|
Record |
Links |
|
Author |
Mourdikoudis, S.; Montes-Garcia, V.; Rodal-Cedeira, S.; Winckelmans, N.; Perez-Juste, I.; Wu, H.; Bals, S.; Perez-Juste, J.; Pastoriza-Santos, I. |
|
|
Title |
Highly porous palladium nanodendrites : wet-chemical synthesis, electron tomography and catalytic activity |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Journal of the Chemical Society : Dalton transactions |
Abbreviated Journal |
|
|
|
Volume |
48 |
Issue |
48 |
Pages |
3758-3767 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A simple procedure to obtain highly porous hydrophilic palladium nanodendrites in one-step is described. The synthetic strategy is based on the thermal reduction of a Pd precursor in the presence of a positively charged polyelectrolyte such as polyethylenimine (PEI). Advanced electron microscopy techniques combined with X-ray diffraction (XRD), thermogravimetry and BET analysis demonstrate the polycrystalline nature of the nanodendrites as well as their high porosity and active surface area, facilitating a better understanding of their unique morphology. Besides, catalytic studies performed using Raman scattering and UV-Vis spectroscopies revealed that the nanodendrites exhibit a superior performance as recyclable catalysts towards hydrogenation reaction compared to other noble metal nanoparticles. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000461088700027 |
Publication Date |
2019-02-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0300-9246; 1477-9226; 1472-7773 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
23 |
Open Access |
OpenAccess |
|
|
Notes |
; This work was supported by the Ministerio de Economia y Competitividad (MINECO, Spain) under the Grant MAT2016-77809-R, Xunta de Galicia (GRC ED431C 2016-048 and Centro Singular de Investigacion de Galicia (ED431G/02)) and Fundacion Ramon Areces (SERSforSafety). S. M. acknowledges funding from the General Secretariat for Research and Technology in Greece (Project PE4 (1546)). S. B. and N. W. acknowledge financial support by the European Research Council (ERC Starting Grant #335078-COLOURATOMS). We thank the EPSRC CNIE Research Facility (EPSRC Award, EP/K038656/1) at the University College London for the collection of the BET data. Authors thank J. Millos for the XRD measurements. ; |
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:158530 |
Serial |
5251 |
|
Permanent link to this record |