|
Abstract |
In this work we study energy transport in a gliding arc discharge with two diverging flat
electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode
gap and it is pushed downstream by a forced gas flow. The current values considered are
relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.
with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,
with a significant turbulent component to the velocity. The study presents an analysis of the
various energy transport mechanisms responsible for the redistribution of Joule heating to the
plasma species and the moving background gas. The objective of this work is to provide a
general understanding of the role of the different energy transport mechanisms in arc formation
and sustainment, which can be used to improve existing or new discharge designs. The work is
based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress
transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas
thermal balance. The obtained results show that at higher current the discharge is constricted
within a thin plasma column several hundred kelvin above room temperature, while in the low-
current discharge the combination of intense convective cooling and low Joule heating prevents
discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,
continuously cooled by the flowing gas. As a result, the energy transport in the two cases is
determined by different mechanisms. At higher current and a constricted plasma column, the
plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted
plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In
general, the study also demonstrates the importance of turbulent energy transport in
redistributing the Joule heating in the arc and its significant role in arc cooling and the formation
of the gas temperature profile. In general, the turbulent energy transport lowers the average gas
temperature in the arc, thus allowing additional control of thermal non-equilibrium in the
discharge. |
|