|
Abstract |
Plasma catalysis is gaining increasing interest for various environmental applications. Catalytic
material can be inserted in different shapes in the plasma, e.g., as pellets, (coated) beads, but also
as honeycomb monolith and 3DFD structures, also called ‘structured catalysts’, which have high
mass and heat transfer properties. In this work, we examine the streamer discharge propagation
and the interaction between plasma and catalysts, inside the channels of such structured catalysts,
by means of a two-dimensional particle-in-cell/Monte Carlo collision model. Our results reveal
that plasma streamers behave differently in various structured catalysts. In case of a honeycomb
structure, the streamers are limited to only one channel, with low or high plasma density when
the channels are parallel or perpendicular to the electrodes, respectively. In contrast, in case of a
3DFD structure, the streamers can distribute to different channels, causing discharge
enhancement due to surface charging on the dielectric walls of the structured catalyst, and
especially giving rise to a broader plasma distribution. The latter should be beneficial for plasma
catalysis applications, as it allows a larger catalyst surface area to be exposed to the plasma. |
|