|
Record |
Links |
|
Author |
Verlackt, C.C.W.; Neyts, E.C.; Bogaerts, A. |
|
|
Title |
Atomic scale behavior of oxygen-based radicals in water |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
50 |
Issue |
50 |
Pages |
11LT01 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Cold atmospheric pressure plasmas in and in contact with liquids represent a growing field of research for various applications. Understanding the interactions between the plasma generated species and the liquid is crucial. In this work we perform molecular dynamics (MD) simulations based on a quantum mechanical method, i.e. density-functional based tight-binding (DFTB), to examine the interactions of OH radicals and O atoms in bulk water. Our calculations reveal that the transport of OH radicals through water is not only governed by diffusion, but also by an equilibrium reaction of H-abstraction with water molecules. Furthermore, when two OH radicals encounter each other, they either form a stable cluster, or react, resulting in the formation of a new water molecule and an O atom. In addition,
the O atoms form either oxywater (when in singlet configuration) or they remain stable in solution (when in triplet configuration), stressing the important role that O atoms can play in aqueous solution, and in contact with biomolecules. Our observations are in line with both experimental and ab initio results from the literature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000415252400001 |
Publication Date |
2017-02-13 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
11 |
Open Access |
OpenAccess |
|
|
Notes |
The authors thank Peter Bruggeman (University of Minnesota, USA) and Jan Benedikt (Ruhr-Universität Bochum, Germany) for the interesting discussions regarding the existence of O in aqueous solutions. Furthermore, they acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (project number G012413N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. |
Approved |
Most recent IF: 2.588 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:140845 |
Serial |
4420 |
|
Permanent link to this record |