toggle visibility
Search within Results:
Display Options:
Number of records found: 50

Select All    Deselect All
 | 
Citations
 | 
   print
Quantum transport across van der Waals domain walls in bilayer graphene”. Abdullah HM, Van Duppen B, Zarenia M, Bahlouli H, Peeters FM, Journal of physics : condensed matter 29, 425303 (2017). http://doi.org/10.1088/1361-648X/AA81A8
toggle visibility
Gate tunable layer selectivity of transport in bilayer graphene nanostructures”. Abdullah HM, Zarenia M, Bahlouli H, Peeters FM, Van Duppen B, Europhysics letters 113, 17006 (2016). http://doi.org/10.1209/0295-5075/113/17006
toggle visibility
Geometry and edge effects on the energy levels of graphene quantum rings : a comparison between tight-binding and simplified Dirac models”. da Costa DR, Chaves A, Zarenia M, Pereira JM, Farias GA, Peeters FM, Physical review : B : condensed matter and materials physics 89, 075418 (2014). http://doi.org/10.1103/PhysRevB.89.075418
toggle visibility
Analytical study of the energy levels in bilayer graphene quantum dots”. da Costa DR, Zarenia M, Chaves A, Farias GA, Peeters FM, Carbon 78, 392 (2014). http://doi.org/10.1016/j.carbon.2014.06.078
toggle visibility
Magnetic field dependence of energy levels in biased bilayer graphene quantum dots”. da Costa DR, Zarenia M, Chaves A, Farias GA, Peeters FM, Physical review B 93, 085401 (2016). http://doi.org/10.1103/PhysRevB.93.085401
toggle visibility
Energy levels of bilayer graphene quantum dots”. da Costa DR, Zarenia M, Chaves A, Farias GA, Peeters FM, Physical review : B : condensed matter and materials physics 92, 115437 (2015). http://doi.org/10.1103/PhysRevB.92.115437
toggle visibility
Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach”. da Costa, Zarenia M, Chaves A, Pereira JM Jr, Farias GA, Peeters FM, Physical review B 94, 035415 (2016). http://doi.org/10.1103/PhysRevB.94.035415
toggle visibility
Transmission in graphene-topological insulator heterostructures”. De Beule C, Zarenia M, Partoens B, Physical review B 95, 115424 (2017). http://doi.org/10.1103/PHYSREVB.95.115424
toggle visibility
Correlation and current anomalies in helical quantum dots”. De Beule C, Ziani NT, Zarenia M, Partoens B, Trauzettel B, Physical review B 94, 155111 (2016). http://doi.org/10.1103/PHYSREVB.94.155111
toggle visibility
Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions”. Grujić, M, Zarenia M, Chaves A, Tadić, M, Farias GA, Peeters FM, Physical review : B : condensed matter and materials physics 84, 205441 (2011). http://doi.org/10.1103/PhysRevB.84.205441
toggle visibility
Interband optical absorption in a circular graphene quantum dot”. Grujić, M, Zarenia M, Tadić, M, Peeters FM, Physica scripta T149, 014056 (2012). http://doi.org/10.1088/0031-8949/2012/T149/014056
toggle visibility
Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition”. Li LL, Zarenia M, Xu W, Dong HM, Peeters FM, Physical review B 95, 045409 (2017). http://doi.org/10.1103/PHYSREVB.95.045409
toggle visibility
Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line”. Matulis A, Zarenia M, Peeters FM, Physica status solidi: B: basic research 252, 2330 (2015). http://doi.org/10.1002/pssb.201552023
toggle visibility
Circular quantum dots in twisted bilayer graphene”. Mirzakhani M, Peeters FM, Zarenia M, Physical Review B 101, 075413 (2020). http://doi.org/10.1103/PHYSREVB.101.075413
toggle visibility
Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions”. Mirzakhani M, Zarenia M, da Costa DR, Ketabi SA, Peeters FM, Physical review B 94, 165423 (2016). http://doi.org/10.1103/PHYSREVB.94.165423
toggle visibility
Energy levels of hybrid monolayer-bilayer graphene quantum dots”. Mirzakhani M, Zarenia M, Ketabi SA, da Costa DR, Peeters FM, Physical review B 93, 165410 (2016). http://doi.org/10.1103/PhysRevB.93.165410
toggle visibility
Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls”. Mirzakhani M, Zarenia M, Peeters FM, Journal of applied physics 123, 204301 (2018). http://doi.org/10.1063/1.5025937
toggle visibility
Landau levels in biased graphene structures with monolayer-bilayer interfaces”. Mirzakhani M, Zarenia M, Vasilopoulos P, Ketabi SA, Peeters FM, Physical review B 96, 125430 (2017). http://doi.org/10.1103/PHYSREVB.96.125430
toggle visibility
Electrostatically confined trilayer graphene quantum dots”. Mirzakhani M, Zarenia M, Vasilopoulos P, Peeters FM, Physical review B 95, 155434 (2017). http://doi.org/10.1103/PHYSREVB.95.155434
toggle visibility
Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain”. Nascimento JS, da Costa DR, Zarenia M, Chaves A, Pereira JM Jr, Physical review B 96, 115428 (2017). http://doi.org/10.1103/PHYSREVB.96.115428
toggle visibility
Many-body electron correlations in graphene”. Neilson D, Perali A, Zarenia M, (mbt18) 702, 012008 (2016). http://doi.org/10.1088/1742-6596/702/1/012008
toggle visibility
High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers”. Saberi-Pouya S, Zarenia M, Perali A, Vazifehshenas T, Peeters FM, Physical review B 97, 174503 (2018). http://doi.org/10.1103/PHYSREVB.97.174503
toggle visibility
Anisotropic charge density wave in electron-hole double monolayers : applied to phosphorene”. Saberi-Pouya S, Zarenia M, Vazifehshenas T, Peeters FM, Physical review B 98, 245115 (2018). http://doi.org/10.1103/PHYSREVB.98.245115
toggle visibility
Two distinctive regimes in the charge transport of a magnetic topological ultra thin film”. Sabzalipour A, Mir M, Zarenia M, Partoens B, New Journal Of Physics 22, 123004 (2020). http://doi.org/10.1088/1367-2630/ABC989
toggle visibility
Charge transport in magnetic topological ultra-thin films : the effect of structural inversion asymmetry”. Sabzalipour A, Mir M, Zarenia M, Partoens B, Journal Of Physics-Condensed Matter 33, 325702 (2021). http://doi.org/10.1088/1361-648X/AC0669
toggle visibility
Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons”. Sisakht ET, Fazileh F, Zare MH, Zarenia M, Peeters FM, Physical review B 94, 085417 (2016). http://doi.org/10.1103/PhysRevB.94.085417
toggle visibility
Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model”. Van der Donck M, Zarenia M, Peeters FM, Physical review B 96, 035131 (2017). http://doi.org/10.1103/PHYSREVB.96.035131
toggle visibility
Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field”. Van der Donck M, Zarenia M, Peeters FM, Physical review B 97, 081109 (2018). http://doi.org/10.1103/PHYSREVB.97.081109
toggle visibility
Excitons, trions, and biexcitons in transition-metal dichalcogenides : magnetic-field dependence”. Van der Donck M, Zarenia M, Peeters FM, Physical review B 97, 195408 (2018). http://doi.org/10.1103/PHYSREVB.97.195408
toggle visibility
Reply to “Comment on `Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'””. Van der Donck M, Zarenia M, Peeters FM, Physical Review B 101, 127402 (2020). http://doi.org/10.1103/PHYSREVB.101.127402
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: