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Abstract – Recently it was found that bilayer graphene may exhibit regions with and without
van der Waals coupling between the two layers. We show that such structures can exhibit a strong
layer selectivity when current flows through the coupled region and that this selectivity can be
tuned by means of electrostatic gating. Analysing how this effect depends on the type of bilayer
stacking, the potential on the gates and the smoothness of the boundary between the coupled and
decoupled regions, we show that nearly perfect layer selectivity is achievable in these systems.
This effect can be further used to realise a tunable layer switch.

Copyright c© EPLA, 2016

Research aiming at the usage of graphene as a basis for
the next generation of electronics has been very intense
during the last few years [1–5]. Many proposals using
graphene sheets have been made based on varying car-
rier mobility [6] or using the energy valleys as a basis for
valleytronics [7]. If one changes the size of the flake into
graphene quantum dots and nanoribbons, energy gaps can
be controlled through size quantization [8–10].

To generate band gaps in the system, researchers have
considered graphene composite structures such as bilayer
graphene [11,12], a set of two graphene layers coupled by
weak van der Waals interaction. It has been shown that,
depending on the stacking configuration, one can open a
band gap in this system by electrostatic gating [13–15].
Furthermore, different nanostructures where the bilayer
was deformed also received a lot of attention. One in-
teresting example is a twisted bilayer structure where the
two graphene layers are rotated with respect to each other.
The electronic structure of such systems feature very pe-
culiar properties [16–19].

In this work we investigate the transport properties of
another graphene composite made of two layers. Now the
layers are only locally coupled by van der Waals inter-
action into a bilayer structure (see fig. 1(a)). By locally
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gating the coupled region we show that it is possible to
select the layer in which the current flows after having tun-
nelled through the joined region. In this way the structure
constitutes a gate tunable layer switch.

Recently such locally coupled structures have been
observed in chemical vapor deposition (CVD) graphene
samples [20–22] where, due to rippling, the layers were
decoupled in some regions while being connected in oth-
ers. The proposed structure can be subsequently created
by conventional etching techniques traditionally used to,
e.g., create graphene nanoribbons [23,24].

We model the layer switch as two single layers of
graphene (SLG) that are locally joined together by van
der Waals forces into a bilayer graphene (BLG) structure
as depicted in fig. 1(a). There are two different ways the
layers can be joined together depending on the relative
stacking: 1) exactly aligning both honeycomb lattices on
top of each other, yielding an AA-stacked configuration, or
2) relatively shifting one layer by one inter-atomic distance
such that only two sublattices are aligned, corresponding
to an AB-stacked configuration. We found that the type
of stacking configuration strongly influences the layer se-
lectivity of the system.

We perform our calculation for abrupt and smooth SLG-
BLG interfaces (see fig. 1(b), (c). These types of interfaces
show no quantitative or qualitative differences indicating
that the switching effect is robust against the smoothing of
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Fig. 1: (Colour online) (a) Schematic presentation of the pro-
posed structure with the indication of the top and back gate,
the coupled region (BLG) and the decoupled graphene sheets
(2SLG). (b) and (c): cross-section of the device with abrupt
and smooth transitions from the coupled to the decoupled
region, respectively. The arrows in (b) indicate the different
transmission channels as discussed in the text.

the SLG-BLG junction and that we can restrict ourselves
to the model of abrupt interfaces.

We describe the dynamics of the carriers in the different
regions by the continuum Hamiltonian written in the basis
of atomic orbitals Ψ = (Ψ1,Ψ2)T with Ψi = (ΨiA, ΨiB)
being the SLG spinor. Then the Hamiltonian of the sys-
tem reads [2,25,26]

H =

[
H1 Cτ,ζ

C†
τ,ζ H2

]
, (1)

where Hi = vF�σ ·�p+Vi is the SLG Hamiltonian with vF =
106 m/s the carrier Fermi velocity and Vi the electrostatic
potential on the i-th layer which can be varied by gating
the sample with top and back gates as shown in fig. 1(a).
In eq. (1) Cτ,ζ is the inter-layer coupling and is defined by

Cτ,ζ =

[
τγ1 0

ζγ1 τγ1

]
, (2)

where γ1 is the dominant inter-layer hopping parameter
which has the value γ1 ≈ 0.4 eV for AB-stacking [27] and
γ1 ≈ 0.2 eV for AA-stacking [28–30]. The coupling be-
tween the two graphene layers is controlled by the pa-
rameters τ and ζ that can “switch on” or “switch off ” the
inter-layer coupling between specific sublattices and there-
fore we can model different stacking types by assigning
different values to these parameters. For τ = ζ = 0, the
two layers are decoupled and the Hamiltonian represents
two independent SLG sheets. To achieve AA-stacking we
select τ = 1 and ζ = 0 while for AB-stacking we need
τ = 0 and ζ = 1. The energy spectra of the Hamiltonian
from eq. (1) are shown in fig. 2. Note that in eq. (2) we
neglected the skew inter-layer hopping parameters corre-
sponding to the sublattices which are not directly above

Fig. 2: (Colour online) Band dispersion relations around
the Dirac point for single-layer graphene (left), AA-stacked
(middle) and AB-stacked (right) bilayer graphene. The dashed
curves correspond to the spectrum of the system in the case of
a finite bias.

each other. The final result does not depend strongly on
this assumption since these hopping parameters are off di-
agonal contributions accompanied by a term linear in the
momentum [25].

To determine the layer selectivity we first note that
translation symmetry in the y-direction implies conser-
vation of ky. Then we connect the eigenstates of each
region defined in fig. 1(b) as “2SLG” for the decoupled
single layer and “BLG” for the bilayer regions at the in-
termediate boundaries by matching each sublattice spinor
component with its counterpart in the other region.

The eigenstates in the 2SLG regions consist of a set
of oppositely propagating states in each layer separately.
This allows us to define a layer resolved current by apply-
ing appropriate boundary conditions and identifying the
coefficients of each mode with electrons propagating in one
of the two SLG layers. In this manner we can calculate the
inter- and intra-layer transmission and reflection probabil-
ities as the square of the modulus [31–33]. The transmis-
sion probabilities are denoted by Ttt or Tbb for intra-layer
transitions and by Ttb or Tbt for inter-layer transitions.
The different transmission channels that are considered in
this work are illustrated in fig. 1(b). The reflection proba-
bilities are denoted as Rtt and Rbb or Rtb and Rbt following
the same convention. To conserve probability these quan-
tities are normalized such that Tii + Tij + Rii + Rij = 1,
(i, j) = t, b.

The number of transmission channels depends on the
availability of propagating modes in the BLG part of the
device [25]. As can be inferred from the energy spectra
depicted in fig. 2, for each energy it is possible to have up
to two modes of propagation (indicated in red and blue
in fig. 2). Note that for the AA-stacked BLG part there
are always two propagating modes, while for AB-BLG it
is possible to have none if the energy is in the gap, one if
the energy is below the second band (i.e. E < γ1) or two
if the energy is sufficiently high.

In order to take into account a smooth transition be-
tween the 2SLG and BLG regions, we used the transfer
matrix approach [31,32,34]. This approach subdivides the
smooth transition into a series of steps. We assume that
the inter-layer hopping γ1 increases linearly from zero in
the SLG region until γ1 in the joined region as shown in
fig. 1(c).
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We derive the conductance of the sample from the
transmission coefficients using the Landauer-Büttiker [35]
formula defined by

GT
ij = G0Ly

∑
ky

Tij (ky), (3)

where G0 = 4e2/h and Ly is the length of the sample
in the y-direction. Analogously we can also obtain the
reflectance as

GR
ij = G0Ly

∑
ky

Rij (ky), (4)

which gives a measure for the amount of current that is
reflected at the junction back into the leads where it came
from or into the other layer. These quantities can be used
to define a measure of layer filtering as follows:

FA
ij =

GA
ij

GA
i,tot

, (5)

where GA
i,tot = GA

it + GA
ib and A stands either for T or R

such that, for example, FT
bt measures the filtering to the

top layer (t) in the transmission channel (T ) when the
particle was incident in the bottom layer (b).

In fig. 3 we show the transmission and reflection prob-
abilities as a function of the Fermi energy at normal inci-
dence for different bias δ = (V1 − V2)/2, and potential
strength v0 = (V1 + V2)/2 for an AB-stacked junction
region. In figs. 3(a)–(d) the structure is ungated (v0 = 0)
and unbiased (δ = 0) with solid (dashed) lines for abrupt
(smoothed) interface. Tbb and Ttb are equal for ener-
gies less than the inter-layer hopping γ1. In contrast, for
E � γ1, the electrons strongly scatter from the top (bot-
tom) layer on the left lead into the bottom (top) layer on
the right. This difference is due to the presence of two pos-
sible transmission channels in BLG while only one channel
exists for E < γ1. On the other hand, the reflection prob-
ability shows no layer selectivity except for E = 0 where
electrons completely reflect into the same layer. This is
because at this energy there are no available propagating
states in BLG.

Applying an electric field on BLG (v0 > 0) will shift the
energy spectrum and affect the transmission probability
as shown in figs. 3(e), (f). The high selectivity or strong
scattering between the layers is preserved in the region
where the two channels are available, i.e. in the energy
intervals 0 < E < v0 − γ1 and E > v0 + γ1. Similarly, the
reflection probability here has no significant selectivity and
the strong reflection in Rbb channel is shifted by v0 since
it occurs now at E = v0.

In the case when BLG is biased (δ > 0) and gated
(v0 > 0), the band gap induced by the inter-layer bias
suppresses the transmission in the energy region between
v0 ± δ, as seen in figs. 3(g), (h). Moreover, Tbb (Rbb) and
Ttt (Rtt) are almost the same, except in the region where
there is only one channel in the BLG region. However,

Fig. 3: (Colour online) Transmission and reflection probabil-
ities at normal incidence as a function of the Fermi energy,
through 2SLG-AB-2SLG structure. (a), (b) and (c), (d) are
for the non-scattered and scattered channels with δ = v0 = 0,
respectively, solid (dashed) lines for abrupt (smoothed) struc-
ture with L = 25nm, LL = LR = 5 nm and LM = 20 nm,
(see fig. 1(c)). For only abrupt structure with v0 = 3γ1/2,
((e), (f)) and ((g), (h)) for δ = 0, 0.3γ1, respectively.

Tbt = Ttb for all energies, which is a manifestation of a
breaking of the inter-layer sublattice equivalence [25].

Due to the finite size of the interaction region, the prop-
agating mode in the BLG region interferes with itself re-
sulting in oscillations of the transmission probabilities, see
figs. 3(a), (c). These so-called Fabry-Pérot resonances ap-
pear at energies quantized as [26]

En
BLG =

1
2

(
−1 ±

√
1 + 4l2

(nπ

L

)2
)

, (6)

where l = �vF

γ1
≈ 1.7 nm (AB-stacking) and l ≈ 3.3 nm

(AA-stacking) is the inter-layer coupling length.
The effect of smoothing the SLG-BLG interface on the

transmission and reflection probabilities is shown in fig. 3.
In this figure we show the non-scattered and scattered
channels in fig. 3(a), (b) and (c), (d), respectively, for
abrupt (solid curves) and smoothed (dashed curves) struc-
tures. Our results show that the only effect of the smooth-
ness is to remove the oscillations in the transmission
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Fig. 4: (Colour online) Transmission and reflection probabili-
ties at normal incidence as a function of the bilayer width L for
δ = v0 = 0. (a) for AB-stacking with E = 3γ1/2 and (b) for
AA-stacking with E = 3γ1/2.

and reflection probabilities. However, the qualitative and
quantitative behaviour of the transmission and reflection
coefficients is preserved and the selectivity is not signifi-
cantly influenced by the smoothness.

Figure 4 shows the AB-BLG (left panel) and AA-BLG
(right panel) width dependence of the transmission and re-
flection probabilities for normal incidence. For both types
of stacking, Ttt and Tbb are equal and oscillate with the
width of the BLG, while the transmission Tbt = Ttb os-
cillates out of phase. This behaviour is due to the in-
terference of the two propagating modes in BLG, but for
AB-BLG this will not hold for E � γ1, because there is
only one propagating mode in this case. On the other
hand, the reflection probabilities for AA-stacking are zero
for the whole range of L, which is due to Klein tunnelling,
while for AB-stacking we still have partial reflection. The
location of the resonances in Tbb (Tbt) for AA and AB
stacking is given by [9]

Lm = ξπl (m + η) (7)

with m an integer, ξ = 1 for AA-stacking and ξ = 2 for
AB-stacking and η = 0, 1

2 for Tbb and Tbt, respectively.
The different value for ξ is due to the fact that when the
crystal is AB-stacked only half of the atoms contribute
in the inter-layer coupling while all atoms participate in
AA-stacking.

The layer filtering can be controlled by applying an elec-
tric field which shifts the potential of the total structure
by an amount v0 > 0 and applies a finite potential differ-
ence between the layers δ > 0. In fig. 5 we present the
conductance and reflectance with the corresponding layer
filtering as a function of bias for AB-BLG. The conduc-
tance shows a certain complementarity: the maxima in the
GT

bb (GT
tt) coincide with the minima in GT

bt (GT
tb) as seen

in fig. 5(a). This behaviour clearly shows up in the layer
filtering as shown in fig. 5(c), where for δ ≈ −0.35γ1 the
particle is incident on the bottom layer and then is trans-
mitted into the same layer, resulting in FT

bb ≈ 1. While for
δ = 0 we find that FT

bt = 1, which means that the particle
is incident on the bottom layer and is then transmitted
into the top layer on the other side of the junction. This
result demonstrates that the structure under considera-
tion has a gate tunable layer selectivity and that it can

Fig. 5: (Colour online) Conductance and reflectance along with
their associated layer filtering as a function of the bias through
a 2SLG-AB-2SLG structure for E = 0.3γ1 and v0 = 1.8γ1

and L = 25.8 nm. (a) and (b): conductance and reflectance;
(c) and (d): the corresponding layer filtering, respectively.

Fig. 6: (Colour online) Conductance and reflectance along with
their associated layer filtering as a function of the bias through
2SLG-AA-2SLG structure for E = 0.3γ1 and v0 = 1.8γ1

and L = 26.4 nm. (a) and (b): conductance and reflectance;
(c) and (d): the corresponding layer filtering, respectively.

act as a layer switch. Indeed, by tuning the voltage across
the joined region, one can switch the transmitted current
between the two layers.

The reflectance with the corresponding layer filtering is
shown in figs. 5(b), (d), respectively. We see small os-
cillations in GR

bb (GR
tt) which are out of phase compared

to GR
bt (GR

tb) with weak current flow. The results show
that also the reflection can be tuned by changing the bias
potential δ, but not with the strong selectivity that is pos-
sible in the transmission channel.

Also for the AA-stacked variant the scattered and non-
scattered conductances are exactly out of phase as shown
in fig. 6(a). The layer filtering is nearly perfect for δ ≈
±0.63 γ1 with FT

bb ≈ 1 and FT
bt ≈ 0, whereas at δ ≈ 0

the particles are completely scattered between the layers
with FT

bt ≈ 1 and FT
bb ≈ 0 as shown in fig. 6(c). The same

analogy here applies to the reflectance and the associated
layer filtering as shown in figs. 6(b), (d).
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In summary, we have investigated a system consisting
of two locally coupled graphene sheets and have shown
that it is a promising candidate for application as a layer
switch. We show that independently of the BLG stacking
configuration, the layer selectivity can be controlled by
an applied gate potential. The different peculiarities as-
sociated to the two stacking configurations for achieving
maximal switching behaviour were discussed. While our
final results are calculated for abrupt interfaces, we showed
that a smooth interface does not affect our findings.
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