|
Record |
Links |
|
Author |
Mulder, J.T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A.J. |
|
|
Title |
Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
ACS applied nano materials |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
4 |
Pages |
3859-3867 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Indium phosphide quantum dots (QDs) have drawn attention as alternatives to cadmium- and lead-based QDs that are currently used as phosphors in lamps and displays. The main drawbacks of InP QDs are, in general, a lower photoluminescence quantum yield (PLQY), a decreased color purity, and poor chemical stability. In this research, we attempted to increase the PLQY and stability of indium phosphide QDs by developing lattice matched InP/MgSe core-shell nanoheterostructures. The choice of MgSe comes from the fact that, in theory, it has a near-perfect lattice match with InP, provided MgSe is grown in the zinc blende crystal structure, which can be achieved by alloying with zinc. To retain lattice matching, we used Zn in both the core and shell and we fabricated InZnP/ZnxMg1-xSe core/shell QDs. To identify the most suitable conditions for the shell growth, we first developed a synthesis route to ZnxMg1-xSe nanocrystals (NCs) wherein Mg is effectively incorporated. Our optimized procedure was employed for the successful growth of ZnxMg1-xSe shells around In(Zn)P QDs. The corresponding core/ shell systems exhibit PLQYs higher than those of the starting In(Zn)P QDs and, more importantly, a higher color purity upon increasing the Mg content. The results are discussed in the context of a reduced density of interface states upon using better lattice matched ZnxMg1-xSe shells. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000529206200076 |
Publication Date |
2020-03-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2574-0970 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.9 |
Times cited |
22 |
Open Access |
OpenAccess |
|
|
Notes |
; This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 766900 (testing the large-scale limit of quantum mechanics). A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO) and which is partly funded by Ministry of Economic Affairs. The authors thank Wiel Evers for performing the TEM imaging and the EDX analysis. The authors also thank Lea Pasquale and Mirko Prato for their help with performing and analyzing the XPS measurements and Filippo Drago for the ICP measurements. ; |
Approved |
Most recent IF: 5.9; 2020 IF: NA |
|
|
Call Number |
UA @ admin @ c:irua:169563 |
Serial |
6482 |
|
Permanent link to this record |