|
Record |
Links |
|
Author |
Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Altantzis, T.; Sada, C.; Kaunisto, K.; Ruoko, T.-P.; Bals, S. |
|
|
Title |
Vapor Phase Fabrication of Nanoheterostructures Based on ZnO for Photoelectrochemical Water Splitting |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Advanced Materials Interfaces |
Abbreviated Journal |
Adv Mater Interfaces |
|
|
Volume |
4 |
Issue |
4 |
Pages |
1700161 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Nanoheterostructures based on metal oxide semiconductors have emerged
as promising materials for the conversion of sunlight into chemical energy.
In the present study, ZnO-based nanocomposites have been developed by
a hybrid vapor phase route, consisting in the chemical vapor deposition
of ZnO systems on fluorine-doped tin oxide substrates, followed by the
functionalization with Fe2O3 or WO3 via radio frequency-sputtering. The
target systems are subjected to thermal treatment in air both prior and after
sputtering, and their properties, including structure, chemical composition,
morphology, and optical absorption, are investigated by a variety of characterization
methods. The obtained results evidence the formation of highly
porous ZnO nanocrystal arrays, conformally covered by an ultrathin Fe2O3
or WO3 overlayer. Photocurrent density measurements for solar-triggered
water splitting reveal in both cases a performance improvement with respect
to bare zinc oxide, that is mainly traced back to an enhanced separation of
photogenerated charge carriers thanks to the intimate contact between the
two oxides. This achievement can be regarded as a valuable result in view of
future optimization of similar nanoheterostructured photoanodes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000411525700007 |
Publication Date |
2017-05-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2196-7350 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.279 |
Times cited |
30 |
Open Access |
OpenAccess |
|
|
Notes |
The authors kindly acknowledge the financial support under Padova University ex-60% 2013–2016, P-DiSC #SENSATIONAL BIRD2016- UNIPD projects and the post-doc fellowship ACTION. S.B. acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078) and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. Many thanks are also due to Dr. Rosa Calabrese (Department of Chemistry, Padova University, Italy) for experimental assistance. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; |
Approved |
Most recent IF: 4.279 |
|
|
Call Number |
EMAT @ emat @c:irua:146104UA @ admin @ c:irua:146104 |
Serial |
4731 |
|
Permanent link to this record |