|
Record |
Links |
|
Author |
Altantzis, T.; Wang, D.; Kadu, A.; van Blaaderen, A.; Bals, S. |
|
|
Title |
Optimized 3D Reconstruction of Large, Compact Assemblies of Metallic Nanoparticles |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Journal Of Physical Chemistry C |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
125 |
Issue |
47 |
Pages |
26240-26246 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
3D characterization of assemblies of nanoparticles is of great importance to determine their structure-property connection. Such investigations become increasingly more challenging when the assemblies become larger and more compact. In this paper, we propose an optimized approach for electron tomography to minimize artefacts related to beam broadening in High Angle Annular Dark-Field Scanning Transmission Electron Microscopy mode. These artefacts are typically present at one side of the reconstructed 3D data set for thick nanoparticle assemblies. To overcome this problem, we propose a procedure in which two tomographic tilt series of the same sample are acquired. After acquiring the first series, the sample is flipped over 180o, and a second tilt series is acquired. By merging the two reconstructions, blurring in the reconstructed volume is minimized. Next, this approach is combined with an advanced three-dimensional reconstruction algorithm yielding quantitative structural information. Here, the approach is applied to a thick and compact assembly of spherical Au nanoparticles, but the methodology can we used to investigate a broad range of samples. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000752810100031 |
Publication Date |
2021-12-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.536 |
Times cited |
4 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the European Research Council (grant No. 815128−REALNANO to S.B.). T.A. acknowledges the University of Antwerp Research fund (BOF). D.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union’s Seventh Framework Program (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom).; sygmaSB |
Approved |
Most recent IF: 4.536 |
|
|
Call Number |
EMAT @ emat @c:irua:185224 |
Serial |
6904 |
|
Permanent link to this record |