|
Record |
Links |
|
Author |
Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B. |
|
|
Title |
Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
APL materials |
Abbreviated Journal |
|
|
|
Volume |
12 |
Issue |
4 |
Pages |
|
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001202 |
Publication Date |
2024-04-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2166-532X |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles; WoS full record |
|
|
Impact Factor |
6.1 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. |
Approved |
Most recent IF: 6.1; 2024 IF: 4.335 |
|
|
Call Number |
EMAT @ emat @c:irua:205569 |
Serial |
9120 |
|
Permanent link to this record |