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Abstract
The effect of the magnetic impurities on the charge transport in a magnetic topological ultra-thin
film (MTF) is analytically investigated by applying the semi-classical Boltzmann framework
through a modified relaxation-time approximation. Our results for the relaxation time of electrons
as well as the charge conductivity of the system exhibit two distinct regimes of transport. We show
that the generated charge current in a MTF is always dissipative and anisotropic when both
conduction bands are involved in the charge transport. The magnetic impurities induce a chirality
selection rule for the transitions of electrons which can be altered by changing the orientation of
the magnetic impurities. On the other hand, when a single conduction band participates in the
charge transport, the resistivity is isotropic and can be entirely suppressed due to the
corresponding chirality selection rule. Our findings propose a method to determine an onset
thickness at which a crossover from a three-dimensional magnetic topological insulator to a
(two-dimensional) MTF occurs.

1. Introduction

Topological states as a novel quantum state of matter have attracted a lot of theoretical [1–5] and
experimental [6–8] attention in condensed-matter physics. Surprisingly, in contrast to conventional
systems, the surface and the bulk of a 3D topological insulator (3DTI) response distinctively to an external
electric field, bulk behaves as an insulator while the surface simultaneously posses metallic states which are
protected by time reversal symmetry (TRS) or crystalline symmetry [9]. The presence of strong spin–orbit
interaction is crucial for the emergence of the topological states. Spin-momentum locking prevents
backscattering of electrons off non-magnetic impurities [10, 11] and leads to the quantum anomalous Hall
effect [12, 13], topological magnetoelectric effect [14], and a variety of other novel quantum phenomena
[15–21].

The conducting electrons on the surface of a 3DTI interact not only with the impurities on the surface
but also with the impurities in the bulk. A possible way to decrease the effect of the bulk on the transport of
the surface is increasing the surface-to-volume ratio, making the 3DTI thinner. Interestingly, when the
thickness of a topological ultra thin film (TTF) is comparable with the decay length of the surface states into
the bulk, the wave functions of the top and bottom surface states overlap, which leads to opening a gap in
the surface band structure [22–25]. For example, this regime is realized in a thin film of Bi2Se3 when its
thickness is less than six quintuple layers [26].

A gap in the surface states of a 3DTI can be induced by breaking the TRS [27, 28]. The TRS can be
broken in a 3DTI by exerting an external magnetic field on the system [29–32], by doping the system with
magnetic impurities [33–36], and by the magnetic proximity effect when a topological insulator is brought
in contact with a ferromagnet [37–42]. Breaking the TRS in a 3DTI destroys the chiral surface states,
though cannot remove the degeneracy in the surface states. In contrast to this system, in a magnetic
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topological ultra-thin film (MTF) the breaking of TRS converts two degenerate massive Dirac cones to two
non-degenerate massive Dirac cones.

In this work, we investigate the charge transport of massive Dirac fermions in an MTF in the presence of
short-range and randomly placed dilute magnetic impurities. The magnetic impurities are localized
scattering centers which force massive Dirac fermions to change their host state. When the magnetic
impurities are not aligned fully perpendicular to the MTF, the short-range interaction between them and
the conducting electrons is anisotropic, due to the spin-momentum locking of electrons. By applying the
semi-classical Boltzmann formalism [43–45], and using a modified relaxation time scheme [46], to truly
capture the effect of the present anisotropic interactions, the charge transport of a MTF is investigated.

We address a chirality selection rule which is induced by the magnetic impurities and governs the
transitions of electrons between the two non-degenerate massive Dirac cones in a MTF. The chirality
selection rule is strongly dependent on the spatial orientation of the magnetic impurities. Then, by
changing the tilt angle of the magnetic impurities, the chirality selection rule changes, and consequently, the
intraband and interband transitions of conducting electrons will be influenced.

Even though the emergence of the finite size effect gap in a MTF reduces the conductivity of the system.
We show in this work how a MTF can provide us with a system in which the massive Dirac fermions
generate a dissipation-less charge current in the presence of the magnetic impurities.

When both of the two non-degenerate massive Dirac cones in a MTF are filled with electrons, we found
that the extracted charge current is always dissipative. Nevertheless, when only a single band is filled and the
magnetic impurities are aligned in-plane, all the possible electronic transitions are forbidden by the chirality
selection rule. Remarkably, in consequence, the charge transport across a MTF will be dissipation-less. As it
is well known, topological states are usually responsible for dissipation-less charge current. Though, the
found zero resistivity in this work originates from trivial topological states. Finally, let us emphasize that the
observed fully suppression of the resistivity is a consequence of the hybridization induced gap and hence is
not achievable in a 3DTI.

We have organized the rest of this paper as follows. In section 2, we introduce the effective Hamiltonian
for a MTF. In section 3, we present and discuss the semi-classical Boltzmann framework along with the
modified relaxation time scheme. The obtained results are shown in section 4. In section 4.1, we investigate
the charge transport of a MTF in the two-band regime. The charge transport and the resistivity of a MTF in
the single-band regime is studied in section 4.2. In section 5, we summarize our findings and conclude with
our main results. In appendix A, we will compare the found relaxation times with those obtained by the
standard relaxation time approach, to prove the requirement of the modified relaxation time scheme.
Finally, in appendix B we discuss the sensitivity of the charge current to the direction of the applied external
electric field.

2. Hamiltonian and basic notations

A thick topological film has two surfaces, in which each surface hosts helical gapless states with a specific
spin texture (see figure 1). As the thick film becomes thinner the gapless helical states on the opposite
surfaces start to hybridize. This hybridization opens a gap of 2Δ in the energy spectrum of the thin film.
The size of the energy gap depends on the thickness of the sample [26]. The Hamiltonian describing low
energy electrons in a MTF is given by [25, 47]

H0 = �vF(kyσx − kxσy) ⊗ τz +Δmσz ⊗ 1 +Δ1 ⊗ τx, (1)

on the bases of |t ↑〉, |t ↓〉, |b ↑〉, and |b ↓〉, where t and b denote the top and bottom surface states and ↑, ↓
represent the spin-up and spin-down states, respectively. σi and τ i (i = x, y, z) are Pauli matrices in the spin
and surface space, respectively. Δm originates from the exchange field of the magnetic dopants, which
effectively acts like a Zeeman term and can be changed for instance by using the magnetic proximity effect.

In this work, we restrict ourselves to the low energy regime and keep terms up to linear order in
momentum k. In the presence of the inversion symmetry, we assume that vF is the same for both
surface states. Switching to new bases |± ↑〉, |± ↓〉, with | ± ↑〉 = (|t ↑〉 ± |b ↑〉)/

√
2 and

| ± ↓〉 = (|t ↓〉 ± |b ↓〉)/
√

2, H0 reduces to the two decoupled block-diagonal matrix

H0 =

(
h+ 0
0 h−

)
, (2)

where hν = �vF(kyσx − νkxσy) + (Δ+ νΔm)σz. The energy dispersion of this Hamiltonian is given by

εs
ν = s

√
(�vf k)2 + (Δ+ νΔm)2, (3)

2
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Figure 1. (a) Schematic view of a topological thick film with different spin texture for electrons in the upper and lower
surface. (b) A topological thin film with an energy gap of 2Δ opened by hybridization between two opposite surfaces.
(c) Illustration of how magnetization M further changes the electronic spectrum of a thin film. (d) Band structure of a Bi2Se3

MTF, for vF = 4.8 (105 m s−1), Δ= 69 meV, and Δm = 35 meV [26].

where s = +/− 1 denotes the conduction/valence band. The chiral index ν distinguishes the outer bands
(ν = +) from the inner bands (ν = −). The chiral index of the inner band is of the opposite sign to the
sign of Δ ·Δm, while the chiral index of the outer band is the sign of Δ ·Δm. The last term in Hν ,
(Δ+ νΔm), is the mass term. The value of the energy gap for the outer bands is 2|Δ+Δm| and
2|Δ−Δm| for the inner bands, see panel (d) of figure 1.

The chiral basis states that diagonalize the Hamiltonian H0 in equation (2), are ψs
ν = us

ν eik·r, where

|us
ν〉 =

1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + γs
+√

1 + γs
+

i e−iφk δν,+1

1 − γs
+√

1 − γs
+

δν,+1

−i
1 + γs

−√
1 + γs

−

eiφk δν,−1

− 1 − γs
−√

1 − γs
−

δν,−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where γs
ν =

Δ+νΔm

εs
ν

, 〈us
ν ||us′

ν′ 〉 = δs,s′δν,ν′ and the δν,ν′ is the Kronecker delta. For a MTF, these so-called

surface states emerge in the entire film. Nevertheless, they always lie in the bulk energy gap and therefore can
be distinguished from the bulk states.

3. Formalism

In order to find the charge current of massive Dirac fermions in a MTF, the none-equilibrium distribution
function of the massive Dirac fermions fk should be obtained. We assume that the electric field is weak,
hence we consider f νk = f 0

k + δf νk , where f 0
k is the equilibrium Fermi–Dirac distribution function. Note, f 0

k

does not contribute to the current and δf νk is linear in the applied electric field E. Since only the Fermi
electrons contribute to the charge transport, s = +1, we drop the index s in what follows. We apply the
semi-classical Boltzmann equation (BE) to find the distribution function of charge carriers in the presence

3
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Figure 2. An electron under the presence of an electric field E = E(cosχ, sinχ, 0) scatters off a particular point like magnetic
impurity Sim = Sim(0, sin θ, cos θ), with initial velocity vk = vk(cosφk, sinφk, 0) and final velocity vk′ = vk′ ( cosφk′ , sinφk′ , 0).

of the external electric field E = E(cosχ, sinχ, 0) (see figure 2) and the dilute and randomly placed
magnetic impurities. In the regime that the MTF is spatially uniform on scales much larger than the
distance between scatterers, the BE reads

∂f νk
∂t

− e

(
− ∂f 0

∂ενk

)
E.vνk =

∑
ν′ ,k′

wνν′(k, k′)
(

f ν
′

k − f νk′
)
. (5)

the left side of equation (5) is the collision term. At the steady state the term with the partial time derivative
is zero. For electrons that interact only with static impurities but not with each other the collision term is a
linear functional of the distribution function. For low energy electrons displaced from equilibrium by a
weak homogeneous electric field E, the BE can be rewritten as

− e

(
− ∂f 0

∂ενk

)
E.vνk =

∑
ν′,k′

wνν′(k, k′)
(

f νk − f ν
′

k′

)
, (6)

where f νk denotes the non-equilibrium distribution function of electrons residing in band ν and state k, and
vνk = ∇kε

ν
k = vνk (cos φk, sin φk, 0) is the velocity of the electrons. During the scattering, the itinerant

electrons scatter off impurities from band ν and state k to band ν ′ and state k′, with transition rate
wνν ′(k, k′). Fermi’s golden rule connects the quantum mechanical scattering matrix Tνν ′(k, k′) with the
classical scattering rate wνν ′(k, k′) by

wνν′ (k, k′) = 2π

�
|Tνν′ (k, k′

)
|2δ

(
ενk − εν

′
k′

)
. (7)

The scattering T-matrix is defined as

Tνν′(k, k′) = 〈 k, ν|Vsc|ψν′
k′ 〉, (8)

where |k, ν〉 and |ψν′
k′ 〉 are the eigenstates of the Hamiltonian H0 and H = H0 + Vsc, and Vsc is the scattering

potential operator. |ψν′
k′ 〉 satisfies the Lippmann–Schwinger equation

|ψν′
k′ 〉 = |k′, ν ′〉+ Vsc

εν
′

k′ − H0 + iη
|ψν′

k′ 〉. (9)

Within the first Born approximation, the second term in equation (9) can be ignored, which leads to
Vνν′

sc (k, k′) = 〈k, ν|Vsc|k′, ν ′〉. Then, the transition rate for the scattering of electrons from their initial state
to their final state is given by

wνν′(k, k′) =
2π

�
〈|Vνν′

sc (k, k′)|2〉disδ(ενk − εν
′

k′ ), (10)

where 〈〉dis stands for the disorder configuration average. For dilute, random and weak impurities, it is
shown that

wνν′(k, k′) =
2πnim

�
|Vνν′

sc (k, k′)|2δ(ενk − εν
′

k′ ), (11)

4



New J. Phys. 22 (2020) 123004 A Sabzalipour et al

with nim being the concentration of the present impurities [48]. Let us emphasize that the terms beyond the
first Born approximation lead to the anomalous Hall effect and do not contribute to the longitudinal
conductivity. For the same reason, we ignore the effect of non-zero Berry curvature in our calculation.

We model the interaction between an arbitrary electron located at r and a single magnetic impurity at
Rim as Vsc(r − Rim) = Jδ(r − Rim)Sim · Se, where Se = hσ/2 stands for the spin of the electron, J is the
exchange coupling, and Sim = Sim(0, sin θ, cos θ) is the spin of the magnetic impurity, see figure 2. The
delta function refers to the short-range nature of the electron-impurity interaction. In the regime of large
magnetic spin and weak interaction, we can treat the spin of the magnetic impurities classically. We assume
that the magnetic impurities are all aligned in the same direction and as figure 2 illustrates lie in the yz
plane, with the z-axis perpendicular to the surface of the MTF.

Depending on how electrons interact with random and point-like impurities, the BE is solved
differently. As shown in figure 2 electrons approach the impurities with incident angle φk and scatter off
with angle φk′ , with the scattering rate wνν ′(k, k′). If the scattering potential Vsc scatters electrons
isotropically, the relaxation time scheme suggests the following form for the non-equilibrium distribution
function at zero temperature [49],

δf νis (k) = e
∂f 0

∂ενk
vνk E (τνis,1(k) cos χ+ τνis,2(k) sin χ), (12)

where τνis,1 = τνis cos φk and τνis,2 = τνis sin φk and

1

τνis (k)
=

∑
k′ ,ν′

wνν′

(
1 − vν

′
k′

vνk
cos

[
φk′ − φk

])
. (13)

However, this method does not apply to our work, because, even though the low energy dispersion of a
MTF is isotropic, due to the in-plane component of the magnetic impurities the scattering potential is not
isotropic. To capture this anisotropy, equation (12) should be modified as follows [46]

δf νk = e
∂f 0

∂ενk
vνk E (τν1 (k) cos χ+ τν2 (k) sin χ), (14)

where τνi (k) is the modified relaxation time. In appendix A we quantitatively compare τν1 with τνis,1, and τν2
with τνis,2, proving why this modification is required.

By applying equation (6) for both bands simultaneously, and substituting equation (14) for f νk , one
arrives at the following set of equations,

cos(φk − χ) −
∑
k′ ,ν′

w+ν′

[
τ+1 (k) − τν

′
1 (k′)

vν
′

k′

v+k

]
cos χ−

∑
k′,ν′

w+ν′

[
τ+2 (k) − τν

′
2 (k′)

vν
′

k′

v+k

]
sin χ = 0

cos(φk − χ) −
∑
k′ ,ν′

w−ν′
[
τ−1 (k) − τν

′
1 (k′)

vν
′

k′

v−k

]
cos χ−

∑
k′ ,ν′

w−ν′
[
τ−2 (k) − τν

′
2 (k′)

vν
′

k′

v−k

]
sin χ = 0.

(15)

One practical way to solve this set of the equations is expanding the two unknown functions τνi (k) in
Fourier series, which leads to

δi,1 cos φk + δi,2 sin φk −
∑

k′,ν′,n

w+ν′

[
τ+c

in (k) cos nφk − τν
′c

in (k′)
vν

′
k′

v+k
cos nφk′

]

−
∑

k′,ν′,n

w+ν′

[
τ+s

in (k) sin nφk − τν
′s

in (k′)
vν

′
k′

v+k
sin nφk′

]
= 0,

δi,1 cos φk + δi,2 sin φk −
∑

k′,ν′,n

w−ν′

[
τ−c

in (k) cos nφk − τν
′c

in (k′)
vν

′
k′

v−k
cos nφk′

]

−
∑

k′,ν′,n

w−ν′

[
τ−s

in (k) sin nφk − τν
′s

in (k′)
vν

′
k′

v−k
sin nφk′

]
= 0.

(16)

5
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Solving equation (16) gives us the Fourier coefficients τνc
1n , τνs

1n , τνc
2n , τνs

2n . Accordingly, by
obtaining these coefficients, one can straightforwardly find the corresponding relaxation times
τνi (k) =

∑
n(τνc

in cos nφk + τνs
in sin nφk). Finally, replacing functions τν1 (k) and τν2 (k) in equation (14)

with the found relaxation times yields the distribution function of the electrons with a particular chirality.
Next, the contribution of each band to the conductivity of the MTF can be obtained by

σν
αβ =

e2

AEβ

∑
k

vν
α(k)vνk E τν1 (k)δ(ενk − εF) cos χ+

e2

AEβ

∑
k

vνα(k)vνk E τν2 (k)δ(ενk − εF) sin χ, (17)

where α and β denote x and y directions. Finally, finding the contribution of all electrons from these two
bands yields the total conductivity σαβ =

∑
ν
σν
αβ .

4. Results

We divide our discussion into two parts. In the first part, section 4.1, we assume that both bands are filled
with electrons, and both are involved in the charge transport. In this regime the Fermi energy is thus
arranged to be above the bottom of the band with plus chirality. In the second part, only the band with
minus chirality is filled and contributes to the conductivity, and the Fermi energy lies between the bottoms
of the bands. Since our results show completely distinctive features in these two regimes, we present them
separately.

4.1. Two-band regime
Being in the two-band regime requires Δ+Δm � εF, where Δ+Δm is the energy gap of electrons with
plus chirality at the Γ point (k = 0). Defining ε̃F = εF

Δ and Δ̃m = Δm
Δ , the condition 1 + Δ̃m � ε̃F

guarantees that the system is properly driven in the two-band regime.

4.1.1. Transition rate and lifetime of electrons
The transition rate wνν ′(k, k′) for electrons determines how likely a scattering event is in which an electron
from band ν and state k scatters off a magnetic impurity and ends up being in band ν ′ and state k′, by
respecting the conservation of energy. By using the equation (4) the scattering T-matrix Tνν ′(k, k′) =
〈k, ν|Vsc|k′, ν ′〉 within the first Born approximation is given by

T =

(
T++ T+−

T−+ T−−

)
= JSim

⎛
⎝− cos θ

(
T ++

1 − T ++
2 ei(φk′ −φk)

)
−i sin θ

(
T +−

1 − T +−
2 ei(φk′+φk)

)
i sin θ

(
T −+

1 − T −+
2 e−i(φk′+φk)

)
cos θ

(
T −−

1 − T −−
2 e−i(φk′+φk)

)
⎞
⎠ ,

(18)

where T νν′
1 =

√
(1 − γ+

ν (k))(1 − γ+
ν′ (k′)), T νν′

2 =
√

(1 + γ+
ν (k))(1 + γ+

ν′ (k′)). Applying equation (11)

yields the following result for the transition rate wνν ′(k, k′) of the electrons

w̄νν′ (k, k′) = cos2 θ

[(
1/2

) [(
T νν′

1

)2
+
(
T νν′

2

)2
]
− T νν′

1 T νν′
2 cos

(
φk′ − φk

)]
δνν′δ

(
ενk − εν

′
k′

)

+ sin2 θ

[(
1/2

) [(
T νν′

1

)2
+
(
T νν′

2

)2
]
+ T νν′

1 T νν′
2 cos

(
φk′ + φk

)]
(1 − δνν′) δ

(
ενk − εν

′
k′

)
,

(19)

where w̄νν′(k, k′) = �wνν′ (k,k′)

πJ2S2
imnim

. In equation (19), the first and second terms correspond to the intraband and

interband scatterings, respectively. Note that while intraband scatterings are isotropic, interband scatterings
are anisotropic. Therefore, depending on whether the chirality of electrons is preserved during the
scatterings or not, the scattering event is isotropic or anisotropic.

As figure 3 shows, the most and least probable intraband scatterings w̄++
F (φk,φk′) are respectively

backward, φk′ − φk = ±π, and forward scatterings, φk′ − φk = 2nπ, with n = 0, 1 or −1. However, the
most and the least probable interband scatterings occur when φk′ + φk = π or 3π, and φk′ + φk = 2nπ,
respectively. Therefore, these two possible scatterings are very distinct. For example, there is always a huge
chance for all electrons to be backscattered during an intraband transition, while a few electrons have this
chance in an interband scattering. Apart from that, intraband and interband scatterings can be clearly
distinguished by their responses to the variation in the direction of the surface magnetization. According to
figure 3, changing the direction of the magnetic impurities, from zero to π

2 , decreases the transition rate for

6



New J. Phys. 22 (2020) 123004 A Sabzalipour et al

Figure 3. w̄νν′ (k, k′) for Fermi electrons in an intraband scattering (+ �−→ +) and an interband scattering (+ �−→ −) versus
direction of k and k′, for different orientations of the magnetic impurities θ, and for Δ̃m = 0.5, ε̃F = 2.

all intraband scatterings by three orders of magnitude, while it enhances the transition rate for all interband
scatterings by two orders of magnitude. Changing the orientation of the magnetic impurities weakens or
strengthens different scattering events without changing the profile of the transition rate against φk and φk.

Even though in the absence of the external electric field, there is no net charge current across the system,
still the electrons travel between the allowed states. Having the transition rate of different scattering events
let us calculate how long an electron remains in its host state that helps us to have a broader view of the
dynamics of conducting electrons. We can figure out how changing the orientation of the magnetic
impurities influences the charge transport over a larger time interval.

By using equation (19) the lifetime of an electron with chirality ν, τνq = (
∑
k′,ν′

wνν(k, k′))−1, is given by

τνq =
t0/2

1 + γ2
ν cos2 θ + γνγν′ sin2 θ

, (20)

where t0 =
4�3v2

F

εν
k

J2S2
imnim

. Note that in the above expression if ν = + then ν ′ = −, and vice versa. According to

the above equation, while τ−q decreases by increasing θ, τ+q increases. Therefore, in the absence of an electric
field, by increasing θ from 0 to π

2 , electrons travel from the band with minus chirality to the other band
with plus chirality. Finally, all electrons end up having the same lifetime for θ = π

2 . We can conclude that by
changing the orientation of the magnetic impurities, one can change the occupation number of electrons in
each band.

Considering that in the absence of an external electric field, there is no preferred scattering event, all
transition rates can be weighted equally, as is done in the calculation of the lifetime. But, with the external
electric field, the distribution of electrons in different states changes to make some of the possible
scatterings more favorable for the charge transport, and suppresses other unfavorable transitions.

4.1.2. Conductivity
The BE takes into account simultaneously both the effect of the electric field and the impurities in the
charge transport of the system. As equation (19) implies, charge conduction across a MTF consists of both
isotropic and anisotropic transitions. Since these two types of events are correlated, their contributions to
the total charge current cannot be separated. Hence, we employ the modified relaxation time scheme for all
the possible scattering events in the MTF, to obtain the relaxation times of the conducting electrons. In
appendix A the found modified relaxation times are compared with the calculated standard relaxation
times, to prove the requirement of the modified relaxation time.

7
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Equation (16) properly captures the anisotropy of scattering events by including the two different
modified relaxation times τν1 and τν2 for each band and provides us with,

τνi (k) =
τνq
t0

([
t0 − λν τνc

i1 + λν′ tan2 θτν
′ c

i1

]
δi1 cos φk +

[
t0 − λντ

νs
i1 − λν′ tan2 θτν

′ s
i1

]
δi,2 sin φk

)
, (21)

where τνc
11 =

Λν′ (1+tan2 θ)+t0
ΛνΛν′ (1−tan4 θ)+t0[t0+Λν+Λν′ ]

τ̄ νq , τνs
21 =

Λν′ (1−tan2 θ)+t0
ΛνΛν′ (1−tan4 θ)+t0[t0+Λν+Λν′ ]

τ̄ νq , with

λν(k) = [1 − γ2
ν(k)]cos2 θ, Λν = λντ

ν
q and τ̄ νq = t0τ

ν
q .

By using equation (17) along with the relaxation times in equation (21), we arrive at following
expressions for the two components of the contribution of each band in the total conductivity,

σν
xx

[
e2

h

]
=

2Γν(Γν′ + 1)σ0

1 + [Γν + Γν′]cos2 θ + ΓνΓν′ cos 2θ
,

σν
yy

[
e2

h

]
=

2Γν(Γν′ cos 2θ + 1)σ0

1 + [Γν + Γν′]cos2 θ + ΓνΓν′ cos 2θ
,

(22)

where Γν =
ε̃2

F−(1+νΔ̃m)2

2(ε̃2
F+[1+νΔ̃m][1+νΔ̃m cos 2θ])

, and σ0 =
�2v2

F

nimS2
imJ2

. Also we found that σν
xy = σν

yx = 0. The total

conductivities of the system in the x and the y directions can be obtained by σxx =
∑
ν=±

σν
xx, and

σyy =
∑
ν=±

σν
yy.

4.1.3. The effect of magnetic impurities

The contribution of each band to the total conductivity along with the total conductivity versus θ are shown
in figures 4(a) and (b). In panel (a) the Fermi energy lies close to the bottom of the band with plus chirality,
and in panel (b) the Fermi energy lies far from the bottom of the band with plus chirality.

As figure 4(a) demonstrates, electrons in the band with minus chirality contribute significantly more to
the total conductivity of a MTF, regardless of the direction of the external electric field. When the electric
field is applied along the y direction, the value of the relaxation time of electrons with minus chirality, τ−2 ,
the black curve in figure 4(c), is always greater than the value of the relaxation time of electrons with
opposite chirality, τ+2 (green curve in the same panel) for any given value of θ. In addition, electrons with
minus chirality drift faster than others, see figure 4(e). Since the charge conductivity is only controlled by
these two parameters, it can be understood why the contribution of electrons with minus chirality is
significantly higher.

When the electric field is applied in the x direction, the same discussion for the dominance of electrons
with minus chirality in controlling the total conductivity is valid only when the magnetization orientation is
between 0 < θ < π

4 . Beyond this regime, π
4 < θ < π

2 , the relaxation time of electrons with minus chirality,
τ−1 (red curve in figure 4(c)), is shorter than the relaxation time of electrons with plus chirality, τ+1 (blue
curve in figure 4(c)). However, even though electrons with minus chirality experience more scattering
events than others, in this case, their larger velocity compensates for this. Hence, they again dominate the
total conductivity, even in the regime of π

4 < θ < π
2 .

Moreover, if one fills conduction bands with more electrons, Fermi electrons in bands with opposite
chirality end up having very similar relaxation times (see figure 4(d)), regardless of the direction of the
external electric field. In addition, as figure 4(e) shows, all electrons conduct charge with the same velocity
when ε̃F is large. Therefore, as all curves in figure 4(b) demonstrate, all high energy electrons, regardless of
their chirality contribute equally to the charge current.

Notice that all the conductivities shown in figures 4(a) and (b) strongly depend on the orientation of the
magnetic impurities only when the electric field is applied in the x direction. Surprisingly, the total
conductivity and the contribution of each band almost do not vary with θ when the electric field is applied
along the y direction.

The weak dependence of σν
yy and σyy on θ can be understood by looking at the spin torque of electrons

induced by the magnetic impurities during the scattering time. With an electric field in the y direction, the
average momentum of the electrons is also in the y direction. In a 3DTI, the spin of the electrons would be
oriented along the x direction due to the spin-momentum locking. In the case of a MTF, the spin can also
have a small z component: 〈Se

z〉 = Δ+νΔm
εk

(the smallest value is reached for electrons with minus chirality
ν = − and for high energy electrons). Nevertheless, the spin of the electrons is in this case always
approximately perpendicular to the spin of the magnetic impurities (which lies in the yz plane), especially
for high-energy electrons and for electrons with negative chirality. Consequently, the torque will be large,

8



New J. Phys. 22 (2020) 123004 A Sabzalipour et al

Figure 4. The contribution of each band to the total conductivity and the total conductivity with respect to θ when Δ̃m = 0.5
and ε̃F = 2 in panel (a), and for ε̃F = 7 in panel (b). Panels (c) and (d) are the relaxation times associated to the given
conductivities in panel (a) and (b), respectively. (c) The velocity of the Fermi electrons versus ε̃F for different values of Δ̃m.

and independent of θ, resulting in a small conductivity, almost independent of θ. In case the electric field is
along the x direction, the angle between the spin of the electron and the magnetic impurities depends
strongly on θ, and thus also the torque, resulting in a strong θ dependence for σxx.

In appendix B, we systematically measure the degree of sensitivity of the charge current to the direction
of the electric field by calculating the anisotropic magneto-resistance (AMR) for each band AMRν and the
total AMR

AMR =

∑
ν(σν

xx − σν
yy)∑

ν(σν
xx + σν

yy)
,

AMRν =
σν

xx − σν
yy

σν
xx + σν

yy

.

(23)

As we explain in appendix B, the interband scatterings are responsible for the anisotropy in the conductivity
of the system. Since the strength of the interband scatterings increases by increasing θ, see equation (19), the
conductivity of the system becomes highly sensitive to the direction of external electric field, σxx diverges
greatly from σyy. Moreover, as figure B1 demonstrates, the anisotropy in the conductivity of the system
mostly originates from the electrons with plus chirality.
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Figure 5. The two components of the conductivity σxx and σyy of a 3DTI and a TTF are shown in panels (a) and (b). Panels (c)
and (d) show the two component of the conductivity of a 3DMT and an MTF.

4.1.4. Comparison between the charge conductivities of a MTF and a 3DMT
By comparing the conductivity of a MTF with the conductivity of a 3DMT we can understand how the
hybridization between the top and bottom surfaces of a MTF affects the charge conductivity of the system.

In a 3DTI the thickness of the system is much larger than the decay length of the surface states into the
bulk and the wave functions of the top and bottom surfaces do not overlap. As a result the 3DTI is a gapless
system. In fact the value of the hybridization induced gap Δ decays exponentially as a function of the
thickness of the system [26]. In the absence of Δ and Δm the dispersion of a 3DTI consists of two
degenerate massless Dirac cones.

We split our discussion into two parts. In the first part, we assume that both the MTF and the 3DMT
lack the magnetic dopants that induce the gap Δm. In the second part, we investigate the effect of including
Δm. In a TTF two Dirac cones are degenerate, but unlike the dispersion of a 3DTI, these two Dirac cones
are always massive, due to the permanent presence of the hybridization induced gap Δ.

In figures 5(a) and (b) we compare the charge conductivity of a TTF and a 3DTI [50] versus ε̃F, and for
two distinct orientations of the magnetic impurities θ = 0, π

2 . Here, we assume that the Fermi energy is
fixed, and the size of ε̃F can be altered by tunning the Δ. These two panels show that the conductivity of a
3DTI is larger than the conductivity of a TTF, regardless of the direction of the external electric field and the
orientation of the magnetic impurities. Decreasing the value of Δ, by increasing the thickness of the system,
increases ε̃F and consequently enhances the charge conductivity of the TTF. For large values of ε̃F, which
correspond to a significantly thick TTF, the charge conductivity of a TTF is the same as of a 3DTI.

According to figure 5(a), when the external electric field is applied in the x direction, the charge
conductivity of a TTF differs significantly from the charge conductivity of a 3DTI if θ = π

2 . However, this is
not true when the spins of the magnetic impurities are perpendicular to the surface of the TTF, i.e. θ = 0.
In contrast to the case of E = Ex̂, figure 5(b) shows that when E = Eŷ, the difference between the charge
conductivity of a TTF and a 3DTI is insensitive to the variations in the orientation of the magnetic
impurities. The zero conductivity of the TTF corresponds to the situation in which the Fermi energy lies at
the bottom of both bands. It should be noticed that since the Fermi energy is fixed in the conduction band
of the 3DTI, its conductivity is always nonzero and constant.

Now, we compare the conductivity of a 3DMT with the conductivity of a MTF. By dopping a 3DTI with
strong magnetic dopants, the time-reversal symmetry is broken, which leads to the removal of the surface
chiral states and the conversion of the degenerate massless Dirac cones to degenerate massive Dirac cones.
However, in contrast to the 3DMT, the breaking of the time-reversal symmetry in a TTF removes also this
degeneracy and consequently results in dispersion with two non-degenerate massive Dirac cones, each with
distinct chirality, see panel (c) in figure 1.
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Figure 6. The contribution of each band to the total conductivity (a), and the total conductivity (b) versus Δ̃m for two critical
values of θ and when ε̃F = 2. Panels (c) and (d) show the occupation number of electrons in each band with respect to Δ̃m for
constant values of θ and ε̃F. Panel (e) shows the velocity of electrons with distinctive chirality against Δ̃m.

Figures 5(c) and (d) show that the conductivity of a 3DMT is larger than the conductivity of a MTF. By
decreasing the size of the hybridization induced gap, increasing ε̃F, the difference between the conductivity
of these two systems decreases.

When all the magnetic impurities lie in-plane, it is shown that the conductivity of a 3DMT is insensitive
to a change in the size of Δm [50]. In the same condition, due to the hybridization between two opposite
surfaces in a MTF, the charge conductivity is highly sensitive to any change in Δm and consequently in the
size of the gap 2|Δ±Δm|. Then, the insensitivity of the charge conductivity of such a system to the gap
implies that the system is thick enough, and the finite size effect gap is absent. By altering the thickness of
the system, and then again checking the sensitivity of the charge conductivity to the gap, one can determine
the critical thickness of the system for which a crossover from a 3DMT to a MTF occurs.

Breaking the time-reversal symmetry decreases the conductivity of the 3DMT, and accordingly increases
its resistivity. When the Fermi energy lies in the conduction band, there is always a non-zero resistivity
against the charge transport since the degenerate bands both are simultaneously involved in the charge
transport. However, in the absence of time-reversal symmetry in a MTF, we can reach a regime in which the
resistivity is zero. This will be clarified in detail in section 4.2.

4.1.5. Effect of the gap
In this section, we investigate how changing the size of the gap, 2(Δ+ νΔm), influences the charge
transport in a MTF. Here, we keep the value of Δ constant and just change the size of Δm.

The conductivity of each band and the total conductivity of the MTF are plotted versus Δ̃m = Δm
Δ , for

two critical values of θ, 0 and π
2 , in a system with constant Fermi energy and Δ, i.e. constant ε̃F. By

increasing Δm, the contribution of electrons with plus chirality decreases while the conductivity of electrons
with minus chirality increases, whatever is θ or the direction of the electric field (see figure 6(a)). At
Δ̃m = 0, the electron occupation number in both bands is the same; see figures 6(c) and (d). When the size
of Δm increases, although the occupation number of electrons with minus chirality increases, the yellow
curve in figures 6(c) and (d), the occupation number of conducting electrons with plus chirality decreases
and finally reaches zero value at Δ̃m = 1, see the blue curves in figures 6(c) and (d). The velocity of
electrons in both bands interestingly shows a similar trend (see figure 6(e)). Therefore, when the external
electric field is applied in the x direction, since the total occupation number of electrons, the red curve in
figure 6(c), and the average velocity of electrons, the red curve in figure 4(e), both decrease by increasing
the value of Δ̃m, the total corresponding conductivity decreases, the red and cyan curves in figure 6(b).
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When the external electric field is applied in the y direction the corresponding conductivity changes too
slowly (almost constant) for θ = π

2 , as the total occupation number of electrons changes too slowly, see the
black and the green curve in figure 6(b).

4.2. The single-band regime
Here, we investigate the charge transport of a MTF when only the band with minus chirality is filled. To
keep the MTF in this regime the Fermi energy can range within Δ−Δm � εF � Δ+Δm.

If only electrons with minus chirality participate in transport, it is expected that the generated charge
current shows some exotic features, which are absent in the two-band regime. To explain why we have such
an expectation, let us check the chiral selection rule, which governs the transition of electrons between
different states in a MTF. The interaction between an electron and a local magnetic impurity is given by

Hm = H(1)
m + H(2)

m , (24)

where

H(1)
m = JSim cos θ

(
σz 0
0 −σz

)
,

H(2)
m = JSim sin θ

(
0 −i σz

i σz 0

)
,

(25)

in the spin-chirality Hilbert space. The full Hamiltonian of electrons is H = H0 + Hm. To check how the
chirality of electrons varies through different transitions, one can define the chirality operator in the
spin-chirality basis set as

C = σ0 ⊗ τz =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (26)

where C∗ C = CC∗ = 𝟙, C2 = 1 and C|us
ν〉 = ν|us

ν〉. We can check the possible conservation of chirality by
calculating the commutator [H , C]. Using equations (2), (26) and (25) we arrive at

[H , C] = [H0, C] + [H(1)
m , C] + [H(2)

m , C]. (27)

Since [H0, C] = 0, and [H(1)
m , C] = 0, one finds [H , C] = [H(2)

m , C]. We can conclude that scatterings
caused by H(1)

m has to conserve chirality (corresponding to the intraband transitions), while scatterings
caused by H(2)

m change the chirality (corresponding to the interband transitions). When all the magnetic
impurities are perpendicular to the surface, θ = 0, one finds H(2)

m = 0, and consequently only intraband
transitions are allowed. For an in-plane orientation of the magnetic impurities, θ = π/2, one finds
H(1)

m = 0, and only interband transitions can occur. In the single-band regime interband transitions are
forbidden because of the conservation of energy. A dissipationless charge current can therefore be expected
in the single-band regime for a MTF if θ = π/2.

Now, we calculate the resistivity of a MTF in this regime to prove this exciting finding. Since in what
follows, we discuss the charge transport of just electrons with minus chirality, we drop the chirality index
for the sake of convenience. The found transition rate for the electrons with minus chirality is

w̄
(

k, k′) = cos2 θ
[
1 + γ2 + cos φ−

(
γ2 − 1

)]
δ (εk − εk′) , (28)

where φ− = φk′ − φk, w̄ = �w

πJ2S2
imnim

, γ = Δ−Δm
εk

. As equation (28) shows, the out of plane component of

the magnetic impurities controls the transition of electrons. By weakening this component of the magnetic
impurities, the scattering probability decreases for all possible scattering events, and eventually vanishes at
θ = π

2 . In other words, if all the magnetic impurities lie in-plane, electrons stay forever in their host state
and never scatter into the other states.

Substituting equation (28) in equation (16) yields the following relaxation time for electrons in this
regime

τk =
t0

cos2 θ

1

3 + γ2
cos φk. (29)

This indicates that the relaxation time of electrons increases by increasing θ and diverges at θ = π
2 , which

once again confirms that electrons with minus chirality do not encounter any scattering events in this
situation.
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Figure 7. The resistivity of an MTF in the single-band regime versus θ (a), and Δ̃m (b).

Replacing the relaxation time in equation (17) with equation (29) yields the following charge
conductivity of electrons in this regime

σxx

[
e2

h

]
= σyy

[
e2

h

]
=

σ0

cos2 θ

ε̃2
F − (Δ̃m − 1)2

3ε̃2
F + (Δ̃m − 1)2

.

σxy = σyx = 0.

(30)

Accordingly, the resistivity matrix will be

ρ = σ−1 =

(
ρxx ρxy

ρyx ρyy

)
= ρxx

(
1 0
0 1

)
, (31)

where ρxx

[
h
e2

]
= ρyy

[
h
e2

]
= ρ0 cos2 θ

3ε̃2
F+(Δ̃m−1)2

ε̃2
F−(Δ̃m−1)2

, and ρ0 =
nimS2

imJ2

�2v2
F

.

This result also shows another remarkable finding: the conductivity of a MTF in the single-band regime
is always isotropic, σxx = σyy, in contrary to the extracted conductivity for this system in the two-band
regime, equation (22). The anisotropy in the conductivity for a MTF in the two-band regime originates
from the in-plane component of the magnetic impurities. However, in the single-band regime, the in-plane
component of the magnetic impurities is not able to scatter electrons, see equation (28), and consequently,
the calculated conductivity for this regime is isotropic.

Figure 7(a) shows this resistivity as a function of θ. It decreases by increasing θ, and indeed eventually
vanishes at θ = π

2 , regardless of the value of ε̃F, and Δ̃m. This provides us with another criterion to
distinguish the single-band regime from the two-band regime in the charge transport of a MTF. Since Δ is
constant, the value of the energy gap 2|Δ−Δm| decreases by increasing the value of Δm. Therefore, by
increasing the value of Δm, or Δ̃m, the conductivity increases, and consequently, the corresponding
resistivity decreases (figure 7(b)).

Finally, we want to stress that the charge current in this regime stays dissipationless as long as the
chirality selection rule remains unchanged. The presence of extra effects can modify the band dispersion
and may break the chirality selection rule, making the charge current dissipative. For example, an in-plane
magnetic field causes the band dispersion to be an asymmetric, tilted Dirac cone [51, 52]. Hence, it can
generate a finite resistivity in this regime. A perpendicular electric field can also modify the transition
selection rule by breaking the inversion symmetry [53], even though the dispersion relation remains
symmetric.

5. Conclusion

The charge transport of a MTF is investigated by applying the Boltzmann semi-classical formalism along
with a modified relaxation time scheme. Two distinct regimes are identified depending on whether both
conduction bands are engaged in the charge transport or not. For each regime, the relaxation times of
electrons and the charge conductivity of the system are found analytically. When both conduction bands are
filled with electrons, the generated charge current is anisotropic. In contrast to this regime, we found that
the conductivity of a MTF is isotropic when only a single conduction band is involved in the transport. The
extracted conductivity in both of these regimes is highly sensitive to the orientation of the magnetic
impurities, the size of the energy gap, and the value of the Fermi level.
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Interestingly, the magnetic impurities induce a chirality selection rule which governs the transitions of
electrons during different scattering events. When both of the conduction bands are filled, the charge
current is always dissipative. Nevertheless, when only a single band is occupied, the chiral selection rule
forbids all the transport channels for electrons if the magnetic impurities lie in-plane. In consequence, the
charge transport across a MTF will be surprisingly dissipation-less.

This work provides a criterion to specify a crossover from a 3DTI to a MTF. When all the magnetic
impurities are in-plane in a 3DMT, the measured charge conductivity is insensitive to the gap. In contrast to
this system, in a MTF with in-plane magnetic impurities, the charge conductivity is highly sensitive to the
gap. Therefore, by altering the thickness of the system, and then again checking the sensitivity of the charge
conductivity to the gap, one can determine the critical thickness of the system for which a crossover from a
3DMT to a MTF occurs.
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Appendix A. Comparing the standard relaxation time with the modified relaxation
time

In this appendix we quantitatively compare our calculated modified relaxation times with usual standard
relaxation times. By making this comparison, we show the importance of using the modified relaxation
time in our work.

By applying the equations (19) and (13) the standard relaxation time of an electron in band ν and state
k will be

τνis (k) =
t0

4 + (γ2
ν − 1)(1 + 2 sin2 θ cos2 φk)

. (A.1)

The standard relaxation time scheme is applicable only when all the scattering events are isotropic, in which
the transition rate depends only on the angle between k and k′, Δφ = φk − φk′ . Consequently, the
corresponding relaxation time depends only on the magnitude of k, not on its direction. Nevertheless, the
expression in equation (A.1) contradicts this point. The apparent contradiction implies that the system is
not isotropic. However, we can ignore this contradiction and still follow this approach in order to just make
an estimation for the relaxation time, without going through a lengthy calculation that solving
equation (16) requires. We will demonstrate that the value of the standard relaxation times τνis,i deviate too
much from the modified relaxation times τνi in a system with in-plane magnetization.

Figure A1 quantitatively compares τ̃ νi =
τνi
t0

, with τ̃ νis,i =
τνis,i
t0

and τ̃ νq =
τνq
t0

. In all panels dashed and solid
curves correspond to the electrons with minus and plus chirality, respectively. The red and cyan curves in
panels (a)–(c) are τ̃ νis,1 and τ̃ ν1 , and in panels (d)–(f) are τ̃ νis,2 and τ̃ ν2 , respectively.

As equation (19) indicates, when the MTF has a perpendicular magnetization, all electrons keep their
chirality unchanged during a scattering event and encounter an isotropic transition. Therefore, it is obvious
why these two methods produce the same relaxation times. However, when one increases the in-plane
component of the magnetization, the standard relaxation time starts to deviate from the other accurate
ones. At θ = π

2 , the value of the standard relaxation time differs too much from the accurate value, in all
panels. Apart from that, since the external electric field causes electrons to leave their band, the lifetime of
most electrons (blue curves in this figure) is greater than their relaxation time. In addition, changing the
orientation of the magnetic impurities from θ = 0 to π

2 makes electrons with minus chirality
distinguishable from those with plus chirality by referring to their relaxation times.

Appendix B. Anisotropic magneto-resistance

In this appendix, we investigate the dependency of the generated charge current in a MTF on the direction
of the electric field. The external electric field affects the momentum of electrons, and due to the large
spin-momentum locking, it consequently affects the spins of electrons. On the other hand, since the spin of
electrons interacts with the spin of magnetic impurities, the external electric field subsequently influences
the strength of scatterings and consequently the conductivity of the system. Then, it is obvious why
changing the direction of the external electric field can strongly affect the conductivity of a MTF.
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Figure A1. τ̃ νi (cyan), τ̃ ν
is,i (red), and τ̃ ν

q (blue) are shown versus φk for three different orientations of the magnetic impurities. In
all panels dashed and solid curves correspond to the electrons with minus and plus chirality, respectively.

By using equation (22), we find

AMRν =
σν

xx − σν
yy

σν
xx + σν

yy

=
Γν′ sin2 θ

1 + Γν′ cos2 θ
. (B.1)

According to equation (B.1), for a MTF with a fully out of plane magnetization, θ = 0, the value of AMRν is
zero for both bands and as we already knew, the system is isotropic. On the other hand, for a MTF with a
completely in-plane magnetization, AMRν[θ = π

2 ] = Γν′ . Accordingly, the value of the AMRν for each band
ranges from 0 to Γν ′. According to equation (B.1), AMRν depends on Γν ′, which implies that the anisotropy
in the conductivity of a particular band originates from the interband scatterings, in agreement with
equation (19).

Figure B1(a) compares the AMR with AMR+ and AMR−, for a particular value of θ, with ε̃F = 2, 7, and
Δ̃m = 0.5. All curves increase by increasing θ, regardless of the value of ε̃F and the chirality of the electrons.
This is due to the fact that the strength of interband scattering, which is responsible for the anisotropy,
increases by increasing θ, see equation (19).

As figure 4(a) demonstrates, when the Fermi energy lies on the bottom of the band with plus chirality,
ε̃F = 2, (σ+

xx − σ+
yy )  (σ−

xx − σ−
yy), though (σ−

xx + σ−
yy) � (σ+

xx + σ+
yy ), which eventually leads to

AMR+ � AMR−, (see figure B1(a)). Hence, for this case, electrons with plus chirality play the important
role in the anisotropy of the derived conductivity of the MTF.

For the case of ε̃F = 7, (figure 4(b)), σ+
xx  σ−

xx and σ+
yy  σ−

yy, which results in AMR+  AMR−.
Therefore, electrons that reside in the top of their host bands have the same share in generating the
anisotropy in the conductivity.

The red and green curves in figure B1(a) demonstrate that the anisotropy in the total conductivity
increases by increasing θ. This is due to the fact that σxx diverges greatly from σyy by increasing θ (see
figures 4(a) and (b)).

Now, we assume that all the magnetic impurities are aligned in a fixed particular direction, and consider
that the position of the Fermi energy is also fixed. Note that the value of the hybridization induced gap Δ is
fixed in this work. However the size of the energy gap 2|Δ+ νΔm| can be altered by changing the value of
Δm. In what follows, we investigate how the degree of the anisotropy in the conductivity of each band and
also the total conductivity can be controlled by tuning the size of the energy gap.

Figure B1(b) shows AMR−, AMR+ and AMR versus Δ̃m, for two values of θ and with ε̃F = 2. As
expected, the contribution of each band and also the total conductivity is isotropic when all magnetic
impurities are aligned perpendicular to the surface of a MTF. In case of having all the magnetic impurities
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Figure B1. The AMR, AMR−, AMR+ with respect to ε̃F, Δ̃m and θ.

aligned in-plane, AMR− and AMR have a decreasing trend versus Δ̃m, while AMR+ has an increasing trend
against Δ̃m.

When θ = π
2 , based on equation (19), just interband scatterings are possible for electrons, regardless of

their chirality. In addition, as equation (19) indicates, the transition rate ωνν ′(k, k′) for an interband
scattering is symmetric with respect to the chirality index. Accordingly, the probability of an interband
scattering is independent of the chirality of electrons. However, during an interband transition, the band
with minus chirality can host much more electrons. Therefore, the produced conductivity by electrons with
plus chirality is much more anisotropic compared to the generated current by electrons with minus
chirality, see figure B1(b). Regarding the anisotropy in the total charge current, because the transition rate
of all interband scatterings decreases with increasing Δ̃m, the amount of produced anisotropy decreases (the
red curve in figure B1(b)).
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