toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399278100002 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550  
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Zhang, Y.-ru; Bogaerts, A. pdf  url
doi  openurl
  Title Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 054002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The formation process of a microdischarge (MD) in both μm- and nm-sized catalyst pores is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model. A parallel-plate dielectric barrier discharge configuration in filamentary mode is considered in ambient air. The discharge is powered by a high voltage pulse. Our calculations reveal that a streamer can penetrate into the surface features of a porous catalyst and MDs can be formed inside both μm- and nm-sized pores, yielding ionization inside the pore. For the μm-sized pores, the ionization mainly occurs inside the pore, while for the nm-sized pores the ionization is strongest near and inside the pore. Thus, enhanced discharges near and inside the mesoporous catalyst are observed. Indeed, the maximum values of the electric field, ionization rate and electron density occur near and inside the pore. The maximum electric field and electron density inside the pore first increase when the pore size rises from 4 nm to 10 nm, and then they decrease for the 100 nm pore, due to

a more pronounced surface discharge for the smaller pores. However, the ionization rate is highest for the 100 nm pore due to the largest effective ionization region.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399277700001 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 15 Open Access OpenAccess  
  Notes This work was supported by the NSFC (11405067, 11275007, 11375163). Y Zhang gratefully acknowledges the Belgian Federal Science Policy Office for financial support. The authors are very grateful to Wei Jiang for the useful discussions on the photo-ionization model and the particle-incell/ Monte-Carlo model. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142806 Serial 4566  
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 063001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412173700001 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 26 Open Access OpenAccess  
  Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614  
Permanent link to this record
 

 
Author Navarrete, A.; Centi, G.; Bogaerts, A.; Mart?n,?ngel; York, A.; Stefanidis, G.D. pdf  url
doi  openurl
  Title Harvesting Renewable Energy for Carbon Dioxide Catalysis Type A1 Journal article
  Year 2017 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 5 Issue 5 Pages 796-811  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of renewable energy (RE) to transform carbon dioxide into commodities (i.e., CO2 valorization) will pave the way towards a more sustainable economy in the coming years. But how can we efficiently use this energy (mostly available as electricity or solar light) to drive the necessary (catalytic) transformations? This paper presents a review of the technological advances in the transformation of carbon dioxide by means of RE. The socioeconomic implications and chemical basis of the transformation of carbon dioxide with RE are discussed. Then a general view of the use of RE to activate the (catalytic) transformations of carbon dioxide with microwaves, plasmas, and light is presented. The fundamental phenomena involved are introduced from a catalytic and reaction device perspective to present the advantages of this energy form as well as the inherent limitations of the present state-of-the-art. It is shown that efficient use of RE requires the redesign of current catalytic concepts. In this context, a new kind of reaction system, an energy-harvesting device, is proposed as a new conceptual approach for this endeavor. Finally, the challenges that lie ahead for the efficient and economical use of RE for carbon dioxide conversion are exposed.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451619500001 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited 15 Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, G.0254.14 N, G.0217.14 N and G.0383.16 N ; Spanish Ministry of Economy and Competitiveness, ENE2014-53459-R ; Approved Most recent IF: 2.789  
  Call Number PLASMANT @ plasmant @ c:irua:144217 Serial 4615  
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. url  doi
openurl 
  Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 5 Pages 053002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384715400001 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 460 Open Access  
  Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628  
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 085007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed bed plasma reactors (PBPRs) are gaining increasing interest for use in environmental applications, such as greenhouse gas conversion into value-added chemicals or renewable fuels and volatile pollutant removal (e.g. NOx, VOC, K), as they enhance the conversion and energy efficiency of the process compared to a non-packed reactor. However, the plasma behaviour in a PBPR is not well understood. In this paper we demonstrate, by means of a fluid model, that the discharge behaviour changes considerably when changing the size of the packing beads and their dielectric constant, while keeping the interelectrode spacing constant. At low dielectric constant, the plasma is spread out over the full discharge gap, showing significant density in the voids as well as in the connecting void channels. The electric current profile shows a strong peak during each half cycle. When the dielectric constant increases, the plasma becomes localised in the voids, with a current profile consisting of many smaller peaks during each half cycle. For large bead sizes, the shift from full gap discharge to localised discharges takes place at a higher dielectric constant than for smaller beads. Furthermore, smaller beads or beads with a lower dielectric constant require a higher breakdown voltage to cause plasma formation.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406503600003 Publication Date 2017-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 22 Open Access OpenAccess  
  Notes K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144796 Serial 4635  
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A. pdf  doi
openurl 
  Title Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 29 Pages 295603  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404633200002 Publication Date 2017-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 1 Open Access Not_Open_Access  
  Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44  
  Call Number EMAT @ emat @c:irua:144831 Serial 4712  
Permanent link to this record
 

 
Author Ramakers, M.; Medrano, J.A.; Trenchev, G.; Gallucci, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2conversion Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 12 Pages 125002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414675000001 Publication Date 2017-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access OpenAccess  
  Notes This work was supported by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; grant numbers G.0383.16N and 11U5316N). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:147023 Serial 4761  
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2plasma: effect of uncertainties in the plasma chemistry Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 11 Pages 115002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma chemical kinetic models are particularly important to the plasma community. These models typically require dozens of inputs, especially rate coefficients. The latter are not always precisely known and it is not surprising that the error on the rate coefficient data can propagate to the model output. In this paper, we present a model that uses N = 400 different combinations of rate coefficients based on the uncertainty attributed to each rate coefficient, giving a good estimation of the uncertainty on the model output due to the rate coefficients. We demonstrate that the uncertainty varies a lot with the conditions and the type of output. Relatively low uncertainties (about 15%) are found for electron density and temperature, while the uncertainty can reach more than an order of magnitude for the population of the vibrational levels in some cases and it can rise up to 100% for the CO2 conversion. The reactions that are mostly responsible for the largest uncertainties are identified. We show that the conditions of pressure, gas temperature and power density have a great effect on the uncertainty and on which reactions lead to this uncertainty. In all the cases tested here, while the absolute values may suffer from large uncertainties, the trends observed in previous modeling work are still valid. Finally, in accordance with the work of Turner, a number of ‘good practices’ is recommended.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413216500002 Publication Date 2017-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 16 Open Access OpenAccess  
  Notes We acknowledge financial support from the European Unions Seventh Framework Program for research, technological development and demonstration under grant agreement n◦ 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:146879c:irua:146642 Serial 4758  
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
  Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 18 Issue 3 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426033400022 Publication Date 2018-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited Open Access Not_Open_Access  
  Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483  
  Call Number EMAT @ emat @c:irua:147505 Serial 4775  
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M. pdf  url
doi  openurl
  Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 023002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425688600001 Publication Date 2018-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access OpenAccess  
  Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810  
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 024001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424520100001 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess  
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Propagation of a plasma streamer in catalyst pores Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 3 Pages 035009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a twodimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at

very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427976800001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 16 Open Access OpenAccess  
  Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the Fund for Scientific Research Flanders (FWO) (Excellence of Science Program; EOS ID 30505023). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:150877 Serial 4954  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; Oliveira, T.M. de; Assche, G.V.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition Type A1 Journal article
  Year 2018 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 349 Issue 349 Pages 1032-1041  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor based technique which allows to deposit uniform, conformal films with a thickness control at the atomic scale. In this research, Al 2 O 3 coatings were deposited on micrometer-sized Fe and Cu powder (particles) using the thermal trimethylaluminum (TMA)/ water (H 2 O) process in a rotary pump-type ALD reactor. Rotation of the powder during deposition was required to obtain a pinhole-free ALD coating. The protective nature of the coating was evaluated by quantifying its effectiveness in protecting the metal particles during oxidative annealing treatments. The Al 2 O 3 coated powders were annealed in ambient air while in-situ thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) data were acquired. The thermal stability of a series of Cu and Fe powder with different Al 2 O 3 thicknesses were determined with TGA. In both samples a clear shift in oxidation temperature is visible. For Cu and Fe powder coated with 25 nm Al 2 O 3 , we observed an increase of the oxidation temperature with 300-400°C. For the Cu powder a thin film of only 8 nm is required to obtain an initial increase in oxidation temperature of 200°C. In contrast, for Fe powder a thicker coating of 25 nm is required. In both cases, the oxidation temperature increases with increasing thickness of the Al 2 O 3 coating. These results illustrate that the Al 2 O 3 thin film, deposited by the thermal ALD process (TMA/H 2 O) can be an efficient and pinhole-free barrier layer for micrometer-sized powder particles, provided that the powder is properly agitated during the process to ensure sufficient vapour-solid interaction.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441492600108 Publication Date 2018-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 10 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (GOA 01G01513). J. D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant 335078-COLOURATOMS). The authors acknowledge S. Goeteyn for the assistance in preliminary depositions. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 2.589  
  Call Number EMAT @ emat @c:irua:152174UA @ admin @ c:irua:152174 Serial 4994  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.-Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Importance of surface charging during plasma streamer propagation in catalyst pores Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 6 Pages 065009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest, but the underlying mechanisms are far from understood. Different catalyst materials will have different chemical effects, but in addition, they might also have different dielectric constants, which will affect surface charging, and thus the plasma behavior. In this work, we demonstrate that surface charging plays an important role in the streamer propagation and discharge enhancement inside catalyst pores, and in the plasma distribution along the dielectric surface, and this role greatly depends on the dielectric constant of the material. For εr50, surface charging causes the plasma to spread along the dielectric surface and inside the pores, leading to deeper plasma streamer penetration, while for εr>50 or for metallic coatings, the discharge is more localized, due to very weak surface charging. In addition, at εr=50, the significant surface charge density near the pore entrance causes a large potential drop at the sharp pore edges, which induces a strong electric field and results in most pronounced plasma enhancement near the pore entrance.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436845700002 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 13 Open Access OpenAccess  
  Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the TOP-BOF project of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:152243 Serial 4995  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 5 Pages 055008  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432351700002 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
  Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 12 Pages 125011  
  Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454555600005 Publication Date 2018-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Capacitive electrical asymmetry effect in an inductively coupled plasma reactor Type A1 Journal Article
  Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 10 Pages 105019  
  Keywords A1 Journal Article; electrical asymmetry effect, inductively coupled plasma, self-bias, independent control of the ion fluxes and ion energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The electrical asymmetry effect is realized by applying multiple frequency power sources

(13.56 MHz and 27.12 MHz) to a capacitively biased substrate electrode in a specific inductively

coupled plasma reactor. On the one hand, by adjusting the phase angle θ between the multiple

frequency power sources, an almost linear self-bias develops on the substrate electrode, and

consequently the ion energy can be well modulated, while the ion flux stays constant within a

large range of θ. On the other hand, the plasma density and ion flux can be significantly

modulated by tuning the inductive power supply, while only inducing a small change in the self-

bias. Independent control of self-bias/ion energy and ion flux can thus be realized in this specific

inductively coupled plasma reactor.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448434100001 Publication Date 2018-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 1 Open Access Not_Open_Access  
  Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:155506 Serial 5069  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma streamer propagation in structured catalysts Type A1 Journal Article
  Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 10 Pages 105013  
  Keywords A1 Journal Article; plasma catalysis, streamer propagation, 3D structures, PIC/MCC; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications. Catalytic

material can be inserted in different shapes in the plasma, e.g., as pellets, (coated) beads, but also

as honeycomb monolith and 3DFD structures, also called ‘structured catalysts’, which have high

mass and heat transfer properties. In this work, we examine the streamer discharge propagation

and the interaction between plasma and catalysts, inside the channels of such structured catalysts,

by means of a two-dimensional particle-in-cell/Monte Carlo collision model. Our results reveal

that plasma streamers behave differently in various structured catalysts. In case of a honeycomb

structure, the streamers are limited to only one channel, with low or high plasma density when

the channels are parallel or perpendicular to the electrodes, respectively. In contrast, in case of a

3DFD structure, the streamers can distribute to different channels, causing discharge

enhancement due to surface charging on the dielectric walls of the structured catalyst, and

especially giving rise to a broader plasma distribution. The latter should be beneficial for plasma

catalysis applications, as it allows a larger catalyst surface area to be exposed to the plasma.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448131900002 Publication Date 2018-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access Not_Open_Access  
  Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:155510 Serial 5068  
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Baert, K.; Abrahami, S.; Claes, N.; de Oliveira, T.M.; Terryn, H.; Bals, S.; Dendooven, J.; Detavernier, C. pdf  url
doi  openurl
  Title Corrosion protection of Cu by atomic layer deposition Type A1 Journal article
  Year 2019 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 37 Issue 37 Pages 060902  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic layer deposition (ALD) is a vapor phase technique that is able to deposit uniform, conformal thin films with an excellent thickness control at the atomic scale. 18 nm thick Al2O3 and TiO2 coatings were deposited conformaly and pinhole-free onto micrometer-sized Cu powder, using trimethylaluminum and tetrakis(dimethylamido)titanium(IV), respectively, as a precursor and de-ionized water as a reactant. The capability of the ALD coating to protect the Cu powder against corrosion was investigated. Therefore, the stability of the coatings was studied in solutions with different pH in the range of 0–14, and in situ raman spectroscopy was used to detect the emergence of corrosion products of Cu as an indication that the protective coating starts to fail. Both ALD coatings provide good protection at standard pH values in the range of 5–7. In general, the TiO2 coating shows a better barrier protection against corrosion than the Al2O3 coating. However, for the most extreme pH conditions, pH 0 and pH 14, the TiO2 coating starts also to degrade.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517925800003 Publication Date 2019-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 7 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (No. GOA 01G01513). J.D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. Approved Most recent IF: 1.374  
  Call Number EMAT @ emat @c:irua:162640 Serial 5361  
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 14 Issue 10 Pages 962-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488977100016 Publication Date 2019-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 44 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986  
  Call Number UA @ admin @ c:irua:163589 Serial 5407  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
  Year 2019 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537721200002 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 8 Open Access  
  Notes The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305  
  Call Number EMAT @ emat @c:irua:165794 Serial 5445  
Permanent link to this record
 

 
Author Sun, S.R.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Chemistry reduction of complex CO2chemical kinetics: application to a gliding arc plasma Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 2 Pages 025012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc (GA) plasma has great potential for CO2 conversion into value-added chemicals, because of its high energy efficiency. To improve the application, a 2D/3D fluid model is needed to investigate the CO2 conversion mechanisms in the actual discharge geometry. Therefore, the complex CO2 chemical kinetics description must be reduced due to the huge computational cost associated with 2D/3D models. This paper presents a chemistry reduction method for CO2 plasmas, based on the so-called directed relation graph method. Depending on the defined threshold values, some marginal species are identified. By means of a sensitivity analysis, we can further reduce the chemistry set by removing one by one the marginal species. Based on the socalled flux-sensitivity coupling, we obtain a reduced CO2 kinetics model, consisting of 36 or 15 species (depending on whether the 21 asymmetric mode vibrational states of CO2 are explicitly included or lumped into one group), which is applied to a GA discharge. The results are compared with those predicted with the full chemistry set, and very good agreement is reached. Moreover, the range of validity of the reduced CO2 chemistry set is checked, telling us that this reduced set is suitable for low power GA discharges. Finally, the time and spatial evolution of the CO2 plasma characteristics are presented, based on a 2D model with the reduced kinetics.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525600600001 Publication Date 2020-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO; Grant No. G.0383.16 N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. This work was also supported by the National Natural Science Foundation of China. (Grant Nos. 11735004, 11575019). SR Sun thanks the financial support from the National Postdoctoral Program for Innovative Talents (BX20180029). Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:167135 Serial 6338  
Permanent link to this record
 

 
Author Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; Fauconnier, K.; Verstraete, W.; Haesaert, G.; Vlaeminck, S.E. url  doi
openurl 
  Title Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis (‘Spirulina’) and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as biobased fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563539700001 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes The authors would like to kindly acknowledge (i) the MIP i‐Cleantech Flanders (Milieu‐innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support, (ii) the DOCPRO4 project ‘PurpleTech’, funded by the BOF (Bijzonder onderzoeksfonds; Special research fund) from the University of Antwerp for financially supporting J.S., (iii) all MicroNOD partners, including the University of Antwerp, Ghent University, AgrAqua, Greenyard Horticulture and Avecom; and (iv) all steering committee members, including Greenyard Frozen, Agristo, AVBS, Vlakwa, het Innovatiesteunpunt, VCM and OVAM. Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number DuEL @ duel @c:irua:167595 Serial 6357  
Permanent link to this record
 

 
Author van ‘t Veer, K.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Zero-dimensional modeling of unpacked and packed bed dielectric barrier discharges: the role of vibrational kinetics in ammonia synthesis Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045020  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional plasma kinetics model, including both surface and gas phase kinetics, to determine the role of vibrationally excited states in plasma-catalytic ammonia synthesis. We defined a new method to systematically capture the conditions of dielectric barrier discharges (DBDs), including those found in packed bed DBDs. We included the spatial and temporal nature of such discharges by special consideration of the number of micro-discharges in the model. We introduce a parameter that assigns only a part of the plasma power to the microdischarges, to scale the model conditions from filamentary to uniform plasma. Because of the spatial and temporal behaviour of the micro-discharges, not all micro-discharges occurring in the plasma reactor during a certain gas residence time are affecting the molecules. The fraction of power considered in the model ranges from 0.005 %, for filamentary plasma, to 100 %, for uniform plasma. If vibrational excitation is included in the plasma chemistry, these different conditions, however, yield an ammonia density that is only varying within one order of magnitude. At only 0.05 % of the power put into the uniform plasma component, a model neglecting vibrational excitation clearly does not result in adequate amounts of ammonia. Thus, our new model, which accounts for the concept in which not all the power is deposited by the micro-discharges, but some part may also be distributed in between them, suggests that vibrational kinetic processes are really important in (packed bed) DBDs. Indeed, vibrational excitation takes place in both the uniform plasma between the micro-discharges and in the strong micro-discharges, and is responsible for an increased N2 dissociation rate. This is shown here for plasma-catalytic ammonia synthesis, but might also be valid for other gas conversion applications.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241500001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Dr. Fatme Jardali for the discussions on plasma kinetic modelling and Dr. Jungmi Hong and Dr. Anthony B. Murphy for their aid in the calculation of the diffusion coefficients. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:168097 Serial 6359  
Permanent link to this record
 

 
Author Zhang, H.; Zhang, H.; Trenchev, G.; Li, X.; Wu, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2 Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 4 Pages 045019  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study focuses on a magnetically stabilized gliding arc (MGA) plasma. Two fully coupled flow-plasma models (in 3D and 2D) are presented. The 3D model is applied to compare the arc dynamics of the MGA with a traditional gas-driven gliding arc. The 2D model is used for a detailed parametric study on the effect of the external magnetic field. The results show that the relative velocity between the plasma and feed gas is generated due to the Lorentz force, which can increase the plasma-treated gas fraction. The magnetic field also helps to decrease the gas temperature by enhancing heat transfer and to increase the electron number density. This work shows the potential of an external magnetic field to control the gliding arc behavior, for enhanced gas conversion at low gas flow rates.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570241800001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; National Natural Science Foundation of China, 51706204 51707144 ; State Key Laboratory of Electrical Insulation and Power Equipment, EIPE19302 ; The authors acknowledge financial support from the Fund for Scientific Research—Flanders (FWO; Grant G.0383.16 N), National Natural Science Foundation of China under Grant Nos. 51706204, 51707144, and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19302). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and Universiteit Antwerpen. Finally, Hantian Zhang acknowledges financial support from the China Scholarship Council. Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:169218 Serial 6360  
Permanent link to this record
 

 
Author Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D. url  doi
openurl 
  Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
  Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 707 Issue Pages 138076  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539312200011 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:169708 Serial 6370  
Permanent link to this record
 

 
Author Celentano, G.; Rizzo, F.; Augieri, A.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; MacManus-Driscoll, J.L.; Feighan, J.; Kursumovic, A.; Meledin, A.; Mayer, J.; Van Tendeloo, G. url  doi
openurl 
  Title YBa2Cu3O7−xfilms with Ba2Y(Nb,Ta)O6nanoinclusions for high-field applications Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech  
  Volume 33 Issue 4 Pages 044010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural and transport properties of YBa2Cu3O7−x films grown by pulsed laser deposition with mixed 2.5 mol% Ba2YTaO6 (BYTO) and 2.5 mol% Ba2YNbO6 (BYNO) double-perovskite secondary phases are investigated in an extended film growth rate, R = 0.02–1.8 nm s−1. The effect of R on the film microstructure analyzed by TEM techniques shows an evolution from sparse and straight to denser, thinner and splayed continuous columns, with mixed BYNO + BYTO (BYNTO) composition, as R increases from 0.02 nm s−1 to 1.2 nm s−1. This microstructure results in very efficient flux pinning at 77 K, leading to a remarkable improvement in the critical current density (J c) behaviour, with the maximum pinning force density F p(Max) = 13.5 GN m−3 and the irreversibility field in excess of 11 T. In this range, the magnetic field values at which the F p is maximized varies from 1 T to 5 T, being related to the BYNTO columnar density. The film deposited when R = 0.3 nm s−1 exhibits the best performances over the whole temperature and magnetic field ranges, achieving F p(Max) = 900 GN m−3 at 10 K and 12 T. At higher rates, R > 1.2 nm s−1, BYNTO columns show a meandering nature and are prone to form short nanorods. In addition, in the YBCO film matrix a more disordered structure with a high density of short stacking faults is observed. From the analysis of the F p(H, T) curves it emerges that in films deposited at the high R limit, the vortex pinning is no longer dominated by BYNTO columnar defects, but by a new mechanism showing the typical temperature scaling law. Even though this microstructure produces a limited improvement at 77 K, it exhibits a strong J c improvement at lower temperature with F p = 700 GN m−3 at 10 K, 12 T and 900 GN m−3 at 4.2 K, 18 T.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525650500001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access OpenAccess  
  Notes This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7/2007–2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom programme 2014-2018 and 2019-2020 under grant agreement N° 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3 (Nano-engineered YBCO Superconducting Tapes for High Field Applications, NESTApp). G. C. acknowledges the support of Michele De Angelis for XRD measurements and calculations. Approved Most recent IF: 3.6; 2020 IF: 2.878  
  Call Number UA @ lucian @c:irua:168582 Serial 6394  
Permanent link to this record
 

 
Author Verheyen, C.; Silva, T.; Guerra, V.; Bogaerts, A. pdf  url
doi  openurl
  Title The effect of H2O on the vibrational populations of CO2in a CO2/H2O microwave plasma: a kinetic modelling investigation Type A1 Journal article
  Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 29 Issue 9 Pages 095009  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma has been studied for several years to convert CO2 into value-added products. If CO2 could be converted in the presence of H2O as a cheap H-source for making syngas and oxygenates, it would mimic natural photosynthesis. However, CO2/H2O plasmas have not yet been extensively studied, not by experiments, and certainly not computationally. Therefore, we present here a kinetic modelling study to obtain a greater understanding of the vibrational kinetics of a CO2/H2O microwave plasma. For this purpose, we first created an electron impact cross section set for H2O, using a swarm-derived method. We added the new cross section set and CO2/H2O-related chemistry to a pure CO2 model. While it was expected that H2O addition mainly causes quenching of the CO2 asymmetric mode vibrational levels due to the additional CO2/H2O vibrational-translational relaxation, our model shows that the modifications in the vibrational kinetics are mainly induced by the strong electron dissociative attachment to H2O molecules, causing a reduction in electron density, and the corresponding changes in the input of energy into the CO2 vibrational levels by electron impact processes.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000570601300001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1184820N ; Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and ; This research was supported by FWO–PhD fellowshipaspirant, Grant 1184820N. VG and TS were partially supported by the Portuguese FCT, under projects UIDB/50010/2020 and UIDP/50010/2020 Approved Most recent IF: 3.8; 2020 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:172011 Serial 6433  
Permanent link to this record
 

 
Author Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 30 Issue 5 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648710900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: