toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rivas-Murias, B.; Testa-Anta, M.; Skorikov, A.S.; Comesana-Hermo, M.; Bals, S.; Salgueirino, V. pdf  url
doi  openurl
  Title Interfaceless exchange bias in CoFe₂O₄ nanocrystals Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue (down) 5 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolu-tionizes the established concept of exchange bias phenomenology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940892000001 Publication Date 2023-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 4 Open Access OpenAccess  
  Notes M.T.-A. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci?n under grant FJC2021- 046680-I. S.B. acknowledges funding from the European Research Council under the European Union?s Horizon 2020 research and innovation program (ERC Consolidator Grant N o 815128 REALNANO) . V.S. acknowledges the financial support from the Spanish Ministerio de Ciencia e Innovaci?n under project PID2020-119242-I00 and from the European Union under project H2020-MSCA-RISE-2019 PEPSA-MATE (project number 872233) . Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number UA @ admin @ c:irua:195186 Serial 7315  
Permanent link to this record
 

 
Author Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E. pdf  url
doi  openurl
  Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
  Year 2015 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue (down) 49 Pages 2358-2365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000349806400047 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330  
  Call Number c:irua:127695 Serial 307  
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; url  doi
openurl 
  Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue (down) 49 Pages 25650-25657  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000338434500025 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 3 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ lucian @ c:irua:125382 Serial 3027  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Montes-Garcia, V.; Rodal-Cedeira, S.; Winckelmans, N.; Perez-Juste, I.; Wu, H.; Bals, S.; Perez-Juste, J.; Pastoriza-Santos, I. url  doi
openurl 
  Title Highly porous palladium nanodendrites : wet-chemical synthesis, electron tomography and catalytic activity Type A1 Journal article
  Year 2019 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 48 Issue (down) 48 Pages 3758-3767  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A simple procedure to obtain highly porous hydrophilic palladium nanodendrites in one-step is described. The synthetic strategy is based on the thermal reduction of a Pd precursor in the presence of a positively charged polyelectrolyte such as polyethylenimine (PEI). Advanced electron microscopy techniques combined with X-ray diffraction (XRD), thermogravimetry and BET analysis demonstrate the polycrystalline nature of the nanodendrites as well as their high porosity and active surface area, facilitating a better understanding of their unique morphology. Besides, catalytic studies performed using Raman scattering and UV-Vis spectroscopies revealed that the nanodendrites exhibit a superior performance as recyclable catalysts towards hydrogenation reaction compared to other noble metal nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461088700027 Publication Date 2019-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 23 Open Access OpenAccess  
  Notes ; This work was supported by the Ministerio de Economia y Competitividad (MINECO, Spain) under the Grant MAT2016-77809-R, Xunta de Galicia (GRC ED431C 2016-048 and Centro Singular de Investigacion de Galicia (ED431G/02)) and Fundacion Ramon Areces (SERSforSafety). S. M. acknowledges funding from the General Secretariat for Research and Technology in Greece (Project PE4 (1546)). S. B. and N. W. acknowledge financial support by the European Research Council (ERC Starting Grant #335078-COLOURATOMS). We thank the EPSRC CNIE Research Facility (EPSRC Award, EP/K038656/1) at the University College London for the collection of the BET data. Authors thank J. Millos for the XRD measurements. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158530 Serial 5251  
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V. pdf  url
doi  openurl
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 127 Issue (down) 48 Pages 23400-23411  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116862000001 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:202124 Serial 8985  
Permanent link to this record
 

 
Author Altantzis, T.; Wang, D.; Kadu, A.; van Blaaderen, A.; Bals, S. url  doi
openurl 
  Title Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue (down) 47 Pages 26240-26246  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract 3D characterization of assemblies of nanoparticles is of great importance to determine their structure-property connection. Such investigations become increasingly more challenging when the assemblies become larger and more compact. In this paper, we propose an optimized approach for electron tomography to minimize artefacts related to beam broadening in High Angle Annular Dark-Field Scanning Transmission Electron Microscopy mode. These artefacts are typically present at one side of the reconstructed 3D data set for thick nanoparticle assemblies. To overcome this problem, we propose a procedure in which two tomographic tilt series of the same sample are acquired. After acquiring the first series, the sample is flipped over 180o, and a second tilt series is acquired. By merging the two reconstructions, blurring in the reconstructed volume is minimized. Next, this approach is combined with an advanced three-dimensional reconstruction algorithm yielding quantitative structural information. Here, the approach is applied to a thick and compact assembly of spherical Au nanoparticles, but the methodology can we used to investigate a broad range of samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752810100031 Publication Date 2021-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grant No. 815128−REALNANO to S.B.). T.A. acknowledges the University of Antwerp Research fund (BOF). D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom).; sygmaSB Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:185224 Serial 6904  
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue (down) 45 Pages 19519-19531  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883021700001 Publication Date 2022-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access  
  Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:192104 Serial 7311  
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Altantzis, T.; Mertens, M.; Bals, S.; Cool, P.; Van Doorslaer, S. pdf  url
doi  openurl
  Title Direct-synthesis method towards copper-containing periodic mesoporous organosilicas : detailed investigation of the copper distribution in the material Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 44 Issue (down) 44 Pages 9970-9979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Three-dimensional cubic Fm (3) over barm mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous- wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu2+ species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu2+ species. At higher copper loading amount, Cu2+ clusters are observed in the materials, but the distribution of the Cu2+ species is still much better in the Cu-PMO materials prepared through the direct-synthesis method than in a Cu-containing PMO material prepared through an impregnation method. Moreover, the evolution of the copper incorporation during the PMO synthesis has been followed by EPR. The results show that the immobilization of the Cu2+ ion/complex and the formation of the PMO materials are taking place simultaneously. The copper ions are found to be situated on the inner surface of the mesopores of the materials and are accessible, which will be beneficial for the catalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000355000700028 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 11 Open Access OpenAccess  
  Notes Goa-Bof; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.029; 2015 IF: 4.197  
  Call Number c:irua:126422 Serial 725  
Permanent link to this record
 

 
Author Sanchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Kinetic regulation of the synthesis of pentatwinned gold nanorods below room temperature Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue (down) 43 Pages 23937-23944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 degrees C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures. We report a systematic study of the synthesis of gold nanorods from pentatwinned seeds using hexadecyltrimethylammonium chloride (CTAC) as the principal surfactant and a low concentration of bromide as shape-directing agent. Under these conditions, the synthesis can be performed at temperatures as low as 8 degrees C, and the corresponding kinetic effects can be studied, resulting in temperature-controlled aspect ratio tunability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716453300038 Publication Date 2021-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes realnano; sygmaSB; This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI). Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184104 Serial 6868  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue (down) 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.; pdf  doi
openurl 
  Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
  Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 23 Issue (down) 42 Pages 5240-5248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000327480900003 Publication Date 2013-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 87 Open Access  
  Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439  
  Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615  
Permanent link to this record
 

 
Author Bertels, E.; Bruyninckx, K.; Kurttepeli; Smet, M.; Bals, S.; Goderis, B. pdf  url
doi  openurl
  Title Highly Efficient Hyperbranched CNT Surfactants: Influence of Molar Mass and Functionalization Type A1 Journal article
  Year 2014 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 30 Issue (down) 41 Pages 12200-12209  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract End-group-functionalized hyperbranched polymers were synthesized to act as a carbon nanotube (CNT) surfactant in aqueous solutions. Variation of the percentage of triphenylmethyl (trityl) functionalization and of the molar mass of the hyperbranched polyglycerol (PG) core resulted in the highest measured surfactant efficiency for a 5000 g/mol PG with 5.6% of the available hydroxyl end-groups replaced by trityl functions, as shown by UV-vis measurements. Semiempirical model calculations suggest an even higher efficiency for PG5000 with 2.5% functionalization and maximal molecule specific efficiency in general at low degrees of functionalization. Addition of trityl groups increases the surfactant-nanotube interactions in comparison to unfunctionalized PG because of pi-pi stacking interactions. However, at higher functionalization degrees mutual interactions between trityl groups come into play, decreasing the surfactant efficiency, while lack of water solubility becomes an issue at very high functionalization degrees. Low molar mass surfactants are less efficient compared to higher molar mass species most likely because the higher bulkiness of the latter allows for a better CNT separation and stabilization. The most efficient surfactant studied allowed dispersing 2.85 mg of CNT in 20 mL with as little as 1 mg of surfactant. These dispersions, remaining stable for at least 2 months, were mainly composed of individual CNTs as revealed by electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000343638800013 Publication Date 2014-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 15 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the SIM NanoForce programme for their financial support and thank the group of Prof. Thierry Verbiest, especially Maarten Bloemen, for the use of their UV−vis equipment. Bart Goderis and Mario Smet thank KU Leuven for financial support through a GOA project. Mert Kurttepeli and Sara Bals acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 3.833; 2014 IF: 4.457  
  Call Number UA @ lucian @ c:irua:121140 Serial 1471  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue (down) 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 19 Open Access OpenAccess  
  Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author Callini, E.; Aguey-Zinsou, K.F.; Ahuja, R.; Ares, J.R.; Bals, S.; Biliškov, N.; Chakraborty, S.; Charalambopoulou, G.; Chaudhary, A.L.; Cuevas, F.; Dam, B.; de Jongh, P.; Dornheim, M.; Filinchuk, Y.; Grbović Novaković, J.; Hirscher, M.; Jensen, T.R.; Jensen, P.B.; Novaković, N.; Lai, Q.; Leardini, F.; Gattia, D.M.; Pasquini, L.; Steriotis, T.; Turner, S.; Vegge, T.; Züttel, A.; Montone, A. doi  openurl
  Title Nanostructured materials for solid-state hydrogen storage : a review of the achievement of COST Action MP1103 Type A1 Journal article
  Year 2016 Publication International journal of hydrogen energy T2 – E-MRS Fall Meeting / Symposium C on Hydrogen Storage in Solids -, Materials, Systems and Aplication Trends, SEP 15-18, 2015, Warsaw, POLAND Abbreviated Journal Int J Hydrogen Energ  
  Volume 41 Issue (down) 41 Pages 14404-14428  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor  
  Language Wos 000381950800051 Publication Date 2016-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited 89 Open Access Not_Open_Access  
  Notes All the authors greatly thank the COST Action MP1103 for financial support. Approved Most recent IF: 3.582  
  Call Number UA @ lucian @ c:irua:135723 Serial 4307  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
  Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 45 Issue (down) 40 Pages 6697-6700  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000241474500022 Publication Date 2006-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 62 Open Access  
  Notes Approved Most recent IF: 11.994; 2006 IF: 10.232  
  Call Number UA @ lucian @ c:irua:61689 Serial 589  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue (down) 40 Pages 10600-10610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342761500006 Publication Date 2014-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:121093 Serial 3646  
Permanent link to this record
 

 
Author Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A. pdf  url
doi  openurl
  Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
  Year 2016 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 40 Issue (down) 40 Pages 4319-4324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375586400038 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269  
  Call Number c:irua:133671 Serial 4027  
Permanent link to this record
 

 
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P. pdf  doi
openurl 
  Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue (down) 40 Pages 2004274-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559913300001 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 11 Open Access Not_Open_Access  
  Notes ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171145 Serial 6551  
Permanent link to this record
 

 
Author Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.; pdf  doi
openurl 
  Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue (down) 4 Pages 701-707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329069900015 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access  
  Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:113734 Serial 1489  
Permanent link to this record
 

 
Author Rehor, I.; Lee, K.L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N.F.; Cigler, P. pdf  url
doi  openurl
  Title Plasmonic nanodiamonds : targeted coreshell type nanoparticles for cancer cell thermoablation Type A1 Journal article
  Year 2015 Publication Advanced healthcare materials Abbreviated Journal Adv Healthc Mater  
  Volume 4 Issue (down) 4 Pages 460-468  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, coreshell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349961600014 Publication Date 2015-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2192-2640; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.11 Times cited 30 Open Access OpenAccess  
  Notes 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 5.11; 2015 IF: 5.797  
  Call Number c:irua:125375 Serial 2647  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue (down) 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
  Year 2011 Publication Small Abbreviated Journal Small  
  Volume 7 Issue (down) 4 Pages 475-483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000288080400008 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 131 Open Access  
  Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349  
  Call Number UA @ lucian @ c:irua:87908 Serial 3914  
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P. url  doi
openurl 
  Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
  Year 2017 Publication Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front  
  Volume 4 Issue (down) 4 Pages 1561-1573  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher RSC Publishing Place of Publication London Editor  
  Language Wos 000406374800013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4129 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.955 Times cited 24 Open Access OpenAccess  
  Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955  
  Call Number UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S. pdf  url
doi  openurl
  Title Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting Type A1 Journal article
  Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 4 Issue (down) 4 Pages 1700161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoheterostructures based on metal oxide semiconductors have emerged

as promising materials for the conversion of sunlight into chemical energy.

In the present study, ZnO-based nanocomposites have been developed by

a hybrid vapor phase route, consisting in the chemical vapor deposition

of ZnO systems on fluorine-doped tin oxide substrates, followed by the

functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The

target systems are subjected to thermal treatment in air both prior and after

sputtering, and their properties, including structure, chemical composition,

morphology, and optical absorption, are investigated by a variety of characterization

methods. The obtained results evidence the formation of highly

porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3

or WO3 overlayer. Photocurrent density measurements for solar-triggered

water splitting reveal in both cases a performance improvement with respect

to bare zinc oxide, that is mainly traced back to an enhanced separation of

photogenerated charge carriers thanks to the intimate contact between the

two oxides. This achievement can be regarded as a valuable result in view of

future optimization of similar nanoheterostructured photoanodes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411525700007 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access OpenAccess  
  Notes The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.279  
  Call Number EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 Serial 4731  
Permanent link to this record
 

 
Author Daems, N.; De Mot, B.; Choukroun, D.; Van Daele, K.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T. url  doi
openurl 
  Title Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzer Type A1 Journal article
  Year 2019 Publication Sustainable energy & fuels Abbreviated Journal  
  Volume 4 Issue (down) 4 Pages 1296-1311  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nickel-containing N-doped carbons were synthesized for the electrochemical reduction of CO2 to CO, which is a promising approach to reduce the atmospheric CO2 levels and its negative impact on the environment. Unfortunately, poor performance (activity, selectivity and/or stability) is still a major hurdle for the economical implementation of this type of materials. The electrocatalysts were prepared through an easily up-scalable and easily tunable method based on the pyrolysis of Ni-containing N-doped carbons. Ni–N–AC–B1 synthesized with a high relative amount of nitrogen and nickel with respect to carbon, was identified as the most promising candidate for this reaction based on its partial CO current density (4.2 mA cm−2), its overpotential (0.57 V) and its faradaic efficiency to CO (>99%). This results in unprecedented values for the current density per g active sites (690 A g−1 active sites). Combined with its decent stability and its high performance in an actual electrolyzer setup, this makes it a promising candidate for the electrochemical reduction of CO2 to CO on a larger scale. Finally, the evaluation of this kind of material in a flow-cell setup has been limited and to the best of our knowledge never included an evaluation of several crucial parameters (e.g. electrolyte type, anode composition and membrane type) and is an essential investigation in the move towards up-scaling and ultimately industrial application of this technique. This study resulted in an optimal cell configuration, consisting of Pt as an anode, Fumatech® as the membrane and 1 M KHCO3 and 2 M KOH as catholyte and anolyte, respectively. In conclusion, this research offers a unique combination of electrocatalyst development and reactor optimization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518690900030 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access OpenAccess  
  Notes ; The authors acknowledge sponsoring from the research foundation of Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). J. Hereijgers was supported through a postdoctoral fellowship (28761) of the Research Foundation Flanders (FWO). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-.nanced by the European Fund for Regional Development in the frame of subsidiary contract nr 2S03-019. This work was further performed in the framework of the Catalisti cluster SBO project CO2PERATE (“All renewable CCU based on formic acid integrated in an industrial microgrid”), with the.nancial support of VLAIO (Flemish Agency for Innovation and Entrepreneurship). This project.nally received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). We thank Karen Leyssens for helping with the N<INF>2</INF> physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. ; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165482 Serial 6311  
Permanent link to this record
 

 
Author Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications Type A1 Journal article
  Year 2020 Publication ACS applied nano materials Abbreviated Journal  
  Volume 3 Issue (down) 4 Pages 3859-3867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529206200076 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 22 Open Access OpenAccess  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; Approved Most recent IF: 5.9; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169563 Serial 6482  
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B. pdf  url
doi  openurl
  Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
  Year 2024 Publication APL Materials Abbreviated Journal  
  Volume 12 Issue (down) 4 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001202661800003 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335  
  Call Number EMAT @ emat @c:irua:205569 Serial 9120  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Baert, K.; Abrahami, S.; Claes, N.; de Oliveira, T.M.; Terryn, H.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Corrosion protection of Cu by atomic layer deposition Type A1 Journal article
  Year 2019 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 37 Issue (down) 37 Pages 060902  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor phase technique that is able to deposit uniform, conformal thin films with an excellent thickness control at the atomic scale. 18 nm thick Al2O3 and TiO2 coatings were deposited conformaly and pinhole-free onto micrometer-sized Cu powder, using trimethylaluminum and tetrakis(dimethylamido)titanium(IV), respectively, as a precursor and de-ionized water as a reactant. The capability of the ALD coating to protect the Cu powder against corrosion was investigated. Therefore, the stability of the coatings was studied in solutions with different pH in the range of 0–14, and in situ raman spectroscopy was used to detect the emergence of corrosion products of Cu as an indication that the protective coating starts to fail. Both ALD coatings provide good protection at standard pH values in the range of 5–7. In general, the TiO2 coating shows a better barrier protection against corrosion than the Al2O3 coating. However, for the most extreme pH conditions, pH 0 and pH 14, the TiO2 coating starts also to degrade.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517925800003 Publication Date 2019-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 7 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (No. GOA 01G01513). J.D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. Approved Most recent IF: 1.374  
  Call Number EMAT @ emat @c:irua:162640 Serial 5361  
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
  Year 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char  
  Volume 37 Issue (down) 37 Pages 2000073  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536357100001 Publication Date 2020-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 10 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474  
  Call Number EMAT @ emat @c:irua:169704 Serial 6371  
Permanent link to this record
 

 
Author González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D.M.; Lobato, I.; Noya, E.G.; Guerrero-Martínez, A.; Taboada, J.M.; Obelleiro, F.; MacDowell, L.G.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Micelle-directed chiral seeded growth on anisotropic gold nanocrystals Type A1 Journal article
  Year 2020 Publication Science Abbreviated Journal Science  
  Volume 368 Issue (down) 368 Pages 1472-1477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000545264600040 Publication Date 2020-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 187 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges funding from the European Research Council (ERC AdG No. 787510). G.G.-R. and J.M. thanks the Spanish MICIU for FPI (BES-2014-068972) and Juan de la Cierva-fellowships (FJCI-2015-25080). S.B., L.M.L.-M., V.K, and A.P.- T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO). J.M.T and F.O acknowledge financial support from the Spanish MICIU (Grants TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), as well as from the ERDF and the Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). AG-M acknowledges financial support from the Spanish MICIU (Grant RTI2018-095844-BI00), EGN and LGM acknowledge funds from the Spanish MICIU (Grant No. FIS2017- 89361-C3-2-P), as well as the use of the Mare-Nostrum supercomputer and the technical support provided by Barcelona Supercomputing Center from the Spanish Network of Supercomputing (Grants QCM-2018-3-0039 and QCM-2019-1-0038). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State 13 Research Agency – Grant No. MDM-2017-0720.; sygma Approved Most recent IF: 56.9; 2020 IF: 37.205  
  Call Number EMAT @ emat @c:irua:170137 Serial 6391  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: