|
Record |
Links |
|
Author |
dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. |
|
|
Title |
Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
The journal of physical chemistry: C : nanomaterials and interfaces |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
126 |
Issue |
45 |
Pages |
19519-19531 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000883021700001 |
Publication Date |
2022-11-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447; 1932-7455 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
10 |
Open Access |
Not_Open_Access |
|
|
Notes |
The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) .sygma_SB |
Approved |
Most recent IF: 3.7 |
|
|
Call Number |
UA @ admin @ c:irua:192104 |
Serial |
7311 |
|
Permanent link to this record |