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Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley
to intervalley transition
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The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength
of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration
interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a
combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons
(intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii)
the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different
electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton
ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular
momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the

competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and
intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized

in a CGQD.

DOI: 10.1103/PhysRevB.95.045409

I. INTRODUCTION

Graphene is an atomically thin two-dimensional (2D)
crystal made of carbon atoms that are arranged in a honeycomb
network. Since its first isolation in 2004 [1] and the subsequent
experimental demonstration of its excellent transport proper-
ties in 2005 [2,3], this 2D atomic crystal has been researched
extensively. Graphene has a unique electronic structure with
zero energy gap and linear energy dispersion, which leads
to fascinating physical properties [4—7] as well as potential
device applications [8—10]. In recent years, there has been con-
siderable interest in quantum confinement effects in graphene
nanostructures. It is expected that they will modify the physical
properties of Dirac fermions in graphene, and thus they may
bring about new quantum phenomena. Due to the Klein
tunneling effect, it is impossible to confine carriers in graphene
via electrostatic gating [11,12]. However, lithographic etching
of a graphene layer into narrow stripes or small flakes will
force carriers to be confined. With current nanofabrication
techniques, various graphene nanostructures can be realized
experimentally, and a number of experimental results have
been reported for etched graphene nanostructures [13—18]. An
alternative route is the chemical assembly of carbon atoms
into small structures such as short nanoribbons and dotlike
structures with a well-defined edge structure [19,20]. Among
these nanostructures, graphene quantum dots (GQDs) are of
particular interest because they exhibit excellent electronic and
optical properties that can be tuned by changing their lateral
size, geometric shape, boundary type, sublattice symmetry,
and the number of graphene layers [21-36]. Moreover, due to
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their excellent and tunable electronic and optical properties,
GQDs hold promising applications in advanced electronics
and optoelectronics. A comprehensive review of the current
status of GQDs can be found in Ref. [37].

Many-body effects such as excitonic effects induced by
electron-hole interactions are expected to be interesting and
important in graphene due to its 2D character and reduced
screening. A number of theoretical [38—40] and experimen-
tal [41-43] studies have revealed that remarkable excitonic
effects are indeed observed in the optical absorption spectrum
of graphene. This indicates that one has to go beyond
the single-particle picture in order to accurately describe
the optical properties of graphene. Despite the considerable
number of studies on excitonic effects in graphene [38—43],
less attention has been paid to the exciton problem in GQDs.
Compared with bulk graphene, GQDs have finite energy
gaps and exhibit carrier confinement, which can lead to
enhanced electron-hole interactions and thus result in stronger
excitonic effects. Up to now, the exciton problem in GQDs has
been investigated in only a few theoretical studies [44—46].
However, in these studies the effect of an external magnetic
field on the exciton states has not been explored. In the
present work, we investigate theoretically the exciton statesin a
model circular GQD (CGQD) with the infinite-mass boundary
condition in the presence of a perpendicular magnetic field.
The infinite-mass boundary condition states that the outward
current at the dot edge is zero [47], which can be realized
by applying an infinite staggered potential outside the dot.
Consequently, the particular edge that may play an important
role in realistic GQDs is no longer important in the present
circular model. The accurate treatment of edges requires an
analysis based on the tight-binding model or first-principles
calculations. Although the circular model is perhaps the
simplest model, it captures the main qualitative physics in
graphene dots, and it can be solved both analytically and
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numerically. Moreover, it can provide a good starting point
to study both the single-particle and many-body properties of
QDs in graphene.

In this work, we show that apart from intrinsic geomet-
rical confinement, extrinsic magnetic confinement also has a
significant influence on the exciton states in the CGQD. To
calculate these many-body states in the considered system, the
following two steps are carried out: First, the single-particle
states of electrons and holes are calculated by solving the
Dirac equation with the infinite-mass boundary condition.
Second, using these single-particle states, the configuration
interaction (CI) method [48] is employed to calculate the
exciton states induced by the electron-hole interaction. Within
the CI method, the exciton wave function in the CGQD is
expanded as a linear combination of products of the electron
and hole single-particle wave functions that may reside in
one of the two valleys of graphene. The results for the
magnetic field dependence of the exciton states are presented
and discussed, and some interesting features are observed. We
show that due to the valley degree of freedom in graphene, the
exciton states in the CGQD are more complicated than those in
a conventional semiconductor quantum dot (CSQD), because
in the CGQD the electrons and holes may be in the same valley
or in different valleys.

This paper is organized as follows. In Sec. II, we present the
theoretical model and calculation method for the exciton states
in a CGQD in the presence of a magnetic field. In Sec. III, the
numerical results on the magnetoexciton states are presented
and discussed. Finally, our concluding remarks are given in
Sec. IV.

II. MODEL AND THEORY

Our theoretical approach is divided into two parts: in
the first part, we employ the Dirac equation to calculate
the single-particle energies and wave functions of confined
electrons and holes in both valleys; in the second part, we
use the configuration interaction (CI) method to calculate the
exciton states by including the electron-hole interaction and
expanding the exciton wave function in terms of the electron
and hole single-particle wave functions obtained in the first
part.

A. Single-particle states of confined electrons and holes

We consider a CGQD of radius R in the presence of
a perpendicular magnetic field B, as illustrated in Fig. 1.
To obtain the electron and hole single-particle states in the
considered system, we use the Dirac Hamiltonian describing
the low-energy dynamics of electrons and holes in graphene. In
the valley-isotropic form, this Hamiltonian is given by [49,50]

H=vp(p+eA)- -0+ 1V(r)o,, (1)

where vy is the Fermi velocity of graphene, p = (py,py)
is the in-plane momentum operator with p, = —ihd/dx,
r = (x,y) is the in-plane position vector, A = (—By/2,Bx/2)
is the magnetic vector potential in the symmetric gauge,
o = (0x,0y,0;) is the Pauli matrix vector, 7 is the valley index
of graphene, with T = +1 (—1) denoting the K (K’) valley,
and V(r) is the mass-related potential. We assume the charge
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FIG. 1. Model system considered in the present work: (a) a
circular graphene quantum dot (CGQD) of radius R in the presence
of a perpendicular magnetic field B, and (b) an exciton (X) formed
in the CGQD by a conduction electron (e) and a valence hole (%) via
the attractive Coulomb interaction.

carriers (electrons and holes) are confined in the CGQD, which
can be modeled by a zero (infinite) potential inside (outside)
the CGQD [49,50], i.e., V(r) =0 for [r| < R and V(r) = o0
for [r| > R. Note that the confinement potential V (r) appears
in the Dirac Hamiltonian (1) via the Pauli matrix o,, so it
adds only the diagonal terms in this 2 x 2 Hamiltonian. When
both of the inequivalent K and K’ valleys are included, the
original 2 x 2 Hamiltonian will become a 4 x 4 one, but
the confinement potential V (r) still appears in the diagonal
terms of this new Hamiltonian, and there are no off-diagonal
terms in the valley basis. Therefore, the K and K’ valleys
remain decoupled in the presence of confinement. Because
the considered system has circular symmetry, it is convenient
to adopt cylindrical coordinates, i.e., r = (r,¢), with » and
¢ being the radial coordinate and azimuthal angle in the 2D
plane, respectively.

The single-particle states of confined electrons and holes
can be obtained by solving the Dirac equation Hyr = Ev,
where E and i are the single-particle energy and wave
function, respectively. To solve this equation, we introduce
dimensionless variables p =r/R, B = R2/(21129), and ¢ =
ER/(hvf), where lg = +/h/(eB) is the magnetic length, with
e and h being the elementary charge and the reduced Planck
constant, respectively. With these dimensionless variables, the
Dirac equation Hy = Ev in cylindrical coordinates can be

written as
0 7 ||¥ile.9) | _ [V¥1(p.d) ?)
T+ 0 || ¥2(p0.9) Ya(o,9) |’
where 7. = —ie*[0/dp £ (i/p)3/d¢ F Bp] and ¥;(p.¢)
(j = 1,2) are the two components of the wave function
Y(p,9). Due to the circular symmetry of our problem, the

two components of the wave function ¥ (p,¢) can be written
as

np.d) | J2xN ielv(p) |’
where m is the angular quantum number, which takes integer

values, and N is the normalization factor determined by
the normalization condition for the wave function, i.e., N/ =
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R? fol[|u(/o)|2 + [v(p)|*lpdp. The two components of the
wave function correspond to different sublattice contributions,
i.e., u(p) corresponds to the contribution from sublattice A,
and v(p) corresponds to that from sublattice B. Inserting the
two-component wave function (3) into the Dirac equation (2),
we obtain the following set of coupled ordinary differential
equations:

[ 0 f(ﬁ,m,p)} [u(p)} _ 8[u(p)} @
g(B.m,p) 0 v(p) v(p) ]’

where f(B,m,p) = 9/9p + (m + 1)/p + Bp and g(B,m,p) =
—0a/dp +m/p + Bp. To solve these equations, we still need
some boundary conditions. The mass-related potential V (r) in
the CGQD leads to the infinite-mass boundary condition [47],
which requires that the outward current at the dot edge is
zero and yields the simple condition ¥, (p = 1,¢)/¥1(p =
1,0) =ite'® or v(p =1)/u(p =1) =1 for circular con-
finement [47,49,50]. It should be noted that this boundary
condition for the CGQD is quite different from that for the
CSQD, which requires the wave function (not the current)
to vanish at the dot boundary. The single-particle states of
confined electrons and holes in the CGQD in the presence of
a perpendicular magnetic field are obtained by numerically
solving the coupled differential equations (4) with the infinite-
mass boundary condition using the finite-element method [30].
The obtained single-particle states are characterized by the set
of quantum numbers (z,m,n), where t is the valley index, m is
the angular quantum number and » is the principal (or radial)
quantum number. For large magnetic fields, n can be identified
as the Landau level index.

B. Exciton states induced by electron-hole interactions

After obtaining the single-particle states of electrons and
holes, we now consider the exciton states induced by electron-
hole interactions in a CGQD in the presence of a magnetic
field. The exciton Hamiltonian (Hy) for the model system is
given by

HX = He + Hh + Vehv (5)

where H, (Hp) is the single-particle Hamiltonian for the
electron (hole), V., = —e*/(4mk|r, — 13]) is the Coulomb
interaction between the electron and the hole, r. (r;) is the
electron (hole) coordinates, and « is the effective dielectric
constant of graphene. Note that V,; is the unscreened (bare)
electron-hole Coulomb interaction. It has been shown [51]
that in atomically thin 2D materials such as monolayer MoS,,
the electron-hole Coulomb interaction can be taken as a
Keldysh-type interaction, in which the nonlocal screening
effect is properly taken into account. Here we limit ourselves
to the unscreened Coulomb interaction between an electron
and a hole, and we do not expect any qualitative changes if the
Coulomb potential is modified.

The exciton states can be obtained by solving the two-
particle Schrodinger equation Hy Wy (x,,ry) = ExVx(r,,1r3),
where Ex and Wy are the exciton energy and wave func-
tion, respectively. In the present work, we employ the CI
method [48] to calculate the exciton states. In this method,
the exciton wave function is expanded as a linear combination
of direct products of the electron and hole wave functions. To
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proceed, we define two important quantities for the exciton
wave function: the total valley index T = t, + 1, and the total
angular momentum M = m, + my, for the electron-hole pair,
where t; andm ; (j = e,h) are the valley index and the angular
momentum for the single-particle state, respectively. With this
definition, we may expand the exciton wave function with
fixed T and M as

Wx(re,th) = D A, Yo (C) Vs, (00), 6)

Aehn

where A, ,, is the expansion coefficient, and the subscripts
re = (Tp,me,n.)and Ay, = (1p,,mp,ny) are the quantum number
sets for the electron and hole single-particle states, respec-
tively. Electron-hole pairs in the summation of Eq. (6) are
limited to those satisfying t, + 1, =T and m, +m, = M.
With this expansion of the exciton wave function, the exciton
Schrodinger equation now reads

(B + By = E A + YV A =0, O

Aehn

where Ej; (Ej ) is the single-particle energy of the electron

. Ay
(hole) state, and the Coulomb matrix element V, " is given
by

AN / / Ul (R, () Ve, (r ), ()dredry. ()

In the derivation of Eq. (7), the orthogonality of the single-
particle wave function has been used, i.e., (}»}l)» i) = 5,\;,,\/.
(j = e,h), with § being the Kronecker delta. Because the
considered system has circular symmetry, the total exciton
angular momentum M is a conserved quantity, and thus the
Coulomb matrix element given by Eq. (8) is nonzero only
when M' =M (M' =m, +mj, and M = m, + my). After
calculating all nonzero Coulomb matrix elements, the full
exciton Hamiltonian matrix is then diagonalized to obtain the
eigenvalues (corresponding to the exciton energy levels) and
eigenvectors (corresponding to the expansion coefficients for
the exciton wave functions). In the numerical diagonalization,
the basis states used in the CI method are chosen such that
they are the lowest single-particle states of electrons and
holes, and the number of these states is chosen sufficiently
large to guarantee convergence of the lowest exciton energies.
The singularity occurring in the Coulomb matrix element
can be removed by using an alternative expression in terms
of the Legendre function of the second kind of half-integer
degree [52].

Given the exciton energy spectrum and corresponding
wave function, different physical properties of the exciton
can be evaluated in principle. Here, we present the binding
energy, effective radius, and oscillator strength of the exciton.
These physical quantities are very helpful in understanding
the excitonic properties of the material system. The exciton
binding energy E s, effective radius Ry, and oscillator strength
Fx are given by [53]

Ep = (Vx| H, + H;, |Vx) — EY, 9

Ry =/ (¥x| v, — 1,2 [Wy), (10)
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and
2

= ’// Wy (re,r)8(r, — rp)dr.dry| , (1)

respectively. As can be derived from the expression of Fy, the
exciton states with total angular momentum M =0, —1, —2
contribute to the optical transitions, i.e., they are optically
active (or bright) states. This result for the CGQD is different
from that for the CSQD where only exciton states with M = 0
are optically bright [54]. In the present work, we will limit
ourselves to the optically bright exciton states since they can
be experimentally observed in photoluminescence spectra.

In addition to the binding energy, effective radius, and
oscillator strength, we also present the electron-hole pair
density and the conditional probability density, which are given
by [55]

n(r)= Y (Uy| 8@ —r))|Wy) (12)

j=euh
and

[Wx(r, = ro,ry)|
[ 1Wx(r, =ro,ry)2dr,’

respectively. These two quantities are very useful in charac-
terizing the spatial distribution of the exciton state. According
to their definitions, n(r) gives the electron-hole pair density
at a radial distance r = |r|, while P(ry|r, =ry) gives the
probability to find the hole at r;, under the condition that the
electron is pinned at r,.

P(rylr, =19) = (13)

III. RESULTS AND DISCUSSIONS

In this section, we will present and discuss our numerical
results for the single-particle states of confined electrons and
holes, and for the exciton states induced by electron-hole
interactions in a CGQD in the presence of a perpendicular
magnetic field. For the numerical calculation of exciton states
in the present work, we choose the angular quantum number

me, =my =0,%1,+2,..., 7 and the radial quantum num-
ber n, =n, =1,2,...,7 in Eq. (7) for both the K (r = 1)
and K’ (r = —1) valleys, which gives an accuracy for the

exciton ground-state energy close to 1073 meV. Furthermore,
we take x = 2.5 for the effective dielectric constant of
graphene [56,57]. Such a small dielectric constant leads to
reduced screening for the Coulomb interaction. This is why
many-body effects such as electron-electron and electron-hole
interactions are expected to be significant in graphene.

We first give a brief analysis of the single-particle states in
the CGQD in the presence of a magnetic field, which have been
analyzed in detail in a previous work [50]. In Fig. 2, we show
the single-particle magnetic energy spectrum in a CGQD with
radius R = 50 nm. From this figure, we can see the following
interesting features: (i) an energy gap between the electron
states in the K’ valley and the hole states in the K valley opens
at low magnetic fields due to the quantum confinement effect,
and this gap tends to close as the magnetic field increases.
(i) At high magnetic fields, the electron and hole energy
levels in both K and K’ valleys approach the Landau levels
(LLs) of bulk graphene [50]. The reason is that the magnetic
confinement becomes stronger than the geometric confinement
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—K valley
---K' valley

FIG. 2. Single-particle energy spectrum in a CGQD with R =
50 nm in the presence of a perpendicular magnetic field. Only the six
lowest electron and hole states are shown for the angular quantum
number —6 < m < 6. The blue solid and red dashed curves denote
the results for the K and K’ valleys, respectively, as indicated.

with increasing magnetic field. (iii) The low-lying electron LLs
(high-lying hole LLs) in the K (K’) valley converge to the
zero-energy states as the magnetic field increases, which is not
seen in the CSQD [58], where the energy gap increases with
the field. These zero-energy states emerge due to the closure of
the energy gap at high magnetic fields. (iv) There is intervalley
electron-hole symmetry [i.e., |E.(£t,m,n)| = |Ey(Ft,m,n)|]
but no intravalley symmetry [i.e., | E.(t,m,n)| # |Ey(t,m,n)|]
in the CGQD. (v) In the absence of the magnetic field, the
energy levels corresponding to the K and K’ valleys are
degenerate because these two valleys are related to one another
by the time-reversal symmetry. This degeneracy is lifted for
a nonzero magnetic field because the application of this field
breaks the time-reversal symmetry.

Now we turn to the results for the exciton states in the
CGQD in the presence of a magnetic field. To proceed, we
first give some basic physical pictures for exciton formation
in the considered system. To make our statements more
clearly, we have to look at the single-particle energy spectrum
shown in Fig. 2 again. As can be seen, there can be two
types of excitons present in the CGQD: (i) the intravalley
exciton formed by an electron and a hole in the same K
(or K’) valley, and (ii) the intervalley exciton formed by
an electron in the K (or K’) valley and a hole in the K’
(or K) valley. From the different electron-hole symmetries
exhibited in the single-particle energy spectra, we may expect
that the intravalley and intervalley exciton states should display
different magnetic-field dependencies.

In Fig. 3, we show the magnetic energy spectra of
(a) noninteracting states and (b) exciton states for the same
CGQD as in Fig. 2. Here, the energy levels with the same total
valley index T (T = 7, + 1) are plotted with the same type of
curve: the red solid curves for T = +2 witht, = 1, = %1, the
green solid curves for T = 0 with t, = —1;, = 1, and the blue
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150 FIG. 3. Magnetic energy spectra of noninteract-
4 100 ing states (a) and exciton states (b) for the same
= CGQD asin Fig. 2. Energy levels with the same total
g 100&7. 5014 valley index T are plotted in the same type of curve:
— the red curves for T = £+2 with 7, = 1, = %1, the
K 0 green curves for T = 0 with 7, = —7;, = 1, and the
50 blue curves also for T = 0 but with 7, = —1, =
—1. Note that the energy levels for 7 = £2 are
=50 ] degenerate due to the same electron-hole symmetry
ok 1 100l i and thus are plotted with the same red color.
1 1 1 1 1 1
0 5 10 15 20 0 5 10 15 20
B [T] B [T]
solid curves also for T = Obut witht, = —t;, = —1.Itisclear  for the noninteracting ground state for both dot radii (7 =0

that the excitonic effect induced by the electron-hole Coulomb
interaction is very significant. We find that for 7 = %2 the
energy levels are degenerate due to the same electron-hole
symmetry for such two-valley indices (see Fig. 2). In addition,
due to such electron-hole symmetry, the energy spectra for
T = 0, 2 exhibit very different magnetic-field dependencies.
It should be noted that some energy levels of the noninteracting
states [see the blue curves in Fig. 3(a)] exhibit a discontinuous
behavior. This is because only diagonal matrix elements
of electron and hole angular momenta are involved in the
calculation of noninteracting states, and thus the total angular
momentum M (M = m, + my;) can be discontinuous as a
function of the magnetic field. However, for exciton states,
all diagonal and nondiagonal matrix elements are included
in the calculation, and thus the corresponding energy levels
are continuous, although some can exhibit a discontinuous
derivative.

In Fig. 4, we show the magnetic-field dependence of the
exciton ground-state energy for two dot radii R’s as indicated.
For comparative purposes, we also plot the noninteracting
ground-state energy in the figure. Because the magnetic energy
levels for the total valley indices 7 = =£2 are degenerate (see
Fig. 3), we only show the results for 7 = 2 in Fig. 4. As can
be seen, for both R = 50 and 30 nm, with increasing magnetic
field, the exciton ground state in the CGQD undergoes an
intravalley to intervalley transition accompanied by a change of
angular momentum, i.e., 7 =2 and M = —1 becomes T = 0
and M = —2 as the magnetic field increases. For the larger
radius (R = 50 nm), there is a critical value of the magnetic
field BC'_ = 1.3 T at which such a transition occurs, as indicated
by the black arrow in the figure. Such a combined transition
of valley and angular momentum does not occur in the CSQD,
where T is not present and M remains unchanged [59],
i.e., the exciton state is always a singlet state. However, for
the smaller radius (R = 30 nm), the critical magnetic field
decreases from B! = 1.3 T to B> = 3.6 T. Since the critical
magnetic field is determined by the crossing of two exciton
energy levels with different valley indices 7’s and angular
momenta M’s, the larger energy difference between these two
levels corresponds to the larger critical value of the magnetic
field. Hence, the critical magnetic field increases as the dot
radius decreases. In addition, we find no 7 and M transitions

and M = —2 are kept when varying the magnetic field). Based
on the above statements, we conclude that the intravalley to
intervalley transition of the exciton ground state in the CGQD
is induced by the electron-hole Coulomb interaction. We also
note that at B = 0, the exciton energy in the CGQD is lower
for R =30 nm than for R = 50 nm, which is contrary to
most CSQD, where the confinement energy prevails over the
Coulomb interaction and would make the exciton energy for
R = 30nm higher. This difference can be explained as follows.
Considering the quadratic low-energy dispersion E ~ k? in
semiconductors, the confinement energy in CSQDs exhibits
a 1/R? dependence on the dot size R (assuming k ~ 1/R),

—R=30
—R=50

nm
nm

100r

N\
OF ¢ c B2 N On-interacting T

E [meV]

—100

FIG. 4. Magnetic-field dependencies of noninteracting ground-
state energy and exciton ground-state energy for two dot radii R’s as
indicated. Here, (7', M) are a pair of quantum numbers: the total valley
index and the total angular momentum. The black arrows indicate the
critical magnetic fields B! = 1.3 Tfor R = 50nmand B? = 3.6 T for
R = 30 nm. At these magnetic fields, the exciton ground state in the
CGQD undergoes an intravalley to intervalley transition accompanied
by a change of angular momentum, i.e., acombined valley and angular
momentum transition.
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& 100 -
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50F P -

10

FIG. 5. Magnetic-field dependence of the binding energy Ep of
the exciton ground state for the same CGQDs as in Fig. 4. The black
arrows indicate the critical magnetic fields B! = 1.3 Tfor R = 50 nm
and B> = 3.6 T for R = 30 nm. At these magnetic fields, E » changes
abruptly.

which may prevail over the Coulomb energy (~1/R) and
would make smaller dot sizes higher in energy. In contrast,
the low-energy dispersion is linear E ~ k in graphene, leading
to a 1/R dependence of the confinement energy in a CGQD,
which is comparable to the Coulomb energy. Therefore, in
the presence of the electron-hole Coulomb interaction, a
smaller-sized CGQD may have lower exciton states compared
to a larger-sized CGQD.

In Fig. 5, we show the magnetic-field dependence of the
binding energy Ep of the exciton ground state for the same
CGQDs as Fig. 4. The smaller dot radius corresponds to the
larger exciton binding energy, as expected. The binding energy
E g changes abruptly at the critical magnetic fields B! = 1.3 T
and BZ = 3.6 T for the dotradii R; = 30 nm and R, = 50 nm,
respectively. This is a consequence of the intravalley to inter-
valley transition of the exciton ground state (see Fig. 4). We

(@ (b)

50
El
S0
N
.50 4250 :
-50 0 50 -50 0 50
x [nm] x [nm]

PHYSICAL REVIEW B 95, 045409 (2017)

find that when the magnetic length /3 = 4/h/eB is comparable
to the dot radius R, the binding energy Ep changes abruptly
at the critical magnetic field B.. The Ep — B relation exhibits
different behaviors in the different regions defined by critical
magnetic fields. For larger (small) radius R = 50 nm (R = 30
nm), Ep decreases slightly with increasing B for B < B!
(B < B?) and increases markedly with increasing B for B >
B! (B > B?). At lower magnetic fields, B < B! (B < B?)
for larger (smaller) R, the peculiar Ep — B relation (i.e., Ep
decreases slightly with increasing B) is mainly caused by the
competing effects of geometric and magnetic confinements.
However, at higher magnetic fields, B > B! (B > B?) for
larger (smaller) R, Ep increases monotonically with B. This
is not surprising, because by applying higher magnetic fields,
the electrons and holes are more confined due to the strong
magnetic confinement, they are closer to each other, and thus
they are more tightly bound, which leads to an increase of
the exciton binding energy. To see this more intuitively, we
plot in Fig. 6 the conditional probability densities (CPDs)
and the electron-hole pair densities (EHPDs) of the exciton
ground state in the CGQD with radius R = 50 nm for different
magnetic fields, as indicated. The expressions for the CPD and
EHPD are given, respectively, by Egs. (12) and (13) in Sec. II.
In this figure, we can see that with increasing magnetic field,
the electrons and holes are more confined in the CGQD (see
the CPD plot) and are pulled more closely toward the center
of the CGQD (see the EHPD plot). Another prominent feature
in Fig. 5 is that Eg in the CGQD can be of the order of 100
meV, which is much larger than that in the CSQD with an even
smaller radius (about 15-50 meV for a range of dot radii from
2 to 15 nm) [59]. This large binding energy is mainly caused
by the combined factors of geometric confinement, magnetic
confinement, and reduced screening.

In Fig. 7, we show the B-R phase diagram for the
intravalley to intervalley transition of the exciton ground state
in the CGQD. Here, the black dashed curve represents the
dependence relation of the critical magnetic field B, with
the dot radius R. As can be seen, at lower magnetic fields
the exciton ground state is found to be an intravalley exciton
state. With increasing field strength to a critical value B,, it
changes abruptly into the intervalley exciton state. We find
that the critical magnetic field B, depends on the dot radius R

(d)

—B=2 [T]
B=5 [T]

—B=10 [T]|]

25

7 [nm]

50

x [nm]

FIG. 6. Conditional probability densities (CPDs) and electron-hole pair densities (EHPDs) of the exciton ground state for the same CGQD
as Fig. 2 for different magnetic fields: (a) the CPD at B =2 T; (b) the CPD at B = 5 T; (c) the CPD at B = 10 T with fixed electron position

atr = (R/2,0); and (d) the EHPDs for these magnetic fields.
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FIG. 7. B-R phase diagram for the intravalley to intervalley
exciton transition in the CGQD. The black dashed curve represents
the dependence relation of the critical magnetic field B, with the dot
radius R.

in a manner B.R* ~~ const (see the black dashed curve). This
peculiar B, — R relation can be understood as follows. Since
the magnetoexciton states in the CGQD are governed by the
two length scales, namely the magnetic length Iz = \/h/eB
and the dot radius R, the intravalley to intervalley exciton
transition occurs when [z is comparable to R, which gives
rise to the relation B.R?> ~ hi/e. Our numerical result gives
B.R? ~ 3240 T nm?.

200F a

150

100} ITTIIIHE

E [meV]

-to0r T -

FIG. 8. Excitonic transition energies and strengths for the same
CGQD asinFig. 2. The red circles denote the results for the intravalley
exciton states with 7 = £2, and the green/blue circles denote the
results for the intervalley exciton states with T = 0. The size of the
solid circle indicates the excitonic transition oscillator strength.
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In Fig. 8, we show the optical transition energies and
strengths for all the exciton states shown in Fig. 3(b). Here,
the red circles denote the results for the intravalley excitons
with T = 42 and 7, = 7, = £1, the green circles for the
intervalley excitons with 7 =0 and 7, = —7;, = 1, and the
blue circles also for the intervalley excitons with 7 = 0 but
1, = —1; = —1. As canbe seen, the intravalley and intervalley
excitons have different optical transition energies and strengths
and exhibit different magnetic field dependencies, as indicated
by the color and size of the solid circle in the figure. This
magnetic-field tuning of valley-dependent excitonic transitions
might shed some light on the potential applications of a CGQD
in valleytronics. As mentioned previously, intravalley and
intervalley excitons are formed in the CGQD due to the valley
degree of freedom in graphene [see Fig. 3(b)]. This valley
degree of freedom dictates similar optical transitions for the
intravalley and intervalley two-electron states in the bilayer
graphene quantum dot [60], where the electron-electron
interaction was taken into account.

Before closing this paper, we present a qualitative com-
parison between the optical transitions of exciton states in
bulk graphene and in CGQDs. Because bulk graphene has
translational invariance, the electron and hole states in the
system can be described by 2D plane waves. In addition, due
to this invariance, the center-of-mass (COM) momentum for
an exciton in bulk graphene is a conserved quantity, which
is given by hk = Rk, — hk,, with k., and k, being the 2D
wave vectors for the electron and hole, respectively. From this
expression, we can see that in bulk graphene, the intravalley
excitons have a zero COM wave vector, i.e., k = 0, while the
intervalley excitons have a nonzero COM wave vector, i.e.,
k ~ K — K/, with K (K’) being the electron or hole wave
vector at the K (K') valley. Because photons have a negligibly
small momentum, only excitons with k = 0 are optically
active due to the momentum conservation law. Therefore,
in bulk graphene, the intravalley (intervalley) excitons are
optically bright (dark). However, both the intravalley and
intervalley excitons in the CGQD can be optically bright
because they have nonzero optical transition strengths (see
Fig. 8). Due to the broken translational invariance, the
momenta of electrons and holes in the CGQD are no longer
good quantum numbers, and so the concept of a COM wave
vector does not exist for the exciton. Moreover, due to the
finite-size effect in QDs, the exciton wave function transforms
from the plane-wave form into the envelope-function form.
Therefore, new optical transition rules emerge for the intraval-
ley and intervalley excitons in the CGQD, which depend on
the overlap between the electron and hole wave functions
rather than on the momentum conservation condition in bulk
graphene.

IV. CONCLUDING REMARKS

We have investigated the exciton states in a CGQD in the
presence of a perpendicular magnetic field. The energy spec-
trum, wave function, binding energy, and oscillator strength
of exciton states were calculated within the configuration
interaction approach as a function of the magnetic field. We
found significant excitonic effects in the CGQD as compared to
excitons in the CSQD due to the combined factors of geometric
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confinement, magnetic confinement, reduced screening, and
the presence of two valleys. We showed that there are two
types of excitons (intravalley and intervalley) in the CGQD
because of the valley degree of freedom in graphene, and
the intravalley and intervalley exciton states display different
magnetic field dependencies due to the different electron-
hole symmetries exhibited in the single-particle energy
spectra.

With increasing magnetic field, the exciton ground state
undergoes an intravalley to intervalley transition accompanied
by a change of angular momentum (i.e., a combined transition
of valley and angular momentum), and due to this transition,
the exciton binding energy changes discontinuously with the
magnetic field. Such a combined transition of valley and
angular momentum does not occur for the exciton ground
state in a CSQD. The exciton binding energy in the CGQD
does not increase monotonically with the magnetic field due

PHYSICAL REVIEW B 95, 045409 (2017)

to the competing geometric and magnetic confinements. We
have also examined the optical properties of the exciton states
in the CGQD. We found that the optical transition energies
and strengths of the intervalley and intravalley excitons can
be tuned by the magnetic field. This magnetic-field tuning of
the valley-dependent excitonic transitions can be relevant for
potential applications of a CGQD in valleytronics.
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