is important
sum in Eqs.~9a! and~9b! over all particles. Summation ove
only the neighbors results in a large divergence for the m
tion of the particles at the edge, which is not the corr
result because the motion of these particles is always tan
to the hard wall.

In Fig. 7 we plotcd(k) and c r(k) as a function of the
excitation frequency forN550 and 300 particles~for the
hard wall system with Coulomb interparticle potentia!.
Similar results were obtained for a dipole interaction. T
first column shows results when we sum over all particl
the second column is when we include only the central on
The large values forc r(k) for all high frequencies in the firs
column figures indicate the shearlike character of the mo
of the outer particles. The figures in the second column sh
that bothcd(k) andc r(k) are almost zero in the high exc
tation frequency region. This results from the fact that
look only at the motion of the central particles and at hi
frequencies only the outer particles move. In the parab
case, the lower eigenfrequency spectrum corresponds to
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tational type of excitations, which are intershell rotation
vortex-antivortex-like motions of the particles which lead
practically no density fluctuations. The divergencecd(k)
corresponds to compressionlike motion, and in the spect
cd(k) can have a maximum at higher frequencies. In
hard wall confinement case, one can see that for small
tems with, e.g.,N550 as well as for the large system wit
N5300, cd(k) and c r(k) have rather different values in
different frequency regions and furthermore two clear se
rate maxima appear at the lower half of excitation spectru
In the parabolic case, this clear separation was only pre
for large systems.

VI. CONCLUSION

The configurational and spectral properties of tw
dimensional clusters of charged classical particles in a h
wall potential were investigated through the Monte Ca
simulation technique. A table with the packing sequences
to 50 particles was constructed for different interparticle
teraction potentials. It was shown that more particles can
at the edge in comparison with the parabolic case, and
the shell structure is much more pronounced, also for la
clusters. In the case of long-range Coulomb interaction
tween the particles, the density of particles is increased
wards the edge, while the particles are more uniformly d
tributed for a short-range interaction potential as e.g., for
dipole interaction.

Center-of-mass and breathing modes can be identified
proximately for the central particles, while the lowest no
zero frequency corresponds with a rotation of the cen

FIG. 7. Thecd(k) and c r(k) as a function of the excitation
frequency forN550 ~a,b! and 300~c,d! particles. In~a! and~c! all
particles were included when calculatingcd(k) andc r(k), while in
~b! and~d! only the central particles were taken into account in t
summation.
2-7



s
if-
x-
rg
,

th
b

nc
a
th

un

it
rk
u
g

ie

g

.
rm

e

ts

d-

ed

ng

he

KONG et al. PHYSICAL REVIEW E 69, 036412 ~2004!
particles as a whole~in the opposite direction to the particle
at the edge!. Larger frequencies correspond with many d
ferent types of intershell rotations, followed by vorte
antivortex excitations. The highest frequencies involve la
amplitudes for angular movement of particles at the edge
they are almost frozen in the radial direction.

Also the shearlike and compressionlike character of
modes was investigated. A clear distinction can be made
tween low-frequency shearlike modes and high-freque
compressionlike modes. The highest frequency modes
again shearlike modes, corresponding with the motion of
particles at the edge.
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APPENDIX A: THE EIGENFREQUENCIES OF TWO
PARTICLES

In this part, we analytically calculate the eigenfrequenc
of two particles in a general confinement potentialV(r )
5r n. The potential energy of a 2D system ofN charged
particles in a generalr n confinement potential and interactin
through a 1/r n8 potential is given by

E5(
i 51

N
1

2
mv0

2R2S r i

RD n

1
e2

«R (
i . j

N
Rn8

urW i2rW j un8
, ~A1!

wherem is the mass of the particles andv0 the radial con-
finement frequency.n→` corresponds to the hard wall limit
The potential energy can be written in dimensionless fo
using the following units for length and energy:

r 05~e2/~«a!!1/(n1n8)R(n81n23)/(n1n8), ~A2!

E05~e2/«!n/(n1n8)an8/(n1n8)R(2n82n)/(n1n8) ~A3!

with a5mv0
2/2. In the limit of a hard wall confinement, th

length unit becomesr 0→R which is the radius of the hard
wall, and the energy unit becomesE0→(e2/«)/R. In the
case of parabolic confinement, i.e.,n52, and Coulomb in-
teraction, i.e.,n851, we recover the previously defined uni
@11#: r 05(e2/«)1/3a21/3 andE05(e2/«)2/3a1/3. The dimen-
sionless expression for the potential energy is given by

H5(
i 51

2

r i
n1

1

urW12rW2un8
. ~A4!

If we choose thex axis through both particles, the groun
state configuration is given by
03641
e
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e
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s

x15S n8

n32n811D 1/(n1n8)

, x252x1 , y15y250.

~A5!

For n→` we findx151. The eigenfrequencies are obtain
by diagonalizing the dynamical matrix, resulting in

v1
250, ~A6!

v2
25nS n8

n32n811D (n22)/(n1n8)

→ n8

2n811
, ~A7!

v3
25n~n21!S n8

n32n811D (n22)/(n1n8)

→n
n8

2n811
,

~A8!

FIG. 8. The eigenfrequencies for two particles interacti
through anr n confinement potential for~a! a Coulomb interparticle
potential and~b! a dipole interaction potential. The insets show t
motion of the particles and the given frequencies are forn→`.
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v4
25

nn81n82

2n811S n8

n32n811D (n812)/(n1n8)
→n

n8

2n811
, ~A9!

where ‘‘→’’ means then→` ~i.e., hard wall! limit. Notice
that in the latter limitv35v4 diverge. The four eigenmod
frequencies for Coulomb and dipole interparticle interactio
are illustrated in Figs. 8~a! and 8~b!.

APPENDIX B: PERIODIC MOTION OF PARTICLE
AT THE EDGE

In this appendix we illustrate the motion of a particle
the edge of the hard wall boundary by solving the equat
of motion. We start with the total Hamiltonian with the sam
potential energy term as used in our calculations, namelN

particles interacting through a 1/r n8 potential and confined in
the plane by the hard wall potential~2!. In the expansion of
the Hamiltonian till lowest order in the small displacemen
of the particles around the equilibrium ground-state positi
the coordinates of the various particles are separable. Th
fore it is justified to consider only the motion of a sing
particle. For a particle at the edge the contribution to
expanded Hamiltonian is of first order for a small displac
ment in the radial direction, and of second order for a sm
angular displacement. Therefore, we look only at the ra
motion. Let us assume that the ground-state coordinate
particle 1 are given by (2R,0) and we introduce a sma
perturbation in the radial direction for the first particlex5
2R1Dx. To the lowest approximation the Hamiltonian b
comes

H5m
~D ẋ!2

2
2n8

e2

« (
i 52

N
Dx~2R2xi !

@~2R2xi !
21yi

2# (n812)/2

1
e2

« (
i 51

N21

(
j 5 i 11

N
1

@~xi2xj !
21~yi2yj !

2#n8/2
. ~B1!

The equation of motion for the small displacementDx of the
first particle is easily shown to be
y

Re

hy
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D ẍ5n8
e2

« (
i 52

N
~2R2xi !

@~2R2xi !
21yi

2#3/2
5C, ~B2!

with solution

Dx5
C

2
t21vot. ~B3!

This expression reminds us of the motion of a bouncing b
in the field of gravity. Its trajectory in time consists of equ
pieces of interconnected parabolas. The motion startst
50 at the hard wall. The particle moves in the positive
rection and reaches its maximal distance from the wal
Dxmax52v0

2/(2C) after tmax52v0 /C. Then the particle
moves back and att52tmax it reaches again the wall atDx
50. Now the particle is reflected elastically by the wall,
changes its momentum fromv0 to 2v0, and repeats its pe
riodical motion. The period of this motion is given by

T52tmax52A22Dxmax/C, ~B4!

which corresponds to a frequency

v5
2p

T
5

p

A22Dxmax/C
. ~B5!

Consequently, we have a periodic motion whose freque
depends on the amplitude of the oscillatory motion like
the case of an anharmonic oscillator. But the difference
that there is no linear regime, which is the reason that suc
motion was not considered in Sec. IV. Notice that the f
quency grows to infinity when the amplitude of the excit
tion goes to zero.

Thus in conclusion, due to the hard wall confinement p
tential, the particles at the edge cannot perform a harmo
motion in the radial direction. But nevertheless, these p
ticles can perform a periodic bouncing motion against
wall which is purely anharmonic in character.
ev.
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