toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency Type A1 Journal article
  Year (down) 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 8236-8251  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave plasmas are one of the most promising techniques for CO2 conversion into value-added chemicals and fuels since they are very energy efficient. Nevertheless, experiments show that this high energy efficiency is only reached at low pressures and significantly drops toward atmospheric pressure, which is a clear limitation for industrial applications. In this paper, we use a zerodimensional reaction kinetics model to simulate a CO2 microwave plasma in a pressure range from 50 mbar to 1 bar, in order to evaluate the reasons for this decrease in energy efficiency at atmospheric pressure. The code includes a detailed description of the vibrational kinetics of CO2, CO, and O2 as well as the energy exchanges between them because the vibrational kinetics is known to be crucial for energy efficient CO2 splitting. First, we use a self-consistent gas temperature calculation in order to assess the key performance indicators for CO2 splitting, i.e., the CO2 conversion and corresponding energy efficiency. Our results indicate that lower pressures and higher power densities lead to more vibrational excitation, which is beneficial for the conversion. We also demonstrate the key role of the gas temperature. The model predicts the highest conversion and energy efficiencies at pressures around 300 mbar, which is in agreement with experiments from the literature. We also show the beneficial aspect of fast gas cooling in the afterglow at high pressure. In a second step, we study in more detail the effects of pressure, gas temperature, and power density on the vibrational distribution function and on the dissociation and recombination mechanisms of CO2, which define the CO2 splitting efficiency. This study allows us to identify the limiting factors of CO2 conversion and to propose potential solutions to improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400039300002 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 47 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142809 Serial 4567  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
  Year (down) 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 50 Issue 50 Pages 796-804  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399859800016 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved Most recent IF: 20.268  
  Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561  
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Zhang, Y.-ru; Bogaerts, A. pdf  url
doi  openurl
  Title Formation of microdischarges inside a mesoporous catalyst in dielectric barrier discharge plasmas Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 054002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The formation process of a microdischarge (MD) in both μm- and nm-sized catalyst pores is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model. A parallel-plate dielectric barrier discharge configuration in filamentary mode is considered in ambient air. The discharge is powered by a high voltage pulse. Our calculations reveal that a streamer can penetrate into the surface features of a porous catalyst and MDs can be formed inside both μm- and nm-sized pores, yielding ionization inside the pore. For the μm-sized pores, the ionization mainly occurs inside the pore, while for the nm-sized pores the ionization is strongest near and inside the pore. Thus, enhanced discharges near and inside the mesoporous catalyst are observed. Indeed, the maximum values of the electric field, ionization rate and electron density occur near and inside the pore. The maximum electric field and electron density inside the pore first increase when the pore size rises from 4 nm to 10 nm, and then they decrease for the 100 nm pore, due to

a more pronounced surface discharge for the smaller pores. However, the ionization rate is highest for the 100 nm pore due to the largest effective ionization region.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399277700001 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 15 Open Access OpenAccess  
  Notes This work was supported by the NSFC (11405067, 11275007, 11375163). Y Zhang gratefully acknowledges the Belgian Federal Science Policy Office for financial support. The authors are very grateful to Wei Jiang for the useful discussions on the photo-ionization model and the particle-incell/ Monte-Carlo model. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142806 Serial 4566  
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399278100002 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
  Year (down) 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 10 Pages 1700013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413045800010 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910  
Permanent link to this record
 

 
Author Tennyson, J.; Rahimi, S.; Hill, C.; Tse, L.; Vibhakar, A.; Akello-Egwel, D.; Brown, D.B.; Dzarasova, A.; Hamilton, J.R.; Jaksch, D.; Mohr, S.; Wren-Little, K.; Bruckmeier, J.; Agarwal, A.; Bartschat, K.; Bogaerts, A.; Booth, J.-P.; Goeckner, M.J.; Hassouni, K.; Itikawa, Y.; Braams, B.J.; Krishnakumar, E.; Laricchiuta, A.; Mason, N.J.; Pandey, S.; Petrovic, Z.L.; Pu, Y.-K.; Ranjan, A.; Rauf, S.; Schulze, J.; Turner, M.M.; Ventzek, P.; Whitehead, J.C.; Yoon, J.-S. url  doi
openurl 
  Title QDB: a new database of plasma chemistries and reactions Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055014  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF6/CF4/O2 and SF6/CF4/N2/H2 are presented as examples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398394500001 Publication Date 2017-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 18 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142206 Serial 4549  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z. pdf  url
doi  openurl
  Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
  Year (down) 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398327900002 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535  
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Georgieva, V.; Dussart, R.; Neyts, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Concurrent effects of wafer temperature and oxygen fraction on cryogenic silicon etching with SF6/O2plasmas Type A1 Journal article
  Year (down) 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 9 Pages 1700018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cryogenic plasma etching is a promising technique for high-control wafer development with limited plasma induced damage. Cryogenic wafer temperatures effectively reduce surface damage during etching, but the fundamental mechanism is not well understood. In this study, the influences of wafer temperature, gas mixture and substrate bias on the (cryogenic) etch rates of Si with SF6/O2 inductively coupled plasmas are experimentally and computationally investigated. The etch rates are measured in situ with double-point reflectometry and a hybrid computational Monte Carlo – fluid model is applied to calculate plasma properties. This work allows the reader to obtain a better insight in the effects of wafer temperature on the etch rate and to find operating conditions for successful anisotropic (cryo)etching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410773200012 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, 0880.212.840 ; Hercules Foundation; Flemish Government (Department EWI); Universiteit Antwerpen; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:145637 Serial 4708  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C. pdf  url
doi  openurl
  Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
  Year (down) 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 184001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398300900001 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
  Year (down) 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 452-457  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401120800053 Publication Date 2017-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 2 Open Access OpenAccess  
  Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
  Year (down) 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 5787-5799  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396969900037 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142202 Serial 4537  
Permanent link to this record
 

 
Author Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation by gliding arc plasma : better insight by chemical kinetics modelling Type A1 Journal article
  Year (down) 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 2145-2157  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2/O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx. The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale HaberBosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000402122100006 Publication Date 2017-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 42 Open Access OpenAccess  
  Notes Approved Most recent IF: 7.226  
  Call Number UA @ lucian @ c:irua:143261 Serial 4672  
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
  Year (down) 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 214 Issue 6 Pages 1600889  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403339900012 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:144219 Serial 4678  
Permanent link to this record
 

 
Author Truong, B.; Siegert, K.; Lin, A.; Miller, V.; Krebs, F.C. pdf  doi
openurl 
  Title Apical application of nanosecond-pulsed dielectric barrier discharge plasma causes the basolateral release of adenosine triphosphate as a damage-associated molecular pattern from polarized HaCaT cells Type A1 Journal article
  Year (down) 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 2 Pages 117-131  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Promising biomedical uses for nonthermal plasma (NTP) in the fields of regenerative medicine, cancer therapy, and vaccine delivery involve the noninvasive application of uniform nonequilibrium plasma (including dielectric barrier discharge plasma) to living skin. Whereas most investigations have focused on achieving desired therapeutic outcomes, fewer studies have examined the mechanisms and pathways by which epithelial cells respond to NTP exposure. Using a transwell apical-basolateral-chambered system to culture the human keratinocyte HaCaT cell line, in vitro experiments were performed to demonstrate the effects of nanosecond-pulsed dielectric barrier discharge (nsDBD) plasma on polarized epithelial cell viability, monolayer permeability, intracellular oxidative stress, and the release of adenosine triphosphate (ATP). Application of nsDBD plasma at 60 Hz or below had minimal or no effect on HaCaT monolayer viability or permeability. nsDBD plasma exposure did, however, result in frequency-dependent reductions in intracellular glutathione (indicating direct induction of oxidative stress by nsDBD plasma) and increased extracellular ATP concentrations in the ba-solateral (subepithelial) media, which are indicators of cellular stress and an NTP-induced inflammatory response. These studies provide new insights into nsDBD plasma-induced inflammation and local innate immune responses initiated by polarized epithelial tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155656 Serial 7465  
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. pdf  url
doi  openurl
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year (down) 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 1039-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398182800002 Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess  
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532  
Permanent link to this record
 

 
Author Kong, L.; Wang, W.; Murphy, A.B.; Xia, G. pdf  url
doi  openurl
  Title Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method Type A1 Journal article
  Year (down) 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 16 Pages 165203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in microthruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of microthruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000398856300001 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:143642 Serial 4674  
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Origin of the apparent delocalization of the conduction band in a high-mobility amorphous semiconductor Type A1 Journal article
  Year (down) 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 25 Pages 255702  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, we show that the apparent delocalization of the conduction band reported from first-principles simulations for the high-mobility amorphous oxide semiconductor InGaZnO4 (a-IGZO) is an artifact induced by the periodic conditions imposed to the model. Given a sufficiently large unit-cell dimension (over 40 angstrom), the conduction band becomes localized. Such a model size is up to four times the size of commonly used models for the study of a-IGZO. This finding challenges the analyses done so far on the nature of the defects and on the interpretation of numerous electrical measurements. In particular, we re-interpret the meaning of the computed effective mass reported so far in literature. Our finding also applies to materials such as SiZnSnO, ZnSnO, InZnSnO, In2O3 or InAlZnO4 whose models have been reported to display a fully delocalized conduction band in the amorphous phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402434900002 Publication Date 2017-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:144183 Serial 4676  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale behavior of oxygen-based radicals in water Type A1 Journal article
  Year (down) 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 11LT01  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition,

the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415252400001 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 11 Open Access OpenAccess  
  Notes The authors thank Peter Bruggeman (University of Minnesota, USA) and Jan Benedikt (Ruhr-Universität Bochum, Germany) for the interesting discussions regarding the existence of O in aqueous solutions. Furthermore, they acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (project number G012413N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:140845 Serial 4420  
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Radu, I.P.; Pourtois, G. pdf  doi
openurl 
  Title Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures : a first-principles study Type A1 Journal article
  Year (down) 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 8 Pages 7725-7734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Since the discovery of graphene, a broad range of two-dimensional (2D) materials has captured the attention of the scientific communities. Materials, such as hexagonal boron nitride (hBN) and the transition metal dichalcogenides (TMDs) family, have shown promising semiconducting and insulating properties that are very appealing for the semiconductor industry. Recently, the possibility of taking advantage of the properties of 2D-based heterostructures has been investigated for low-power nanoelectronic applications. In this work, we aim at evaluating the relation between the nature of the materials used in such heterostructures and the amplitude of the layer-to-layer charge transfer induced by an external electric field, as is typically present in nanoelectronic gated devices. A broad range of combinations of TMDs, graphene, and hBN has been investigated using density functional theory. Our results show that the electric field induced charge transfer strongly depends on the nature of the 2D materials used in the van der Waals heterostructures and to a lesser extent on the relative orientation of the materials in the structure. Our findings contribute to the building of the fundamental understanding required to engineer electrostatically the doping of 2D materials and to establish the factors that drive the charge transfer mechanisms in electron tunneling-based devices. These are key ingredients for the development of 2D -based nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395494200119 Publication Date 2017-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 10 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ lucian @ c:irua:142483 Serial 4696  
Permanent link to this record
 

 
Author Navarrete, A.; Centi, G.; Bogaerts, A.; Mart?n,?ngel; York, A.; Stefanidis, G.D. pdf  url
doi  openurl
  Title Harvesting Renewable Energy for Carbon Dioxide Catalysis Type A1 Journal article
  Year (down) 2017 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 5 Issue 5 Pages 796-811  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of renewable energy (RE) to transform carbon dioxide into commodities (i.e., CO2 valorization) will pave the way towards a more sustainable economy in the coming years. But how can we efficiently use this energy (mostly available as electricity or solar light) to drive the necessary (catalytic) transformations? This paper presents a review of the technological advances in the transformation of carbon dioxide by means of RE. The socioeconomic implications and chemical basis of the transformation of carbon dioxide with RE are discussed. Then a general view of the use of RE to activate the (catalytic) transformations of carbon dioxide with microwaves, plasmas, and light is presented. The fundamental phenomena involved are introduced from a catalytic and reaction device perspective to present the advantages of this energy form as well as the inherent limitations of the present state-of-the-art. It is shown that efficient use of RE requires the redesign of current catalytic concepts. In this context, a new kind of reaction system, an energy-harvesting device, is proposed as a new conceptual approach for this endeavor. Finally, the challenges that lie ahead for the efficient and economical use of RE for carbon dioxide conversion are exposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451619500001 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited 15 Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, G.0254.14 N, G.0217.14 N and G.0383.16 N ; Spanish Ministry of Economy and Competitiveness, ENE2014-53459-R ; Approved Most recent IF: 2.789  
  Call Number PLASMANT @ plasmant @ c:irua:144217 Serial 4615  
Permanent link to this record
 

 
Author Ozkan, A.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title Routes to increase the conversion and the energy efficiency in the splitting of CO2by a dielectric barrier discharge Type A1 Journal article
  Year (down) 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 084004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395400700001 Publication Date 2017-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 28 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Interuniversity Attraction Pole) program PSIPhysical Chemistry of Plasma–Surface Interaction financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by the Fonds David et Alice Van Buuren. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:140093 Serial 4415  
Permanent link to this record
 

 
Author Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
  Year (down) 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal Bba-Gen Subjects  
  Volume 1861 Issue 1861 Pages 839-847  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397366200012 Publication Date 2017-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.702 Times cited Open Access OpenAccess  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved Most recent IF: 4.702  
  Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413  
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Luisier, M.; Radu, I.P.; Houssa, M. url  doi
openurl 
  Title On the electrostatic control achieved in transistors based on multilayered MoS2 : a first-principles study Type A1 Journal article
  Year (down) 2017 Publication Journal of applied physics Abbreviated Journal  
  Volume 121 Issue 4 Pages 044505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, the electrostatic control in metal-oxide-semiconductor field-effect transistors based on MoS2 is studied, with respect to the number of MoS2 layers in the channel and to the equivalent oxide thickness of the gate dielectric, using first-principles calculations combined with a quantum transport formalism. Our simulations show that a compromise exists between the drive current and the electrostatic control on the channel. When increasing the number of MoS2 layers, a degradation of the device performances in terms of subthreshold swing and OFF currents arises due to the screening of the MoS2 layers constituting the transistor channel. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393480100030 Publication Date 2017-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152673 Serial 8329  
Permanent link to this record
 

 
Author Wang, W.; Kong, L.; Geng, J.; Wei, F.; Xia, G. url  doi
openurl 
  Title Wall ablation of heated compound-materials into non-equilibrium discharge plasmas Type A1 Journal article
  Year (down) 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 7 Pages 074005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results show a non-equilibrium region near the plasma-wall interaction region and this indicates the need for the consideration of the influence of the possible departure from LTE in the plasma bulk on the determination of ablation rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000394097200001 Publication Date 2017-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 19 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:141965 Serial 4702  
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on Numerical Modelling of Low-Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches Type Editorial
  Year (down) 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1690011  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record  
  Impact Factor 2.846 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141721 Serial 4475  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B. url  doi
openurl 
  Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
  Year (down) 2017 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 7 Issue 7 Pages 4453-4459  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393751300030 Publication Date 2017-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108  
  Call Number UA @ lucian @ c:irua:141543 Serial 4528  
Permanent link to this record
 

 
Author Friedman, P.C.; Miller, V.; Fridman, G.; Lin, A.; Fridman, A. pdf  doi
openurl 
  Title Successful treatment of actinic keratoses using nonthermal atmospheric pressure plasma : a case series Type L1 Letter to the editor
  Year (down) 2017 Publication Journal of the American Academy of Dermatology Abbreviated Journal  
  Volume 76 Issue 2 Pages 349-350  
  Keywords L1 Letter to the editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396905000041 Publication Date 2017-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0190-9622 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155655 Serial 8617  
Permanent link to this record
 

 
Author Van der Paal, J.; Verheyen, C.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity Type A1 Journal article
  Year (down) 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 39526  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation

for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of

reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391306900001 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number 11U5416N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:139512 Serial 4340  
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
  Year (down) 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 605-614  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000063 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 26 Open Access OpenAccess  
  Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343  
Permanent link to this record
 

 
Author Sun, S.R.; Wang, H.X.; Mei, D.H.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling Type A1 Journal article
  Year (down) 2017 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 17 Issue 17 Pages 220-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion into value-added chemicals is gaining increasing interest in recent years, and a gliding arc plasma has great potential for this purpose, because of its high energy efficiency. In this study, a chemical reaction kinetics model is presented to study the CO2 splitting in a gliding arc discharge. The calculated

conversion and energy efficiency are in good agreement with experimental data in a range of different operating conditions. Therefore, this reaction kinetics model can be used to elucidate the dominant chemical reactions contributing to CO2 destruction and formation. Based on this reaction pathway analysis, the restricting factors for CO2 conversion are figured out, i.e., the reverse reactions and the small treated gas fraction. This allows us to propose some solutions in order to improve the CO2 conversion, such as decreasing the gas temperature, by using a high frequency discharge, or increasing the power

density, by using a micro-scale gliding arc reactor, or by removing the reverse reactions, which could be realized in practice by adding possible scavengers for O atoms, such as CH4. Finally, we compare our results with other types of plasmas in terms of conversion and energy efficiency, and the results illustrate that gliding arc discharges are indeed quite promising for CO2 conversion, certainly when keeping in mind the possible solutions for further performance improvement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393928500023 Publication Date 2016-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 41 Open Access Not_Open_Access  
  Notes We acknowledge financial support from the IAP/7 (Inter- university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO) and the Fund for Scientific Research Flanders (FWO; Grant no. G.0383.16N). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. This work is also supported by National Natural Science Foundation of China (grant nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @ c:irua:138986 Serial 4332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: