|
Record |
Links |
|
Author |
da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. |
|
|
Title |
Energy levels of bilayer graphene quantum dots |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
92 |
Issue |
92 |
Pages |
115437 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Lancaster, Pa |
Editor |
|
|
|
Language |
|
Wos |
000361663700003 |
Publication Date |
2015-09-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121; 1550-235x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
21 |
Open Access |
|
|
|
Notes |
; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; |
Approved |
Most recent IF: 3.836; 2015 IF: 3.736 |
|
|
Call Number |
UA @ lucian @ c:irua:128726 |
Serial |
4173 |
|
Permanent link to this record |