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Structure and spectrum of two-dimensional clusters confined in a hard wall potential
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The structural and dynamical properties of two-dimensidi2&) clusters of equally charged classical
particles, which are confined in an external hard wall potential, are investigated through the Monte Carlo
simulation technique. The ground-state configuration is investigated as a function of the interparticle interac-
tion (Coulomb, dipole, logarithmic, and screened Coulpmkhe excitation spectrum corresponding to the
ground-state configuration of the system is discussed. The eigenmodes are investigated and the corresponding
divergence and rotor are calculated, which indicates the “shearlike” and “compressionlike” aspects of the
different modes. Both small and large clusters are considered.
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[. INTRODUCTION the other particles; an@?) the average particle density is
unaltered with varying interparticle interaction which is dif-
In 1934, Wigner predicted1] that electrons crystallize ferent for parabolic confinement where the density increases
and form a lattice if the density of the three-dimensionalwith decreasing interparticle interaction strength.
(3D) electron gas is lowered beyond a certain critical value. The purpose of this work is to present a detailed study of
Such Wigner crystals have been observed in 2D Systemﬂ]e ground-state properties of 2D clusters with different in-
such as electrons on the surface of liquid helif@h elec-  terparticle interactiongCoulomb, dipole, logarithmic, and
trons in quantum dotg3], colloidal suspensiongt], and in ~ screened Coulomb, i.e., the Yukawa potentiahich are lat-
confined plasma crystalf5]. When the classical Wigner erally confined in dhard wall potential. Both small and large
crystal forms, the Coulomb interaction potential is muchsystems will be discussed. The excitation spectrum corre-
larger than the thermal energy, which is a necessary requiréponding to the ground-state configuration and the corre-
ment for the system to self-organize into an ordered consponding divergence and rotor of it, which describe the
densed phase. amount of “shearlike” and “compressionlike” nature of the
Recently, such Wigner-like ordering has been investigatednodes, are investigated.
in systems consisting of a finite number of particles. Most of The present paper is organized as follows. In Sec. II, the
such studies focus on systems with an external paraboliiodel system and the numerical approach are described.
confinement, which is similar to the action of a uniform neu-Sec. Il is devoted to the ground-state configuration with
tralizing background of charges. Other type of confinementélifferent interparticle interactions. In Sec. IV, the eigenmode
which have also been considered are those residing from Spectrum for these clusters is discussed, and the shearlike
fixed positive charge. Such a positive charge keeps the repednd compressionlike character of the different modes are
ling charged particles together, and is in fact the classicashown in Sec. V. Our conclusions are given in Sec. VI. The
analog for atomg6,7]. An extreme case of confinement is dependence of the normal mode frequencies on the steepness
the one consisting of hard walls. Interesting reentrant meltin@f the confinement potential is discussed in Appendix A for
behavior was observed for colloidal particles dissolved inthe two-particle system. Appendix B gives an analysis of the
water[8,9] in such a hard wall potential, which is absent in aradial motion of particles situated at the border of the hard
parabolic confined system. The radial particle fluctuationgvall confinement potential.
are responsible for an enhanced locking of adjacent shells
[10]. In fact the short-range interparticle interaction in com-
bination with the hard wall confinement leads to the unusual
reentrant behavior in its orientational order. In Ré¢fi),11] The potential energy of a 2D system Wfcharged par-
the melting of some specific clusters was investigated thedicles in a hard wall confinement potential and interacting
retically, but no systematic study of the grqund state anthough a repulsive i’ potential is given by
normal modes was made. Such a study will be presented
here, which is further motivated by the fact that in a hard
wall confined system the physics is very different, e(t), N e? R"
there is a very inhomogeneous distribution of particles be- E:Zl v+ g > —+|n (1)

1. NUMERICAL APPROACH

!

N
cause many of them are pushed to the edge of the system = |ri_ri
where they create a nonparabolic confinement potential for
with the hard wall potential
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andR the radius of the hard walg the particle charge; the lll. GROUND-STATE CONFIGURATIONS
dielectric constant of the medium the particles are moving in,

and Fi=(x.y;) the position of theith particle with r, Unlike for the parabolic confinement case with Coulomb

interparticle interactions, the particles are not attracted to the

As the above potential energy depends only on two pacenter of the confinement potential but they repel each other
rameters which depend on the experimental sétamely,R such that they move to the edge of the system. In this case,
ande?/¢) and we have to choose also two uritamely, for the previously[11] founq simple polygons are forme;d at the
the length and the enerpjt is possible to scale out all ex- €dge. For a cluster with a small number of particles, one
perimental dependent parameters. For the natural choice §Pncentric shell at the edge will form and the center region
ro=R as unit of length an&,= (e?/¢)/R as unit of energy, Will be empty, while for a large number of particles the cen-

the potential energy in dimensionless form becomes ter region will resemble a triangular lattice, however the shell
structure stays more pronounced than for the parabolic case.

N Table | shows the packing sequences of the ground state
=3 v(r, )+2 1 &) for N=2,3, ... ,50with different interparticle interactions,
=1 =) |- |n including the Coulomb, dipole, and screened Could{iab
x=0.5,2.0,4.0 cases. The configuration is indicated by the
number of particles in the different rings. The energy per
particleE/N is also given. This table is rather exhaustive and
should be compared with a similar one published in Refs.

0 forr<i [11,14 for the parabolic confinement potential.

(4) First, we discuss the case for Coulombic interparticle in-
teraction. From Table I, we can see how shells are filled by
the particles and new shells appear. For sredi{2-11,

Note that this Hamiltonian only depends on the number othe particles are situated at the edge of the wall. When a

with the hard wall potential

V()= o for r=1.

particlesN and not on the radius of the hard wall. critical number of particles at the edge is achieved, a new
In the present paper, we mainly present results for parshell appears. This occurs fof=12 and is, as said above,
ticles interacting through the Coulomb potenti@e., n"  independent of the radius of the confinement potential. From
=1). We also consider other interactions such as; 1/ Ne{12-29, the system has a two-shell structure. One in-
exp(=rij Ap)/rij=exd —(rij /IR)(RINp) I/rij=exp(— «r;; IR)/rj; teresting phenomenon can be observed in such a hard wall

(Ap is the screening length and=R/\p) and—Inrj; forthe  case. When there are two shells, the edge is always the pref-
cases of dipole, screened Coulomb, and logarithmic interpaerable position for the new particles. New particles will be-
ticle interaction, respectivelyr (j=|F;— ;). gin to join into the center shell only if the edge reaches a
The Monte Carlo simulation techniqig2] extended with  critical number of particles. When the inner ring has six par-
a gradient method is used to obtain the ground state configuicles a third ring is created. This occurs fidre {30-5@.
ration. The eigenmode frequencies are obtained from the eNote that this is different from the parabolic confinement
genvalues of the dynamical matii%3] case where a new shell forms when the inner ring is filled
with five particles.
It was shown in Ref{14] that for a system with parabolic
= = , (5) confinement the configurations do not differ very strongly for
@Bl o or g - : -
@i Bile, =" short- or long-range interactions, contrary to what we find
S for the hard wall case. This is nicely illustrated in Table I if
we compare the dipole and Yukawaith different screening
where{ry, ;} is the ground-state configuration. The eigenfre-lengthg with the Coulomb case. Note also that the configu-
quencies in this paper are expressed in the unit ration for N=29 in the case of dipole interaction, namely,
= \/Eol(mroz). (3,9,17), corresponds with the experimentally observed con-
A special situation arises for the outer-shell particles adiguration in Refs[8,9]. For the Yukawa system, the struc-
they can only move along the perimeter, and radial outwardure is strongly dependent on the screening strergffor a
movement of the outer-shell particles is forbidden. Thereforesmall value ofk=0.5 the structure of the system is quite
it is convenient to diagonalize the dynamical matrix ex-similar to the pure Coulomb cadsee the third and sixth
pressed in polar coordinates. The oscillations of the particlesolumns in Table ). When increasings, one can see that
around their equilibrium positions have a component alongnore and more particles can appear in the center region. The
the p direction and one along thedirection. In the hard wall  table also shows that for more short-range interparticle inter-
limit, the particles in the outer-shell can have only one com-actions new shells are formed for lowdvalues. This is not
ponent, namely, along thé direction, and we neglect the surprising because the interparticle interaction is diminished
eigenmodes along the direction, since the corresponding while the size of the system is néh contrast to the para-

9°E

eigenfrequencies are infinite. bolic case where the size of the system becomes smaller with
As an illustration we present in Appendix A the analytical increasingx [15,16)).

results of the two-particle problem for a generalconfine- We investigated in more detail how many particles can be

ment potential. placed at the edge before one of the particles is placed in the
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TABLE I. The ground state foN=2,3 . .. ,50particles confined in a 2D hard wall with Coulomb, dipole,
and screened Coulomb interparticle interactions, respectively. The enegids &nd the shell structures

(N{,N,, ...) of theground-state configuration are shown.

E/N Configuration E/N Configuration Configuratigiukawa)
N (Coulomb (Coulomb (dipole) (dipole) xk=0.5 k=2.0 k=4.0
2 0.25000 2 0.06250 2 2 2 2
3 0.57735 3 0.19245 3 3 3 3
4 0.95711 4 0.41605 4 4 4 4
5 1.37639 5 0.76085 5 5 5 5
6 1.82735 6 1.25495 6 6 6 6
7 2.30477 7 1.92680 7 7 7 1,6
8 2.80487 8 2.56095 1,7 8 1,7 1,7
9 3.32483 9 3.38223 1,8 9 1,8 1,8
10 3.86245 10 4.42647 1,9 10 1,9 1,9
11 4.41597 11 5.63037 29 1,10 1,10 29
12 4.96464 1,11 6.84760 2,10 1,11 2,10 2,10
13 5.52365 1,12 8.14532 3,10 1,12 2,11 3,10
14 6.09624 1,13 9.55674 3,11 1,13 2,12 3,11
15 6.68141 1,14 11.11835 4,11 1,14 3,12 4,11
16 7.27826 1,15 12.73777 4,12 2,14 3,13 4,12
17 7.87157 2,15 14.60145 5,12 2,15 4,13 5,12
18 8.47100 2,16 16.44619 5,13 3,15 4,14 5,13
19 9.07868 3,16 18.56347 1,5,13 3,16 4,15 5,14
20 9.68150 3,17 20.61187 1,6,13 3,17 5,15 1,5,14
21 10.29425 3,18 22.62037 1,6,14 4,17 5,16 1,6,14
22 10.91463 4,18 24.96092 1,6,15 4,18 1,5,16 1,6,15
23 11.53049 4,19 27.26438 1,7,15 4,19 1,5,17 1,7,15
24 12.15533 4,20 29.87944 1,7,16 5,19 1,6,17 1,7,16
25 12.78663 5,20 32.54436 1,8,16 5,20 1,6,18 1,7,17
26 13.41427 5,21 35.27964 2,8,16 5,21 1,7,18 1,8,17
27 14.05013 5,22 38.10941 2,8,17 6,21 1,7,19 2,8,17
28 14.69087 6,22 40.97470 3,8,17 1,6,21 1,7,20 2,8,18
29 15.32924 6,23 43.81985 3,9,17 1,6,22 1,8,20 3,8,18
30 15.96932 1,6,23 46.82763 3,9,18 1,6,23 18,21 3,9,18
31 16.61023 1,6,24 50.03572 4,9,18 1,7,23 2,8,21 3,9,19
32 17.25843 1,6,25 53.20328 4,10,18 1,7,24 2,8,22 3,9,20
33 17.90323 1,7,25 56.45537 4,10,19 1,7,25 3,8,22 4,9,20
34 18.55396 1,7,26 59.96733 4,11,19 1,8,25 3,9,22 4,10,20
35 19.20978 1,8,26 63.51491 5,11,19 1,8,26 3,9,23 4,10,21
36 19.86301 1,8,27 67.00782 5,11,20 2,8,26 3,10,23 411,21
37 20.52278 1,8,28 70.81054 1,5,11,20 2,8,27 3,10,24 5,11,21
38 21.18212 2,8,28 74.53620 1,6,11,20 2,9,27 4,10,24 5,11,22
39 21.84389 2,8,29 78.22570 1,6,12,20 2,9,28 4,10,25 1,5,11,22
40 22.50297 2,9,29 81.89272 1,6,12,21 3,9,28 4,11,25 1,5,11,23
41 23.16711 2,9,30 85.98871 1,6,12,22 3,9,29 4,11,26 1,6,11,23
42 23.82918 3,9,30 90.01315 1,6,13,22 3,10,29 5,11,26 1,6,12,23
43 24.49545 3,9,31 94.05687 1,7,13,22 3,10,30 5,11,27 1,6,12,24
44 25.16090 3,10,31 98.43269 1,7,13,23 4,10,30 5,12,27 1,6,13,24
45 25.82957 3,10,32 102.7506 1,7,14,23 4,10,31 1,5,12,27 1,6,13,25
46 26.49958 4,10,32 107.3208 1,8,14,23 411,31 1,512,28 1,7,13,25
47 27.17037 4,10,33 111.7210 2,8,14,23 4,11,32 1,6,12,28 1,7,13,26
48 27.84116 4,11,33 116.2977 2,8,14,24 5,11,32 1,6,12,29 1,7,14,26
49 28.51431 4,11,34 120.9331 3,8,14,24 5,11,33 1,6,13,29 1,8,14,26
50 29.19165 5,11,34 125.5184 3,8,15,24 5,12,33 1,6,13,30 2,8,14,26
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FIG. 1. The maximum number of particles at the edge of the,

) PaltiHE : and 300 particles. The insets show the configurations and their
hard wall confinement before one particle is situated in the center agqonoi structures

a function of the interaction strength
with the configurations folN=50,100, 150, and 300 are
center, in case of a screened Coulomb interparticle interasshown in Fig. 2 and this shows that for 50, 100 and 150
tion. The energy of the configuration witk particles equi- particles a clear shell structure is present. Nor50 par-
distantly placed on a single ring at the edge is given by ticles[see Fig. 23], there are three shells and the configu-
ration is(5, 11, 34. For N= 100 particle§see Fig. 2b)], one

N-1 N o—2«sinfm(i—j)/N]| particle is situated in the center with four shells around it
Eo= '21 '—E+1 B EE (6)  with the configuratior(1, 7, 14, 22, 5§ and forN=150[see
B | PP Fig. 2(c) with configuration (1,8,15,22,31,73)] one more
N ring is present. Figure (8) shows the configuration foN

=300. Notice that only the outer shells have a well-defined
radius while the inner shells have no clear radius, reflecting
that the inner region has a more triangular-lattice-like struc-
ture which can also be seen from the Voronoi construction in

and the energy oN—1 particles at the edge with 1 in the
center is given by

N-2 N-1 g—2«fsina(i-)/(N-1)]] . ) ,
_ _A\a—K the inset of Fig. &). In the parabolic cas@nd for Coulom-
Eo= > > _ +(N-1)e ~ 1| . . !
=1 j57+1 _m(i—]) bic interaction, a triangular structure starts to appear in the
2/sin N—1 center already for about 100 particlgkl, 19, while for the

(7) hard-wall system a triangular lattice appears in the central
region for N=300. Also the outer-shell structure is more
The maximum value oN for which Eo<E is the maxi- pronounced than for parabolic confinement. Note however
mum number of particles at the edge. This value is shown irthat in our hard wall system many particles are situated at the
Fig. 1 as a function ok. For k>8.2 the sixth particle always edge, for example, for th&l=300 system the outer ring
goes to the center. consists ofNg=116 particles. By excluding these edge par-
Another pronounced difference in the configuration for aticles, the triangular lattice in the center starts to appear from
Yukawa system can be observed. In the parabolic case, ttf800—-Ng=184, which is already closer to but still larger
ground-state configuration changes from a shell-like structhan for the parabolic confinement case.
ture into a hexagonal lattice with increasirg 15,16. For It was shown before that the topological charge in case of
hard wall confinement the radius of the system does no& parabolically confined system is alway$ and that the
change and the configuration stays shell-like, even up tposition of the defects for large systems is in the transition
large k values. region between the outer rings and the central triangular lat-
The case with logarithmic interparticle interaction wastice [19]. The number of defects for the hard wall system is
considered as well. We did not add the result to Table I, sincenuch larger, and are now also situated near the edge, but still
the configuration is always a single shell, which is a consethe total topological charge always equal§.

qguence of Earnshaw’s theorefh7,18 in two dimensions. On each shell, the particles are equally distributed. Unlike
The interaction potential is long range, and all particles areghe parabolic confinement case with Coulomb interaction, for
situated at the edge of the hard wall. hard wall confinement the interparticle spacing in a shell

For large systems the configuration is determined by twalecreases with increasing shell number. Those results are
competing effects, namely, circular symmetry and triangulashown in Fig. 8a). The inset in Fig. 8) shows the distance
structure(Wigner lattice. The radial distributions together between shells foN=50,100,150, and 300 particles. One
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S 0.4 Gonl .
o § oos| I hard wall confinement. The spectral properties of the ground-
2 oot A—a—a I — ] state configurations for parabolic confinement were pre-
-‘é’ \ > Shell number sented in Ref[13]. The excitation of the normal modes of a
c 0161 o —o—o \o\ - 2D Coulomb clusters in laboratory complex plasmas was
E‘ ’\ - °© recently observef20,21]. All the previous theoretical calcu-
ko 012+ L S —. \._.___.\ lations and experimental results are for systems with a para-
C . ) . .
= 008l (b) Dipole ] bohg confmemen}. .
L L L . L Since the particles at the edge are practically frozen at the
2 4 6 8 10 wall, they can only move along the perimeter. A detailed
shell number analysis of the radial motion of the particles situated at the

edge of the hard wall is given in Appendix B. Notice that the
FIG. 3. The interparticle spacing within the shell as a functionnumber of particles at the edge is a considerable part of the
of the shell number foN=50, 100, 150, and 300 particles interact- whole system. There aré\2normal modes for aiN-particle
ing through the(@ Coulomb andb) dipole interaction potential for  system. In the hard wall case, the radial motion of particles at
hard wall confinement. The insets show the distance between shelife edge has a large energy and consequently the number of
as a function of the shell number. relevant modes of the hard wall system N-2Ng, with Ng

can see that the distance between shells always decreadB§ total number of particles at the edge. We plot the excita-
from the inner shell to the outer shell. Both effects togethetion spectrum of the normal modes as a function of the num-
make the density increase from the center to the edge, iRer of particles for hard wall confinement and Coulomb in-
contrast to the parabolic confinement ci&#]. terparticle interaction in Fig. 4. For the parabolic confined
It is interesting to compare the results for our hard wallsystem, there are three eigenfrequencies which are indepen-
system with Coulomb interacting particles with a more short-dent ofN [13]: w=0,y/2, and+/6, which correspond to the
range interaction such as the dipole interparticle potentialrotation of the system as a whole, the center-of-mass mode
Figure 3b) shows the interparticle spacing in the different (CM), and the breathing modéM), respectively. In the
shells for the dipole system. One can see that it does natard wall case only the=0 frequency is still present. For
depend strongly on the shell number. The same is true for thR=2-11, the particles are all situated at the edge, and there
distance between the shells, as shown in the inset of Figs no sense of discussing the CM or BM frequency for hard
3(b). As a result, the particles are more uniformly distributed,y 4| confinement. Starting from> 16, more than one par-
in the case of the short-range dipole interaction than for thgje s situated in the central region. It is then possible to
long-range Coulomb interaction. Th|§ is again ac_:onsquencgssign approximately those two eigenmodes., the CM
of the fact that for more short-range interparticle interactions ‘B mod@ to some of the eigenmodes of the particles in
particles appear in the center at lowévalues. the central region. Examples of the CM-like and breathing-
like modes forN= 35 are shown in the insets of Fig. 4, and
Figs. 6g) and h) show the corresponding CM-like and
In this section, we discuss the excitation spectrum of théreathinglike modes for the central particles fo+ 100, re-
ground-state configuration of the Coulomb system with aspectively. While for the parabolic case, the amplitudes for

IV. THE EIGENMODE SPECTRUM
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FIG. 6. Some eigenvectors for the cluster with- 100 particles.

all particles are equal, now the particles which are closest to
the center have the largest amplitudes. The frequencies cogystem, namely, foN=300. Still the LNF corresponds with
responding with these CM-like and breathinglike modes ofthe rotation of the central particles as a whole and the vortex-
the central particles are marked in Fig. 4 by symbols. Noteantivortex motion appears only for higher frequencies.
that the degeneracy of the CM-like modes is slightly lifted It is also interesting to have a look at the higher excited
and that for some clusters it is possible to find four CM-like modes as they are much more easy to interpret than in the
modes. Comparing Fig.(8) with Fig. 4(c) one can see that parabolic case. Figure 6 shows nine moded\fer100. With
in these cases the direction of the motion of the outer parincreasing frequency, after the rotation of the cluster as a
ticles with respect to the direction of the motion of the cen-whole[Fig. 6(a)] and the rotation of the central particles as a
tral particles is different. whole [Fig. 6(b)], particles with larger amplitudes appear

It was previously found that for small Coulomb systems,close to the center of the system, resulting in many different
the lowest nonzero frequency modeNF) corresponds to types of intershell rotationgFigs. Gc) and &d)]. Higher ex-
intershell rotation, whereas for larger number of particles itcitations may consist of a vortex-antivortex pair, or multiples
corresponds to the excitation of a vortex-antivortex pa#i. of such pairs[Figs. 6e) and &f)]. The highest frequency
This is not the case anymore for the hard wall system. Figurgnode for parabolic confinement was discussed in Refs.
5 shows the LNF up ttN=>50 particles. When there is more [19,21]. In these modes the inner particles have larger am-
than one particle at the center, the LNF mode correspondslitudes than the outer particles. We found the opposite be-
always, also for large systems, with the rotation of all centrahavior in the hard wall case. In Fig(i, one can see the
particles as a whole in the direction opposite to the one fotargest amplitude for the particles at the edge where the near-
the particles at the eddsee insets of Fig. 5 foN=25,26, est particles at the edge move in opposite directions which is
and 39 and Fig. @®) for N=100]. ForN< 12 all particles are typical for the case of an optical mode.
at the edge and the LNF modes are similar to the one shown

for N=11 in the inset of Fig. 5, namely, the two halves of the V. PROPERTIES OF THE NORMAL MODES
wide ring move in opposite direction. The reason why the ) o
LNF for N= 25 [configuration (5,20)] andN= 26 [configu- In previous results for a 2D classical infinite systg2d],

ration (5,21)] differ by two orders of magnitude is similar as two types of waves with dispersion relations~k (lateral
for the parabolic confinement systef3]: for N=25 the sound wavesandw~ \k (longitudinal plasma waveswere
number of partic|es in the outer shell is a mu|tip|e of theobserved. The latter one arises from the Iong-range nature of
number of particles in the inner shell, resulting in a morethe Coulomb interactiof23]. These waves are related to the
stable configuration against intershell rotatide., due to a compressionlike and shearlike modes observed in finite con-
commensurability effegt and N=25 corresponds to magic fined cluster. The compressional and shearlike properties can
number clusters. Most of the other peaks in Fig. 5 can b&e extracted from the divergence and rotor of the velocity
explained in a similar way. field, respectively. In this paper, we will associate a single
As in the system withN=100 particles in a hard wall number to the shearlike and compressionlike character of the
confinement, most particles are situated at the edge, arféifferent modes by calculating the spatial average of the
therefore it may be wrong to consider it already as a largesquare of the divergenc‘@-zf and the vorticity ¥ Xv), of
system. Therefore we also looked at the LNF of a largethe velocity field, following the approach of R¢fL3].
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Thez components of the rotap, (k) =€;- roty(k) and the o(a) ' N=50 all particles ' B(b)l .N:SOIcentraI particles
divergenceyy(k) =divi(k) of the field of eigenvectors of 03} o
modek are 002 * W 5 o o v,
N o ¥ 02 © ° o Y
1 ]
vak)=g 2, .k, (8a oo © e
C‘ o}
1 N ooo-fog O'Ooo....._ 0.0—2%%00000000
— 2 i , , ‘ ‘ , , ,
(k)= N 21 'J’r,i(k)' (8b) 0 10 20 30 0 10 20 30
/o W/

where the values o4 (k) and , (k) for theith particle

are given by 000zl

1 < S
Yai(K)= 57 2 (Fi= ) LA = An(K) [ Fi= P,

0.001| o3
(9a)
1 M
YriK =17 D= P X[AK) = An(K) 1| Fy = T2 0.000} ‘
mt 0 50 100 150 200 0 50 100150 200
(gb) wal (D/m'

Here,m andM denote the index and number of neighboring  FIG. 7. They,(k) and ¢, (k) as a function of the excitation
particles of particlei, f, is the positional coordinate of a frequency forN=50 (a,b and 300(c,d) particles. In(a) and(c) all
neighboring particle, anf;(k) is the eigenvector of particle particles were included when calculatig(k) and,(k), while in
i for modek. We will show two kinds of results in which we (b) and(d) only the central particles were taken into account in the
make the summation in Eqé3a and (8b): (i) over all par- Summation.
ticles and(ii) only over the central particles. So we can
clearly see which particles contribute to the compressionlikdational type of excitations, which are intershell rotation or
and shearlike character of the motion. In the latter case, if w&ortex-antivortex-like motions of the particles which lead to
sum in Eqs{(8a) and(8b) only over the central particles, we practically no density fluctuations. The divergengg(k)
sum over all the neighbors in Eqéa) and (9b) (as was corresponds to compressionlike motion, and in the spectrum
recently done also in Ref21]), in contrast to Ref[13]  #4(k) can have a maximum at higher frequencies. In the
where only the nearest neighbor particle was used. This turrfsard wall confinement case, one can see that for small sys-
out to be the correct approach to get information about théems with, e.g.N=50 as well as for the large system with
compressional and shearlike properties of the modes of thd=300, 4(k) and ¢, (k) have rather different values in
central particles because the position and direction of thelifferent frequency regions and furthermore two clear sepa-
nearest neighbor are strongly influenced by small variationsate maxima appear at the lower half of excitation spectrum.
of the local environment of particle However, we noticed In the parabolic case, this clear separation was only present
that if we also include the outer particles, it is important tofor large systems.
sum in Eqs(9a and(9b) over all particles. Summation over
only the neighbors results in a large divergence for the mo-
tion of the particles at the edge, which is not the correct VI CONCLUSION
result because the motion of these particles is always tangent The configurational and spectral properties of two-
to the hard wall. dimensional clusters of charged classical particles in a hard
In Fig. 7 we plotyy(k) and ¢, (k) as a function of the wall potential were investigated through the Monte Carlo
excitation frequency foN=50 and 300 particlegfor the  simulation technique. A table with the packing sequences up
hard wall system with Coulomb interparticle potential to 50 particles was constructed for different interparticle in-
Similar results were obtained for a dipole interaction. Theteraction potentials. It was shown that more particles can sit
first column shows results when we sum over all particlesat the edge in comparison with the parabolic case, and that
the second column is when we include only the central oneghe shell structure is much more pronounced, also for large
The large values fog, (k) for all high frequencies in the first clusters. In the case of long-range Coulomb interaction be-
column figures indicate the shearlike character of the motiotween the particles, the density of particles is increased to-
of the outer particles. The figures in the second column showvards the edge, while the particles are more uniformly dis-
that bothyy(k) and ¢, (k) are almost zero in the high exci- tributed for a short-range interaction potential as e.g., for the
tation frequency region. This results from the fact that wedipole interaction.
look only at the motion of the central particles and at high Center-of-mass and breathing modes can be identified ap-
frequencies only the outer particles move. In the paraboliproximately for the central particles, while the lowest non-
case, the lower eigenfrequency spectrum corresponds to raero frequency corresponds with a rotation of the central
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particles as a whol@n the opposite direction to the particles 6 - . - . - T : T
at the edgge Larger frequencies correspond with many dif-
ferent types of intershell rotations, followed by vortex-
antivortex excitations. The highest frequencies involve large __
amplitudes for angular movement of particles at the edge, as'§
they are almost frozen in the radial direction. =
Also the shearlike and compressionlike character of the =,
modes was investigated. A clear distinction can be made be- 2
tween low-frequency shearlike modes and high- frequency o
compressionlike modes. The highest frequency modes areU
again shearlike modes, corresponding with the motion of the =
particles at the edge.
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APPENDIX A: THE EIGENFREQUENCIES OF TWO
PARTICLES

In this part, we analytically calculate the eigenfrequencies
of two particles in a general confinement potentigr)
=r". The potential energy of a 2D system Nf charged
particles in a general® confinement potential and interacting

through a " potential is given by

Eigenfrequency (v/')

sz(ri noe2 N R A 0 20 0 e 80 100
mw = T —,’
IR eR = |Fi—r|"

N -

FIG. 8. The eigenfrequencies for two particles interacting
wherem is the mass of the particles ang, the radial con- through anr” confinement potential fofa) a Coulomb interparticle
finement frequencyn— < corresponds to the hard wall limit. potential andb) a dipole interaction potential. The insets show the
The potential energy can be written in dimensionless fornmotion of the particles and the given frequencies arenferce.
using the following units for length and energy:

nl
nx 2n’+l
EO:(62/8)n/(n+n’)an’/(n+n’)R(2n’—n)/(n+n’) (A3) (A5)

rO:(ezl(sa))ll(n+n’)R(n’+n73)/(n+n’), (AZ) X,=

1/(n+n’")
) , Xo=—Xg, Y1=Y2=0.

with @=mw3/2. In the limit of a hard wall confinement, the Forn—o we findx,=1. The eigenfrequencies are obtained
length unit becomeso—>R which is the radius of the hard by diagonalizing the dynamical matrix, resulting in

wall, and the energy unit becomé&g— (e?/¢)/R. In the

case of parabolic confinement, i.eas=2, and Coulomb in- w§=0, (AB)
teraction, i.e.n’ =1, we recover the previously defined units
[11]: ro=(e%&)3a~® and Eo=(€%/£)??a*3. The dimen-

/ (n=2)/(n+n") /
) . . o n n
sionless expression for the potential energy is given by w%: n / L (A7)
nx 2n +1 2n +1
1
H= 2 ri”+ — (A4)
=1 |7y — 15" " (n=2)/(n+n’) "
. . wz=nN(N—1)| ———7 —N—,
If we choose thex axis through both particles, the ground- nx2n 1 2n 1
state configuration is given by (A8)
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2 N

) nn'+n'? n’ (A9) Agen® > (—R—Xx) c (B2
w = ’ ’ Hn ’ 1 X:n - = i)
R G T e SR [(~R-x)*+y}
2n +1
n><2n/+l
with solution

where “—” means then—c (i.e., hard wall limit. Notice
that in the latter limitw;= w, diverge. The four eigenmode )
frequencies for Coulomb and dipole interparticle interactions Ax= S+t (B3)

are illustrated in Figs. @) and &b).

This expression reminds us of the motion of a bouncing ball
in the field of gravity. Its trajectory in time consists of equal
pieces of interconnected parabolas. The motion starts at
In this appendix we illustrate the motion of a particle at =0 at the hard wall. The particle moves in the positive di-
the edge of the hard wall boundary by solving the equatiorfection and reaches its maximal distance from the wall at
of motion. We start with the total Hamiltonian with the same AXma=—vg/(2C) after ty,,=—vo/C. Then the particle
potential energy term as used in our calculations, naniely, moves back and dt=2t,,,, it reaches again the wall atx
particles interacting through ar/ potential and confined in =0. Now the particle is reflected elastically by the wall, it
the plane by the hard wall potentié?). In the expansion of changes its momentum from, to —v,, and repeats its pe-
the Hamiltonian till lowest order in the small displacementsfiodical motion. The period of this motion is given by
of the particles around the equilibrium ground-state positions

APPENDIX B: PERIODIC MOTION OF PARTICLE
AT THE EDGE

the coordinates of the various particles are separable. There- T=2tna= 2V~ 2AXmax/C, (B4)
fore it is justified to consider only the motion of a single

particle. For a particle at the edge the contribution to thg,nich corresponds to a frequency

expanded Hamiltonian is of first order for a small displace-

ment in the radial direction, and of second order for a small

angular displacement. Therefore, we look only at the radial _ 2_77_ ™ (B5)
motion. Let us assume that the ground-state coordinates of R V= 2%zl C

particle 1 are given by {R,0) and we introduce a small
perturbation in the radial direction for the first partiole-

—R+AX. To the lowest approximation the Hamiltonian be- Consequently, we have a periodic motion whose frequency

depends on the amplitude of the oscillatory motion like in

comes the case of an anharmonic oscillator. But the difference is
(AX)2 2 N AX(—=R=x;) that_there is no linear _regime_, which is the reason that such a
H=m —-n'— y motion was not considered in Sec. IV. Notice that the fre-
2 e =2 [(—R—x)%+ yiz](” T2z quency grows to infinity when the amplitude of the excita-
SN-1 N tion goes to zero.
" e D 1 (B1) Thus in conclusion, due to the hard wall confinement po-
e =15+ [(Xi_xj)2+(yi_yj)2]n’/2' tential, the particles at the edge cannot perform a harmonic

motion in the radial direction. But nevertheless, these par-

The equation of motion for the small displacemant of the
first particle is easily shown to be

ticles can perform a periodic bouncing motion against the
wall which is purely anharmonic in character.
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